
Expressiveness of Process Algebras

Joachim Parrow 1

Department of Information Technology
Uppsala University
Uppsala, Sweden

Abstract

We examine ways to measure expressiveness of process algebras, and recapitulate and compare some related
results from the literature.

Keywords: Process algebra, expressiveness

1 Introduction

The field of process algebras is sometimes looked upon as a jungle of interrelated
but separate theories. There are process algebras for expressing nondeterminism,
parallelism, distribution, localities, real time, stochastic phenomena, etc, and each
of these aspects can be described in different ways. Various researchers study various
subcalculi, and our knowledge of the relationship between them is sporadic.

People outside the field sometimes recoil at this diversity, perceiving it as an
indication of immaturity and a failure to identify the essentials. A comparison with
the lambda calculus and computability theory is inevitable, and then it seems pro-
cess algebra falls short in defining a single theory of parallel computation. Instead
we have lots of them, maybe so many that our customers become confused and do
not know what specimen to bring back. In spite of all our time in this business how
come we have not brought more order and know which of our formalisms is best, or
at least exactly how they interrelate?

The question is, can and should our jungle be turned into a nicely organized
garden where there are no weeds and each item has a place that is fully understood?
If that is our goal, what are we doing about it?

1 Email: joachim.parrow@it.uu.se

Electronic Notes in Theoretical Computer Science 209 (2008) 173–186

1571-0661 © 2008 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.04.011
Open access under CC BY-NC-ND license.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81127251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:joachim.parrow@it.uu.se
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


2 Absolute Expressiveness

In order to appraise a process algebra it is natural to ask what can be expressed in
it. We shall use the term “absolute expressiveness” for something that answers this
question without referring back to other algebras. Since the semantics almost always
is intended to capture the dynamic behaviour of terms the immediate question
is “what behaviours are expressible.” In other words, we ask what is the set of
denotations of closed terms. The problem then lies in finding a denotational model
that precisely captures the notion of “behaviour”.

But the set of definable behaviours is not all there is to expressiveness. A funda-
mental idea in computer science is that systems are built hierarchically; construction
proceeds by combining simpler systems into larger ones. Therefore we need a set
of operations to represent ways a large system can be constructed from its compo-
nents. The operators of the process algebra are intended to represent basic such
operations, and these operations can themselves be combined into more complex
ones. To measure expressiveness the question that needs answering is “what op-
erations on behaviours are expressible.” In other words, we ask what is the set of
denotations of open terms or contexts in the algebra.

For the wide variety of modern process algebras involving mobility, time, prob-
ability, locality etc. there seem to be no results on absolute expressiveness. But for
the more traditional algebras there are a few results, perhaps because the algebras
involved are simpler and the denotations, if not given a complete mathematical
formulation, are better understood. Briefly put, they are just transition systems
where the transitions carry a label signifying the synchronization event that takes
place when the transition is taken. We shall in the following refer to those algebras
as basic process algebras. So, exactly what transition systems, and what operators
on them, are expressible in a given basic algebra?

2.1 Expressiveness of Terms

The terms in a basic process algebra are rooted labeled directed graphs where nodes
represent states and labeled edges represent transitions. One might suppose that a
minimal requirement of a reasonable algebra is that all such graphs can be denoted,
but the real situation is a bit more complicated. First, we are probably only inter-
ested in computable graphs, for some well defined notion of computability (a simple
one is that the transition relation viewed as a set is computable). Second, process
algebras come with a variety of equivalences which in some ways are thought of as
identity of behaviour, so it is reasonable to only require that graphs are expressible
up to that equivalence. And then it will matter exactly what the equivalence is.

The first to study this kind of problem in technical detail was de Simone (1985)
[5]. He worked in the synchronous process algebras MEIJE and SCCS. These share
two important characteristics that set them apart from many other algebras. First,
the parallel composition operator is of a synchronous kind, in the sense that com-
ponents composed in parallel execute in lock-step. In other words, an action from a
composite system always involves actions from all components. Second, communi-

J. Parrow / Electronic Notes in Theoretical Computer Science 209 (2008) 173–186174



cations may involve any number of components (rather than just one sender and one
receiver). Both these characteristics borrow intuition from hardware construction,
where components are distinct physical parts.

de Simone’s result is that in MEIJE and SCCS all recursively enumerable tran-
sition graphs are expressible up to a variant of bisimulation equivalence. Here it
should be noted that the semantics of MEIJE and SCCS is not computable; due to
the presence of unguarded recursion it is even undecidable if a term has a transition,
and de Simone’s result makes critical use of this. It is somewhat unsatisfactory to
allow non computable primitives in an algebra that intends to convey the essence
of executable behaviour, especially if used to derive an expressiveness result.

Another result along these lines is by Baeten, Bergstra and Klop (1987) [1].
They use the basic process algebra ACP, which in many respects is similar to CCS,
equipped with around 25 axioms stating which terms are deemed equivalent. Instead
of an operational semantics a graph model is explicitly constructed, and through a
clever and general diagonalization argument it is shown that there are non-denotable
computable graphs. The main result however is in the extension ACPτ , which adds
the unobservable τ -action and axioms for it. The axioms are similar to those for
weak bisimulation equivalence. It is shown that ACPτ can denote any computable
graph up to weak bisimulation. The idea is to define a system of processes that
precisely simulates the Turing machine computing the transition relation; all the
internal computation steps in this simulation are rendered insignificant in view of
the fact that weak bisimulation takes little account of internal transitions.

Vaandrager (1992) [17] gives a nice generalization and exposition of the nega-
tive result. He shows that if there are no unobservable actions, then no process
algebra with an effective semantics (i.e., the set of transitions from each term is
computable) can denote all computable graphs up to trace equivalence. Vaandrager
also demonstrates a simple process algebra that can denote all computable graphs
up to weak bisimulation equivalence, thus simplifying the proof mentioned in the
paragraph above.

In a simple algebra having only the static operators of parallel and interlinking
as primitives I show (1989) [12,13] that with only three simple constants all finite
state behaviours are definable up to weak bisimulation equivalence. The three
constants only have one or two states each, representing the ideas of synchronization,
alternation and choice. The result says that it is possible to construct any finite
state behaviour if given an unbounded supply of these constants by combining them
in parallel. Probably, adding a fourth constant representing unbounded memory
(like a stack) would make it possible to duplicate the construction of Baeten et al
mentioned above, to express any computable behaviour.

2.2 Expressible Operators

Again, the first results on expressible operators are due to de Simone (1985) [5]. He
characterized the expressible operators using structural operational semantics. This
is the normal format for giving semantics to the operators of a process algebra and
is represented as a system of inference rules for transitions. De Simone showed that,

J. Parrow / Electronic Notes in Theoretical Computer Science 209 (2008) 173–186 175



up to bisimulation equivalence, the contexts of MEIJE can express exactly those
n-ary operators op that have an operational semantics with a finite set of inference
rules of the following kind:

∀i ∈ S : Pi
αi−→ P ′

i R(α1, . . . , αk, β)

op(P1, . . . , Pn)
β−→ T

Here S is a subset of {1, . . . , n} containing k elements, R a k + 1-ary recursively
enumerable relation on action labels, and T any term that contains each P ′

i for
i ∈ S and each Pi for i ∈ {1, . . . , n}\S at most once. Since the Pi, αi and P ′

i are
implicitly universally quantified meta variables the rule is completely determined
by S, R and T . It says that if the subset S of the operands of op can perform
actions that satisfy R, then op(· · · ) can perform an action resulting in T : a term
built from the derivatives of the operands that acted in the premise, and the rest of
the operands that did not act. This format of inference rules is now known as the
“de Simone format”, and practically all operators in basic process algebras adhere
to it.

The main idea of de Simone’s construction is that for each operator a kind of
supervisor term is designed. The operator instantiated with terms for its operands
then behaves exactly as the supervisor in parallel with the same operands. For this
to work the parallelism must be synchronous, so that the supervisor so to speak can
regulate each action from each operand.

A few years later (1989) I analyzed the expressible operators of the algebra men-
tioned at the end of Section 2.1 [12]. Here the parallel composition is asynchronous,
giving the usual interleaving semantics, and this means that the constructions of de
Simone cannot be used. Nevertheless the result is that a significant subset of the de
Simone format can be expressed up to weak bisimulation, namely those de Simone
operators that satisfy the so called idling rules

∀i ∈ S : Pi −→ P ′
i

op(P1, . . . , Pn) −→ op(P (′)
1 , . . . , P (′)

n )
Here −→ represents an internal transition without any external communication

events, and P
(′)
i is P ′

i for i ∈ S and Pi for i �∈ S. The rules says that if a subset of the
operands idle, i.e. do nothing externally observable, then the whole term can also
idle. This is an effect of asynchronous parallelism: in that setting it is not possible
for the supervisor term to prevent an operand from idling. Several usual process
algebra operators do not satisfy this, for example the prefix operator and choice
operator of ordinary CCS. So in this way it can be argued that prefix and choice
cannot be implemented by parallelism alone. Interestingly, if weak trace equivalence
is used instead of weak bisimulation both prefix and choice can be defined, but there
are still operators that cannot be defined, for example synchronous parallel.

An excellent related exposition is in the paper by Vaandrager [17]. He rephrases
the results by de Simone using a simpler synchronous process algebra and gives a
more precise definition of what it means to express an operator.

All these results on expressiveness of operators assume that each communication

J. Parrow / Electronic Notes in Theoretical Computer Science 209 (2008) 173–186176



event may involve an arbitrary number of components. This feature is needed in
the construction of the supervisory term and its interactions with operands. But
process algebras usually have only binary communication. So, to conclude this
section, it is remarkable that for most algebras, including the original CCS, there
is yet no absolute measure on the expressible operators.

3 Relative Expressiveness

If we cannot determine the expressiveness in an absolute sense we may still obtain
relative results. Suppose we have two process algebras A and B. Say that A is
as expressive as B to mean that A can express anything that B can. Without
actually going into details on what is being expressed this can be demonstrated
by an encoding E : B → A (here and in the following we use A and B also to
represent the carriers of the algebras). The intuition is that whatever an element
b ∈ B expresses is also expressed by E(b).

Of course not any mapping E will suffice for this intuition to work. After all,
probably both A and B are enumerable, so some some mapping will always exist
between them. We are here interested in encodings that satisfy two kinds of crite-
ria: They should “preserve reasonably much of the semantics” and they should be
defined “in terms of the structure” of B. The former guarantees that E(b) really
encodes the intended meaning of b, and the latter ensures that the contexts of B,
which represent the expressible operators on behaviours, also can be represented in
A. Several ideas have been suggested to interpret these requirements formally, and
often combinations of the ideas are used. We shall here examine some of the most
popular.

3.1 Equivalence

If both A and B are equipped with a behavioural equivalence � ⊆ (A∪B)×(A∪B),
defined in exactly the same way on both algebras to convey identity of behaviour,
a simple definition is that the encoded term is equivalent to its encoding:

∀b ∈ B. E(b) � b

This definition is quite natural and if it holds then E certainly must be said to
“preserve semantics”, even though there might still be a choice of which equivalence
to use. The problem here is rather that the requirement is too severe. Suppose that
we wish to compare the expressiveness of algebras where processes have different sets
of observable events (for example involving monadic versus polyadic data transfers)
and that the involved equivalence refers to these events. Then the encoding will
not be equivalent, simply because it gives rise to observables of different kinds. But
it could still be said to express the same thing, in an intuitive sense, even if these
are formally expressed with different objects. For example, a polyadic data transfer
could be expressed by a sequence of monadic transfers. We therefore need to look
at at less strict requirements.

J. Parrow / Electronic Notes in Theoretical Computer Science 209 (2008) 173–186 177



3.2 Preserving Observables

A natural idea is to look for the manifestations of behaviour which are common
to processes in both algebras, and require that the encoding preserves them. So
choose a set of “observables” O to represent such manifestations. There are several
examples of different kinds of such, for example

• The channels along which a process may communicate
• The possibilities to diverge or converge
• The traces (sequences of communication events, with or without internal actions
• The barbs (Communication capabilities after a sequence of reductions)
• The tests that the process may (or must) pass, for som formal notion of test

Once such a set has been identified to capture relevant aspects of behaviour we
can define a function O : A ∪B −→ O, assigning observables to each element of A
and B, and the criterion for E to preserve the semantics then is

∀b ∈ B. O(E(b)) = O(b)

When this is used there is naturally the question if the chosen observables are re-
ally exhaustive. Of course, for different purposes different observables are relevant.
Also, some of these observables are clearly not enough to capture all of the in-
tended semantics, and therefore this criterion is often combined with other, notably
operational correspondence.

3.3 Operational Correspondence

The intuition behind an operational correspondence between b and E(b) is that both
algebras A and B are equipped with a reduction relation −→ ⊆ (A×A)∪(B×B),
and that E preserves the essentials of it. Here c −→ c′ means that c can evolve to c′

without interaction with its environment. In many algebras this is represented by
the action τ and the reduction is written τ−→.

In one direction the preservation of semantics is easy: Any reduction in B should
be present in A, though one reduction step may correspond to several steps in the
encoding:

∀b, b′ ∈ B. b −→ b′ implies E(b) −→∗� E(b′)

Here −→∗ is the reflexive transitive closure of −→. The criterion says that that
any reduction by b must be mimicked by E(b), up to a behavioural equivalence �.

The converse direction is less straightforward and here one finds a spectrum
of possibilities, geared towards particular situations. Clearly just inverting the
implication in the criterion above would be insufficient since that would not exclude
unwanted reductions in A to processes that are not encodings of any process in B.
A general criterion, though often hard to prove, is that any sequence of reductions
from an encoding should be the initial part of a corresponding reduction in B:

∀b ∈ B, a ∈ A. E(b) −→∗ a implies ∃b′ ∈ B. b −→∗ b′ and a −→∗� E(b′)

J. Parrow / Electronic Notes in Theoretical Computer Science 209 (2008) 173–186178



An operational correspondence can hardly on its own be said to establish that
E preserves the semantics since there may be significants aspects not covered by re-
ductions. Sometimes an operational correspondence is extended to include labelled
actions; the definition then becomes highly dependent on the particular process
algebras.

3.4 Full Abstraction

This idea requires an equivalence � ⊆ (A × A) ∪ (B × B) which represents the
fact that processes are behaviourally equivalent. The definition of � on A can be
different from the definition on B; this makes full abstraction a very general and
widely applicable technique.

The full abstraction criterion is that equivalent processes are mapped to equiv-
alent processes:

∀b, b′ ∈ B. b � b′ iff E(b) � E(b′)

This guarantees that the encoding treats behaviourally equivalent processes sim-
ilarly. Note that the “iff” is implication in both directions. The corresponding
forward and backward implications are sometimes referred to as “soundness” and
“completeness”.

If there is no obvious such equivalence at hand one can often be constructed
from a set of observables O, containing possibly different observables from A and
B. Define �A as the largest congruence in A that respects observables, namely

∀a, a′ ∈ A. a �A a′ if ∀CA ∈ contexts of A. O(CA(a)) = O(CA(a′))

and similarly

∀b, b′ ∈ B. b �B b′ if ∀CB ∈ contexts of B. O(CB(b)) = O(CB(b′))

Here a context C is just an open term with exactly one free variable, and C(c) is the
term obtained by substituting c for the variable. Now we can define � as �A ∪ �B

and apply the definition of full abstraction, it becomes

∀CB ∈ contexts of B. O(CB(b)) = O(CB(b′))

iff

∀CA ∈ contexts of A. O(CA(E(b))) = O(CA(E(b′)))

This criterion says that processes with the same observables in any context will
after translation still have the same observables in any context.

3.5 Weak Full Abstraction

In one sense the criterion of full abstraction can be regarded as too strong. Suppose
that A is some low level formalism encoding a higher level formalism B, by providing
for each primitive of B a protocol in A— think of E as a compiler from a high level

J. Parrow / Electronic Notes in Theoretical Computer Science 209 (2008) 173–186 179



formalism to a low level one. Now, when E translates from B to A the resulting
terms will always be combinations of such protocols, or if you like, snippets of
compiled code. But A might contain other things which are not translations of
terms in B. Although these will never surface in translations they do surface in
the contexts of A, thereby affecting the definition of full abstraction. It may be
unreasonable to ask that the encodings E(b) and E(b′) behave the same in all possible
contexts of A, since they will never be exposed to the full range of such contexts.
They will only be exposed to those contexts which are encodings of contexts in B.

With this insight the definitions above can be relaxed as follows:

∀a, a′ ∈ A. a �A a′ if ∀CB ∈ contexts of B. O(E(CB)(a)) = O(E(CB)(a′))

Here terms in A are equivalent if they behave the same in all encoded contexts (so
the definition depends on E). If E(CB)(E(b)) = E(CB(b)) then weak full abstraction
becomes

∀CB ∈ contexts of B. O(CB(b)) = O(CB(b′))

iff

∀CB ∈ contexts of B. O(E(CB(b))) = O(E(CB(b′)))

In some cases the encodable contexts can be defined through a type system
in A, and then weak full abstraction becomes the same as full abstraction of the
well-typed fragment of A.

Variants of full abstraction use more limited forms of contexts. For example
“for all contexts of B” can be replaced by “for all tests in B”, for some well defined
notion of test. There is then still a difference between “all tests in A” and “all tests
that are encodings of tests in B”, giving rise to a difference between full abstraction
and weak full abstraction.

In conclusion there are many ways to interpret the criterion “E preserves rea-
sonable parts of the semantics,” and these are sometimes related. For example, the
condition of equivalence will imply full abstraction for the same equivalence and
might imply preservation of some observables. Many of these relations are depen-
dent on the particular algebras under study, for example in how different choices of
equivalence affect the results. In all there is, unfortunately, little discernible general
structure to the choices of criteria.

3.6 Structural Definition

If there is no requirement on E that it is structurally defined over the operators in
B, then the encoding is only relevant for expressiveness of terms. For expressiveness
of operators additional requirements are needed, and they come in a few variants.

3.6.1 Homomorphy
The strongest criterion is that E is homomorphic for some chosen operators. For-
mally E is homomorphic on the operator op if op is present in both A and B,

J. Parrow / Electronic Notes in Theoretical Computer Science 209 (2008) 173–186180



and
∀b ∈ B. E(op(b)) = op(E(b))

The definition generalizes to operators of higher arity in the obvious way. Naturally
E cannot be homomorphic on all operators (or it would become identity). But if
A and B share an operator and this operator is intended to represent the same
construction then homomorphy is reasonable. A prime example is to require homo-
morphy for parallel composition; this entails that E respects the distribution of a
term into parallel components exactly.

3.6.2 Compositionality
A weaker criterion is that an operator is translated compositionally: this means
that for each operator in B there is a corresponding context in A that implements
E . If this holds for all operators we say that E is compositional:

∀op ∈ B. ∃C ∈ contexts in A. ∀b ∈ B. E(op(b)) = C(E(b))

again with the obvious extension to operators of higher arity. This implies that any
context in B can be represented as a context in A.

3.6.3 Weak Compositionality
Sometimes compositionality is hard to achieve where a slightly weaker version is
possible, allowing an single outermost context. We say that E is weakly composi-
tional if

∃C ∈ contexts in A. ∀b ∈ B. E(b) = C(F(b))

where F : B → A is compositional. Again, thinking of E as a compiler clarifies the
issue: here C can be regarded as the run time system and F as the compiler proper.
The relationship with compositionality (i.e. under which circumstances a weakly
compositional encoding implies the existence of a compositional one) has not been
studied in any detail and might be an interesting avenue to explore.

3.7 Examples: The Asynchronous π-calculus

In the last ten years there has been a significant effort to relate various process
algebras, in particular for the π-calculus, its subcalculi and extensions. We shall
here briefly look at a few of these results. This is not intended to be an exhaustive
list but will give the reader some idea of typical problems and solutions.

The asynchronous π-calculus (aπ) is a subcalculus of the π-calculus where there
are no continuations following the output primitive. This means that it is not
possible to say “first output this and then do that.” Unguarded outputs can be
regarded as messages in transit, where their eventual reception will not directly
affect the sender. Also, in most versions of aπ there is no choice operator.

When aπ was introduced (independently by Honda and Tokoro 1991 and by
Boudol 1992) it was claimed that it is as expressive as the full π-calculus, at least

J. Parrow / Electronic Notes in Theoretical Computer Science 209 (2008) 173–186 181



without the choice operator. The motivation is a compositional encoding— actu-
ally it is homomorphic on all operators except prefix — which introduces a small
handshake protocol that signals the sender when a message has arrived. Variants
of this protocol has been analyzed in several papers.

Quaglia and Walker (2000) [15] use a variant which encodes the polyadic choice-
free π-calculus into monadic aπ, and prove that the encoding is weakly fully ab-
stract with respect to barbed congruence, one of the standard equivalences in the
π-calculus. They further define a type system to filter out the π-calculus terms
that are not encodings of aπ terms, and obtain full abstraction for the well typed
calculus.

Cacciagrano, Corradini and Palamidessi (2006) [4] derive a seemingly contradic-
tory result: no encoding of even the monadic π-calculus into monadic aπ which is
compositional for the prefix operator can be weakly fully abstract for must-tests.
Note that a requirement for this negative result is that the encoding is compo-
sitional for prefixes. Thus this does not say anything about inexpressible terms,
rather it says something about inexpressible contexts. The reason it is not actually
contradicting the result by Quaglia and Walker is that must tests are more discrim-
inating than barbs, in particular when it comes to distinguishing between terms
with different divergence potentials.

Earlier, Nestmann and Pierce studied encodings of the choice operator into
monadic aπ (2000) [8]. The idea is to introduce a lock as an explicit critical resource
and translate choice into parallel where a parallel branch must claim the lock to
proceed, therefore only one branch will actually progress. The encoding only works
for input-guarded choice, i.e., a choice where the first action in each branch is an
input guard. It is compositional, and homomorphic in all operators except choice.
The encoding is proved weakly coupled equivalent (a version of weak bisimulation),
and preserves divergence properties. A variant of the encoding does not preserve
divergence but is equivalent for ordinary weak bisimulation. So there is a trade-off
in that different encodings preserve different parts of the semantics. Other related
encodings of various forms of choice are demonstrated by Nestmann (2000) [7].

Palamidessi (1997) [9,10] has also studied the encoding of choice and has an
interesting negative result: an encoding of the full π-calculus, with mixed choice
(i.e. where branches of a choice can be guarded by both input and output actions)
into aπ, or even into the the π-calculus restricted to separate choice (i.e. where all
choices are either between input guards or between output guards) is impossible
for an encoding that is compositional, homomorphic in parallel and preserving the
observables of maximal traces. The latter condition actually implies that divergence
potentials are preserved. The proof is by a reduction to the distributed leader elec-
tion protocol. Choosing a branch is roughly the same as choosing a leader. A fully
distributed solution to leader election always introduce a divergence possibility, so
any encoding must also introduce a possibility to diverge. Comparing Palamidessi’s
and Nestmann’s results there seems to be a sharp line between separate choice and
mixed choice: one can be encoded while preserving parallelism and convergence
properties, and the other cannot. There are still unsettled questions, e.g. if mixed

J. Parrow / Electronic Notes in Theoretical Computer Science 209 (2008) 173–186182



choice can be encoded preserving observation equivalence (which does not take ac-
count of divergence).

3.8 Examples: Limited Prefixes

The prefix operator is the source of dynamic behaviour since it introduces commu-
nication actions. I have showed (2000) [14] that for the choice-free π-calculus with
replication, the subcalculus where prefix is nested to depth at most three is equally
expressive. The encoding works by replacing every operator in a term by a trio:
three nested prefixes where the first and last are used for communication with other
trios and the middle performs the work of the operator. It is weakly compositional
and equivalent for weak bisimulation. So this result really is about expressiveness
for terms rather than contexts: it says that no fewer terms are definable when prefix
is limited to depth three. In the same work I show that limiting prefixes to depth
two makes it impossible to find an encoding that is equivalent for weak bisimulation;
there is no requirement on compositionality for the negative result so it is about
undefinable terms (and not contexts). There is a yet unproved conjecture that the
result extends to the π-calculus with choice if the trios also include choice.

The fusion calculus is a generalization of π where actions may trigger side effects.
As a measure of its expressive power, Laneve and Victor (1999) [6] have shown that
restricting prefix to depth one, i.e. a prefix cannot be followed by anything at all, it
is still possible to encode the full fusion calculus. The encoding is compositional and
homomorphic for parallel, enjoys a kind of operational correspondence and weak full
abstraction with respect to barbs. It works by using the side effects of single actions
to enforce temporal sequencing; it is a quite striking result that the very primitive
side effects of the fusion calculus can enforce arbitrary such temporal relationships.

Yoshida considers a version of the π-calculus without any prefix operators at all
(1998) [18,19]. In their place there is a small number of combinator terms; these do
contain prefixes, so in other words prefixes are limited to occur in the combinator
terms. It turns out that different sets of combinators can encode different subcalculi
of π. For example, with five simple combinators the asynchronous choice free π-
calculus can be encoded. This encoding is homomorphic for all operators except
input, where it is not even compositional, so the result is about expressible terms
rather than contexts. The encoded terms are weakly bisimulation equivalent. The
negative results are for encodings which are homomorphic, preserve barbs and have
an operational correspondence.

Palamidessi et al (2006) [11] study the subset of the π-calculus where all prefixes
are replicated. In other words, all unguarded prefixes are persistent in the sense
that they will never cease to offer interaction possibilities. It is shown that there
is no encoding of π into this subcalculus which is homomorphic for parallel and
weakly fully abstract for barbed congruence. The proof idea is that the equation
X|X � X holds in the subcalculus.

J. Parrow / Electronic Notes in Theoretical Computer Science 209 (2008) 173–186 183



3.9 Examples: Adding Data Structures

The basic process algebras contain no primitives for data transfer, and the π-calculus
allows for transfer only of atomic names. But the motivation behind these calculi
has always been to model transfer of more complex data structures. Already in
the original CCS there was an encoding of data structures, using an infinite choice
operator. And the very first article on the π-calculus presented encodings of data
structures, without examining their properties formally. The idea is that instead of
sending a data object we send a link leading to a copy of the object.

Adding more advanced data objects involves either moving to a higher order
formalism (where the data objects transferred are themselves processes in the lan-
guage) or extending the algebra with additional constructs specifically for data
terms. The former approach is taken by Sangiorgi (1993) [16]. He shows that the
higher-order π-calculus can be encoded by the standard π-calculus; the encoding is
compositional, in fact homomorphic for most operators, fully abstract for barbed
congruence and enjoys an operational correspondence.

The latter approach, of defining data structures separately, was taken by Bal-
damus, Victor and myself (2004) [2,3]. We studied the problem of encoding data
enriched calculi into the ordinary π-calculus. Interestingly there is here a trade
off between different kinds of encodings. One is compositional and weakly fully
abstract for may tests, the other is weakly compositional and fully abstract for
may tests. It is still not known if there exists a compositional and fully abstract
encoding. The main difficulty is that a process may receive a data term and subse-
quently deconstruct it and test the parts for equality, this is why the proofs for the
higher order encoding do not carry over to this case. Briefly put, the problem is the
π-calculus processes that are not encodings. They can either be excluded (giving
weak full abstraction) or protected against by an outermost context (giving weak
compositionality).

4 Concluding Remarks

This brief survey of expressiveness has shown that great care has to be taken when
formulating and interpreting results: expressiveness can be taken to mean many
different things, and just saying “A is as expressive as B” without further qualifying
what is meant is not very informative.

We have hardly answered the questions from the introduction: Should we trans-
form the jungle into a garden, and are we getting close? We seem farther from it
than ever. There are n different process algebras, where n is finite but growing
unboundedly. We attempt to remedy the situation by comparing the different alge-
bras in a systematic way. But we end up with k different ways of comparing their
expressiveness. This gives us a potential for n×n×k distinct expressiveness results.
Is this really the road to eventual success?

In actual fact the jungle and garden analogy is not very accurate and the com-
parison with the lambda calculus is misleading. The jungle, if there is one, is in
all the information processing systems being constructed, using the inventiveness

J. Parrow / Electronic Notes in Theoretical Computer Science 209 (2008) 173–186184



of millions of programmers and system builders. Our process algebras form neither
jungle nor garden; they are not part of nature and they are not a decoration to
please the eye. They are tools and there to do a job. And the job is immense. The
information technology industry is today building the most complicated artifacts
ever invented by humanity. So we shall keep developing the tools and gain as much
confidence as we can in their relationships and operating parameters, but the goal
to produce one all purpose tool just isn’t there.

Once upon a time a man went into a hardware store. Approaching the clerk he
said “How do you do, I need to cut some small piece of wood and have been told
that I could probably make good use of a knife. I understand you can sell me one,
is this correct?” The clerk replied “Certainly sir, we have a wide selection here”
and pointed to a cabinet full of knives of different sizes, manufacturers and colours,
exhibiting a variety of sharpness, durability and craftsmanship. To her surprise the
man recoiled and cried out “What do you mean by all this? I just want the one
knife, and of course I want the best knife. This abundance just shows me you have
not yet found out which knife is best, despite all your years in the business.”

References

[1] Jos C. M. Baeten, Jan A. Bergstra, and Jan Willem Klop. On the consistency of koomen’s fair
abstraction rule. Theor. Comput. Sci., 51:129–176, 1987.

[2] Michael Baldamus, Joachim Parrow, and Björn Victor. Spi calculus translated to pi–calculus preserving
may-tests. In LICS, pages 22–31. IEEE Computer Society, 2004.

[3] Michael Baldamus, Joachim Parrow, and Björn Victor. A fully abstract encoding of the pi-calculus
with data terms. In Lúıs Caires, Giuseppe F. Italiano, Lúıs Monteiro, Catuscia Palamidessi, and Moti
Yung, editors, ICALP, volume 3580 of Lecture Notes in Computer Science, pages 1202–1213. Springer,
2005.

[4] Diletta Cacciagrano, Flavio Corradini, and Catuscia Palamidessi. Separation of synchronous and
asynchronous communication via testing. Electr. Notes Theor. Comput. Sci., 154(3):95–108, 2006.

[5] Robert de Simone. Higher-level synchronising devices in meije-sccs. Theor. Comput. Sci., 37:245–267,
1985.

[6] Cosimo Laneve and Björn Victor. Solos in concert. In Jiŕı Wiedermann, Peter van Emde Boas, and
Mogens Nielsen, editors, ICALP, volume 1644 of Lecture Notes in Computer Science, pages 513–523.
Springer, 1999.

[7] Uwe Nestmann. What is a good encoding of guarded choice? Inf. Comput., 156(1-2):287–319, 2000.

[8] Uwe Nestmann and Benjamin C. Pierce. Decoding choice encodings. Inf. Comput., 163(1):1–69, 2000.

[9] Catuscia Palamidessi. Comparing the expressive power of the synchronous and the asynchronous pi-
calculus. In POPL, pages 256–265, 1997.

[10] Catuscia Palamidessi. Comparing the expressive power of the synchronous and asynchronous pi-calculi.
Mathematical Structures in Computer Science, 13(5):685–719, 2003.

[11] Catuscia Palamidessi, Vijay A. Saraswat, Frank D. Valencia, and Björn Victor. On the expressiveness of
linearity vs persistence in the asychronous pi-calculus. In LICS, pages 59–68. IEEE Computer Society,
2006.

[12] Joachim Parrow. The expressive power of simple parallelism. In Eddy Odijk, Martin Rem, and Jean-
Claude Syre, editors, PARLE (2), volume 366 of Lecture Notes in Computer Science, pages 389–405.
Springer, 1989.

[13] Joachim Parrow. The expressive power of parallelism. Future Generation Computer Systems, 6:271–
285, 1990.

J. Parrow / Electronic Notes in Theoretical Computer Science 209 (2008) 173–186 185



[14] Joachim Parrow. Trios in concert. In Proof, Language and Interaction, Essays in Honour of Robin
Milner, pages 621–637. MIT Press, 2000.

[15] Paola Quaglia and David Walker. On synchronous and asynchronous mobile processes. In Jerzy Tiuryn,
editor, FoSSaCS, volume 1784 of Lecture Notes in Computer Science, pages 283–296. Springer, 2000.

[16] Davide Sangiorgi. From pi-calculus to higher-order pi-calculus - and back. In Marie-Claude Gaudel
and Jean-Pierre Jouannaud, editors, TAPSOFT, volume 668 of Lecture Notes in Computer Science,
pages 151–166. Springer, 1993.

[17] Frits W. Vaandrager. Expressive results for process algebras. In J. W. de Bakker, Willem P. de Roever,
and Grzegorz Rozenberg, editors, REX Workshop, volume 666 of Lecture Notes in Computer Science,
pages 609–638. Springer, 1992.

[18] Nobuko Yoshida. Minimality and separation results on asynchronous mobile processes: Representability
theorems by concurrent combinators (extended abstract). In Davide Sangiorgi and Robert de Simone,
editors, CONCUR, volume 1466 of Lecture Notes in Computer Science, pages 131–146. Springer, 1998.

[19] Nobuko Yoshida. Minimality and separation results on asynchronous mobile processes - representability
theorems by concurrent combinators. Theor. Comput. Sci., 274(1-2):231–276, 2002.

J. Parrow / Electronic Notes in Theoretical Computer Science 209 (2008) 173–186186


	Introduction
	Absolute Expressiveness
	Expressiveness of Terms
	Expressible Operators

	Relative Expressiveness
	Equivalence
	Preserving Observables
	Operational Correspondence
	Full Abstraction
	Weak Full Abstraction
	Structural Definition
	Examples: The Asynchronous -calculus
	Examples: Limited Prefixes
	Examples: Adding Data Structures

	Concluding Remarks
	References

