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Abstract

We derive various interesting properties of complex equiangular cyclic frames for many pairs (n, k) using
Gauss sums and number theory. We further use these results to study the random and burst errors of some
special classes of complex equiangular cyclic (n, k) frames.
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1. Introduction

Two-uniform frames are of key importance in coding and decoding of vectors. The two-uniform
frames have been discussed in [2] where it is proved that when such frames exist, they are optimal
for two or more erasures. It is also shown in [2] that a frame is two-uniform if and only if it is
equiangular in the terminology of [5].

It is known that equiangular (n, k)-frames, i.e. equiangular frames of n vectors for a k-dimen-
sional Hilbert space, can only exist for certain pairs of integers (n, k). For real Hilbert spaces, nec-
essary and sufficient conditions for the existence of real equiangular cyclic frames are expressed
in terms of the existence of certain types of graphs [2]. It is shown in [8] that the existence of
complex equiangular cyclic (n, k)-frames depends on the existence of certain difference sets.

Although in [8] the authors show that the necessary and sufficient condition for existence of
an equiangular cyclic (n, k)-frame is the existence of a corresponding (n, k, λ) difference set, the
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construction of some types of equiangular cyclic (n, k)-frames shown in this paper reveal more
important properties which are not reflected in [8]. Using the technique in this paper, we can prove
results about the error operators for some equiangular cyclic(n, k)-frames. The construction in this
paper, along with results for Gauss sums, give the precise information about the error operators
and the corresponding correlation matrix.

In this paper we introduce Gauss sums in the field of frame theory. We observe that the
construction of these equiangular cyclic (n, k)-frames involves a particular kind of Gauss sums
and hence we use the theory developed for the same. We also look into the geometry of these
frames and show that these frames form a spherical 1-design.

2. Basic concepts and definitions

We begin by the definition of a frame for a Hilbert space.

Definition 2.1. Let H be a real or complex Hilbert space and let F = {fi}i∈I be a subset of H,
where I is an index set. Then F is called a frame for H provided that there are two positive
integers A, B such that the inequalities

A‖x‖2 �
∑
j∈I

|〈x, fj 〉|2 � B‖x‖2

hold for every x ∈ H. Here 〈·, ·〉 denotes the inner product of two vectors in H.

If A = B = 1, then {fi}i∈I is called a Parseval frame or Unit Normalized Tight frame or UNTF.
A frame is called uniform or equal-norm provided there is a constant c such that ‖fi‖ = c for
each i ∈ I .

Let F be a field of real or complex numbers. LetF(n, k) be the collection of all Parseval frames
for a k-dimensional Hilbert space Fk consisting of n vectors. Such frames are called (n, k)-frames.
The ratio of n/k is called the redundancy ratio of the (n, k)-frame.

It is known that a Parseval frame satisfies the Parseval identity,

x =
∑
l∈I

〈x, fl〉fl ∀x ∈ H.

In [2], certain frames are identified as being equivalent. Given frames F = {f1, f2, . . . , fn} and
G = {g1, g2, . . . , gn}, we say that they are type I equivalent if there exists a unitary (orthogonal,
in the real case) matrix U such that gi = Ufi for all i. If V and W are the analysis operators for F

and G, respectively, then it is clear that F and G are type I equivalent if and only if V = WU or
equivalently, if and only if V V ∗ = WW ∗. Thus, there is a one-to-one correspondence between
n × n rank k projections and type I equivalence classes of (n, k)-frames. We say that two frames
are type II equivalent if they are simply a permutation of the same vectors and type III equivalent
if the vectors differ by multiplication with ±1 in the real case and multiplication by complex
numbers of modulus one in the complex case.

Let us now look at the case of losing m coefficients, i.e. the case of m-erasures. We define the
error operator Ei1,...,im as

Ei1,...,im(x) = x −
∑

l /=i1,...,im

〈x, fl〉fl =
m∑

j=1

〈x, fij 〉fij .
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The norm of this error operator is given by the operator norm of the m × m correlation matrix


〈fi1 , fi1〉 〈fi2 , fi1〉 · · · 〈fim, fi1〉〈fi1 , fi2〉 〈fi2 , fi2〉 · · · 〈fim, fi2〉
...

...
. . .

...

〈fi1 , fim〉 〈fi2 , fim〉 . . . 〈fim, fim〉


 .

If we lose only one coefficient, then it can be seen that the norm of the error operator is given by
the norm of the corresponding frame vector. Therefore, in the case of a uniform frame, the error
is constant for each coefficient.

In the case of losing two coefficients, ith and j th, the error operator Ei,j is given by

Ei,j (x) = x −
∑
l /=i,j

〈x, fl〉fl = 〈x, fi〉fi + 〈x, fj 〉fj .

This condition is called two-erasures. A two-uniform frame is a frame which is uniform and
‖Ei,j‖ = constant ∀i /= j .

We state the following characterization of two-uniform frames from [2].

Theorem 2.2. Let {fi}i∈I be a uniform (n, k)-frame. Then, it is two-uniform (equiangular) if and
only if |〈fi, fj 〉| = cn,k for each i, j ∈ I such that i /= j where

cn,k =
√

k(n − k)

n2(n − 1)
.

A frame {fi}i∈I such that |〈fi, fj 〉| = constant for each i, j ∈ I for i /= j is called an equian-
gular frame.

In [1], it is established that when {fi}i∈I is a uniform (n, k)-frame, then each vector fi , i ∈ I

is of length
√

k
n

. Also, it is shown that two-uniform frames, when they exist, are optimal for
two-erasures.

We now look at some basic concepts and theorems in number theory from [7].
We know that a ∈ Zn such that gcd(a, n) = 1, is called a quadratic residue of an odd prime n

if and only if x2 ≡ a (mod n) has a solution in Zn. Otherwise, a is called a quadratic non-residue
of n. Note that if a ≡ b (mod n), then a is a quadratic residue (non-residue) of n if and only if b

is a quadratic residue (non-residue) of n. Therefore, we only look for residues in Zn. This is also
called a reduced residue system. Note that the product of two quadratic residues or two quadratic
non-residues is a quadratic residue in a reduced residue system of n.

Since an−1 ≡ 1 (mod n), then an−1 − 1 ≡ (a
n−1

2 − 1)(a
n−1

2 + 1) ≡ 0 (mod n).
Thus, a

n−1
2 ≡ 1 (mod n) or a

n−1
2 ≡ −1 (mod n).

We can now state the following result also known as the Euler’s criterion.

Theorem 2.3. Let n be an odd prime and gcd(a, n) = 1. Then,

a
n−1

2 =
(a
n

)
L

=
{

1 a is a quadratic residue,
−1 a is a quadratic non�residue,

where ( )L is called the Legendre symbol.
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It is easy to prove the following properties of Legendre symbol,

1.
(

ab
n

)
L

= ( a
n

)
L

(
b
n

)
L

.

2.
(

1
n

)
L

= 1.

Using modular arithmetics and the binomial theorem, we get

(n − a)
n−1

2 ≡ (−1)
n−1

2 a
n−1

2 (mod n).

Let n = 2k + 1 be such that n is prime and k is odd. For such k odd and n prime, we equivalently
say n ≡ 3 (mod 4). Let a be in the reduced residue system of n. Thus by Euler’s Criterion, a is
a quadratic residue (non-residue) of n if and only if (n − a) is a quadratic non-residue (residue)
of n.

Theorem 2.4. Let n ≡ 3 (mod 4) be an odd prime. Then any reduced residue system (mod n)

contains n−1
2 quadratic residues and n−1

2 quadratic non-residues of n. One set of n−1
2 congruent

quadratic residues is

{
12, 22, . . . ,

(
n−1

2

)2
}

.

We now state the following result which provides a means for determining which primes have
2 as a quadratic residue.

Theorem 2.5. For an odd prime n, we have

(
2

n

)
L

=
{

1 n ≡ ±1 (mod 8),

−1 n ≡ ±3 (mod 8).

Let us now look at the case when n ≡ 1 (mod 4) such that n = 4k2 + 1 is prime for odd k.

Definition 2.6. An element a ∈ Zn, such that gcd(a, n) = 1, is called a quartic(biquadratic) res-
idue of an odd prime n if and only if x4 ≡ a (mod n) has a solution in Zn. Otherwise, a is called
a quartic(biquadratic) non-residue of n.

Note that every quartic residue is a quadratic residue. Also, product of two quartic residues is

a quartic residue. By [6], we know that a is a quartic residue of n if a
n−1

4 ≡ 1 (mod n).
Let us denote the set of quadratic residues by S2 and the set of quartic residues by S4. Then it

can be shown that for primes n ≡ 1 (mod 4), a ∈ S2 if and only if (n − a) ∈ S2. Also, a ∈ S4 if
and only if (n − a) ∈ S2. Therefore, S4 = S2 − S4 and {S4, S4} forms a partition of S2 such that
|S4| = |S4|.

Let a /∈ S2. Then it can be checked that {aS4, āS4} forms a partition of S2
c with x ∈ aS4 if

and only if (n − x) ∈ āS4.
Hence Zn

∗ can be partitioned into {S4, S4, aS4, āS4} such that for every x ∈ S4, we have
xS4 = S4, xS4 = S4, xaS4 = aS4 and xāS4 = āS4.

Now let us look at the concept of difference sets.
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Definition 2.7. A subset H of a finite (additive) Abelian group G is said to be a (n, k, λ)-difference
set of G if for some fixed natural number λ, every nonzero element of G can be written as a
difference of two elements of H in exactly λ ways, where |G| = n and |H | = k.

The followings tabulation on difference sets is discussed in [7].
Type S (Singer difference sets). These are hyper planes in PG(m, q), q = pr . The parameters

are

n = qm+1 − 1

q − 1
, k = qm − 1

q − 1
, λ = qm−1 − 1

q − 1
.

Type Q. Let n = pr ≡ 3 (mod 4). Then the quadratic residues of n form a difference set with
parameters

n = pr = 4t − 1, k = 2t − 1, λ = t − 1.

Type H6. Let n = 4x2 + 27. There will exist a primitive root r (mod n) such that Indr(3) ≡ 1
(mod 6). The residues ai (mod n) such that Indr(ai) ≡ 0, 1 or 3 (mod 6) will form a difference
set with

n = 4t − 1, k = 2t − 1, λ = t − 1.

Type T (Twin primes). Let n and n′ = n + 2 be both primes. Then the collection of resi-

dues {a1, a2, . . . , am, 0, n′, 2n′, . . . , (n − 1)n′} such that
(

ai

p

)
L

=
(

ai

q

)
L

∀i form a difference

set (mod nn′) with parameters

nn′ = 4t − 1, k = 2t − 1, λ = t − 1.

Note that the types, Q, H6 and T , are Hadamard type difference sets.
Type B. Let n = 4x2 + 1, x odd. Then the set of biquadratic (quartic) residues form a difference

set with parameters

n = 4x2 + 1, k = x2, λ = x2 − 1

4
.

Type B0. Let n = 4x2 + 9, x odd. Then the set of biquadratic (quartic) residues together with
zero form a difference set with parameters

n = 4x2 + 9, k = x2 + 3, λ = x2 + 3

4
.

Type O. Let n = 8x2 + 1 = 64y2 + 9, x and y odd. Then the set of octic residues form a
difference set with parameters

n = 8x2 + 1, k = x2, λ = y2.

Type O0. Let n = 8x2 + 49 = 64y2 + 441, x odd and y even. Then the set of octic residues
together with zero form a difference set with parameters

n = 8x2 + 49, k = x2 + 6, λ = y2 + 7.
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Type W4 (Generalization of type T by Whiteman). Let n and n′ = n + 2 be both primes such
that (n − 1, n′ − 1) = 4. Define d = (n − 1)(n′ − 1)/4. Let g be a primitive root of both n and n′.
Then the collection of residues {1, g, g2, . . . , gd−1, 0, n′, 2n′, . . . , (n − 1)n′} form a difference
set (mod nn′) with parameters

nn′, k = nn′ − 1

4
, λ = nn′ − 5

16
.

More difference sets can be generated from a given difference sets. This can be seen from the
following theorem.

Theorem 2.8. A set {n1, n2, . . . , nk} is a (n, k, λ)-difference set if and only if {n1 + i, n2 +
i, . . . , nk + i} for every i ∈ Zn is a (n, k, λ)-difference set.

Letnbe an odd prime and let {n1, n2, . . . , nk}be a (n, k, λ)-difference set. Then {αn1, αn2, . . . ,

αnk} for every Zn
∗ is also a (n, k, λ)-difference set as α is invertible and ni − nj ≡ aij ⇔

αni − αnj ≡ αaij .

3. Cyclic subspaces and cyclic frames

Cyclic codes are one of the most useful codes in binary coding.

Definition 3.1. A codeC ∈ Zn
2 is cyclic if (xn−1, xn−2, . . . , x1, x0) ∈ C implies (xn−2, xn−3, . . . ,

x0, xn−1) ∈ C.

Thus C is cyclic if and only if C ⊆ P(x)
〈xn−1〉 is an ideal. These codes are efficient in detecting

burst errors. A burst error of size d is an n-tuple whose non-zero entries are in a consecutive span
of d coordinates and no fewer.

Cyclic frames are inspired by the cyclic codes. We now look at the construction of cyclic
equiangular frames.

Let {ei}ni=1 be the standard orthonormal basis of Cn. Let S be the cyclic shift operator on Cn

such that Sei = ei+1 (mod n) ∀i = 1, 2, . . . , n − 1 and Sen = e1. Then S can be written as

S =




0 0 0 · · · · · · 1
1 0 0 · · · · · · 0
0 1 0 · · · · · · 0
...

...
. . .

. . .
...

...
...

. . .
. . .

...

0 0 0 · · · 1 0




∈ Mn.

Note that SS∗ = S∗S = I .

Definition 3.2. A k-dimensional subspace M of Cn is called cyclic if M is shift-invariant, i.e.
S(M) ⊆ M .
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Let w = e
2π i
n be an nth root of unity. Define for each i ∈ {0, 1, . . . , n − 1}, vi ∈ Cn as

vi =




1
wi

w2i

...

w(n−1)i


 .

Note that

Svi = w−ivi = wivi . (1)

It can be shown that 〈vi, vj 〉 = 0 ∀i /= j , and ‖vi‖ = √
n. Thus

{ 1√
n
vi

}n−1
i=0 is an orthonormal

basis for Cn.
Let {f0, f1, . . . , fn−1} be a Parseval (n, k)-frame and define

V =




f ∗
0

f ∗
1
...

f ∗
n−1


 .

Then V is an isometry.

Definition 3.3. The frame {f0, f1, . . . , fn−1} is called cyclic if and only if range (V ) is shift-
invariant.

At the first look, this definition seems different than a, perhaps, more obvious definition of
cyclic frames.

Definition 3.4. A frame {h0, h1, . . . , hn−1} is called a cyclically permutable frame if there exists
a unitary operator U on a Hilbert space H such that Uhi = hi+1 for all i ∈ {0, 1, . . . , n − 1}.

Both definitions depend upon the ordering of the frame. We shall show later in this section that
these two definitions are equivalent.

Proposition 3.5. Let T ∈ Mn(C) with n distinct eigenvalues {λ1, λ2, . . . , λn} corresponding
with the eigenvectors {u1, u2, . . . , un} such that

T ui = λiui ∀i = 1, 2, . . . , n.

If M ⊆ Cn such that T (M) ⊆ M, then M = span{ui |i ∈ I } where I ⊆ {1, 2, . . . , n}.

Proof. Let M ⊆ Cn such that dim(M) = k. Let {u′
1, u

′
2, . . . , u

′
k} be a basis of M . Then we can

extend the basis of M to a basis {u′
1, u

′
2, . . . , u

′
n} of Cn. Then T can be written as

T =
[
T1 ∗
∗ T2

]
,

where the block T1 is corresponding to the subspace M with basis {u′
1, u

′
2, . . . , u

′
k}.

Let pT (z) be the characteristic polynomial of T . Then

pT (z) = pT1(z)pT2(z).
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But

pT (z) = (z − λ1)(z − λ2) · · · (z − λn).

Thus there exists {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n} such that

pT1(z) = (z − λi1)(z − λi2) · · · (z − λik ),

where λij ’s are all distinct. Therefore the corresponding eigenvectors belong to M , i.e.,
{u′

i1
, u′

i2
, . . . , u′

ik
} ⊆ M .

Since T1u
′
ij

= λij u
′
ij

, then T u′
ij

= λij u
′
ij

for all j . Then for every j , there exists a constant
αj such that

uij = αju
′
ij
.

Hence for I = {i1, i2, . . . , ik}, M = span{ui |i ∈ I }. �

Now considering the cyclic shift operator S and k-dimensional subspace M , assume S(M) ⊆
M . By the above proposition, there exists I ⊆ {1, 2, . . . , n} such that M = span{vi : i ∈ I }.

By using Eq. (1), we can summarize this in the following theorem.

Theorem 3.6. Let M be a subspace of Cn. Then M is S-invariant if and only if ∃I ⊆ {0, 1,

2, . . . , n − 1} such that M = span{vi : i ∈ I }.

Let {n1, n2, . . . , nk} ⊆ {0, 1, 2, . . . , n − 1} and fj ∈ Ck such that for each j ∈ {0, 1, . . . ,

n − 1},

fj = 1√
n




wjn1

wjn2

...

wjnk


 ,

where w is a primitive nth root of unity. These vectors form a (n, k)-frame. In [3], these are called
the harmonic frames. For this frame,

V = 1√
n




1 1 1 · · · · · · 1
wn1 wn2 wn3 · · · · · · wnk

w2n1 w2n2 w2n3 · · · · · · w2nk

...
...

...
. . .

...
...

...
...

. . .
...

w(n−1)n1 w(n−1)n2 w(n−1)n3 · · · · · · w(n−1)nk




and V : Ck → Cn is an isometry. Let M be the range of V .
Note that for any choice of {n1, n2, . . . , nk} ⊆ {0, 1, . . . , n − 1}, V is shift-invariant. Hence

every harmonic frame is cyclic.
Note that {f0, f1, . . . , fn−1} is a Parseval frame for Ck . This family of frames was introduced

in [3], but we should also notice their cyclic nature.
Let M be an S-invariant subspace of Cn and let PM : Cn → M be the orthogonal projection.

We now prove the following theorem.

Theorem 3.7. Let M be a subspace of Cn such that S(M) ⊆ M with orthogonal projection PM.

Then SPM = PMS.
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Proof. Let v ∈ Cn such that

v =
∑
vi∈M

αivi +
∑
vi /∈M

αivi .

Then

SPM(v)=S


∑

vi∈M

αivi


 =

∑
vi∈M

αiw
ivi = PM


∑

vi∈M

αiw
ivi +

∑
vi /∈M

αivi




=PMS(v). �

Consider A = (ai,j )i,j be in the commutant of S. Then

ai,j = 〈Aej , ei〉
= 〈ASej−1, Sei−1〉
= 〈SAej−1, Sei−1〉
= 〈S∗SAej−1, ei−1〉
= 〈Aej−1, ei−1〉
= ai−1,j−1.

Therefore, every A such that AS = SA is of the form

A = a0I + a1S + a2S
2 + · · · + an−1S

n−1

for some constants a0, a1, a2, . . . , an−1. So PM can be written as

PM =




a0 an−1 an−2 · · · · · · a1
a1 a0 an−1 · · · · · · a2
a2 a1 a0 · · · · · · a3
...

...
. . .

. . .
...

...
...

. . .
. . .

...

an−1 an−2 an−3 · · · . . . a0




,

where PM = V V ∗ = (〈fj , fi〉)i,j is Toeplitz. Moreover, PM is circulant due to its cyclic nature.
Note that this frame forms an ordered collection as changing the order of fi’s disturbs the Toeplitz
structure of PM .

Theorem 3.8. Let {h1, h2, . . . , hn} be a cyclic (n, k)-frame. Then ∃ a unitary U and {n1,

n2, . . . , nk} ⊆ {0, 1, . . . , n − 1} such that Uhi = fi ∀i, where

fj = 1√
n




wjn1

wjn2

...

wjnk




defines a harmonic (n, k)-frame.

Proof. Let {h1, h2, . . . , hn} be a cyclic (n, k)-frame. Then PH = (〈hj , hi〉
)
i,j

is Toeplitz and

can be expressed as a polynomial p(S). We know that the eigenvalues of S are {wl : l = 0, 1, . . . ,



382 D. Kalra / Linear Algebra and its Applications 419 (2006) 373–399

n − 1} where w is the primitive nth root of unity. Thus, the eigenvalues of PH are given by
{p(wl) : l = 0, 1, . . . , n − 1}. Since PH is also a projection and trace(PH ) = k, therefore there
are exactly k 1’s and (n − k) 0’s. Let p(wl) = 1 for l = n1, n2, . . . , nk and p(wl) = 0 otherwise.

Since the eigenvectors of S are also the eigenvectors of PH = p(S), therefore for each j =
1, 2, . . . , n the eigenvector of PH are given by

vj =




1
wj(n−1)

wj(n−2)

...

wj


 .

For each j = 1, 2, . . . , n, define

fj = 1√
n




wjn1

wjn2

...

wjnk


 .

Then {f1, f2, . . . , fn} is a cyclic (n, k)-frame. Let PF = (〈fj , fi〉)i,j . For some r , consider the
ith entry of the vector PF (vr), i.e.,

n∑
j=1

〈fj , fi〉vrj =
n∑

j=1

k∑
t=1

w(j−i)nt wr(−j+1) =
k∑

t=1

w(r−int )
n∑

j=1

w(nt−r)j .

Thus the vector vr is a zero vector exactly when r ∈ {n1, n2, . . . , nk}. Therefore, both PF and
PM have exactly same eigenvalues and eigenvectors. Hence PH = PF . Thus by [2], the cyclic
frame {h1, h2, . . . , hn} is unitarily equivalent to the frame {f1, f2, . . . , fn}. �

Hence it suffices to only consider the cyclic frames of type {f1, f2, . . . , fn} defined above. We
will show that the two definitions of cyclic frames are equivalent.

Proposition 3.9. Let {h0, h1, . . . , hn−1} be a (n, k)-frame. If

V =




h∗
0

h∗
1
...

h∗
n−1


 ,

then range(V ) is shift-invariant if and only if there exists a unitary U : Ck → Ck such that
Uhi = hi+1 for all i ∈ {0, 1, . . . , n − 1}.

Proof. Let range (V ) be shift-invariant. Thus by Theorem 3.8,∃ a unitaryU ′ and {n1, n2, . . . , nk}⊆
{0, 1, . . . , n − 1} such that U ′hi = fi ∀i, where

fj = 1√
n




wjn1

wjn2

...

wjnk


 .
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Note that Wfi = fi+1 for all i, where W = diag{wn1 , wn2 , . . . , wnk }. Thus

hi+1 = U ′∗fi+1 = U ′∗Wfi = U ′∗WU ′hi.

Hence there exists a unitary U ′∗WU ′ such that for all i, U ′∗WU ′hi = hi+1.
Conversely, let there exist a unitary U : Ck → Ck such that Uhi = hi+1 for all i ∈ {0, 1, . . . ,

n − 1}. Let us look at the entries of the correlation matrix (〈hj , hi〉). For any x ∈ Ck , we have

(SV (x))i = 〈x, hi−1〉 = 〈x, U∗hi〉 = 〈Ux, hi〉 = (V Ux)i .

Hence SV = V U and so S(range(V )) = range(V ), i.e., range(V ) is shift-invariant. �

Note that to find harmonic frames, we only need to determine the set {n1, n2, . . . , nk}. There-
fore, in order to study a harmonic frame with vectors

fj = 1√
n




wjn1

wjn2

...

wjnk


 ,

we shall only study the set sj = {wjn1 , wjn2 , . . . , wjnk }.
We will now try to find optimal cyclic frames for two-erasures indexed by the subset I ⊆

{0, 1, 2, . . . , n − 1}, where order of I is k.
Since for optimal equiangular cyclic frames we have |〈fj , fi〉| = constant and PM is a circulant

matrix, the problem of finding optimal equiangular cyclic frames is now reduced to showing that

|〈fi, f0〉| = |〈fj , f0〉| ∀ i /= j, i /= 0, j /= 0.

Hence, we need to find a subset I ⊆ {0, 1, 2, . . . , n − 1} such that for each j ∈ {2, 3, . . . , n − 1},
the absolute condition is satisfied, i.e.,∣∣∣∣∣

k∑
i=1

wni

∣∣∣∣∣ =
∣∣∣∣∣

k∑
i=1

wjni

∣∣∣∣∣ .
In the rest of this paper, we will establish some conditions on n and k to show the existence of
equiangular cyclic (n, k)-frames defined as above.

4. Equiangular cyclic frames

We now study the possible selections of the set I ⊆ Zn in order to generate equiangular
cyclic (n, k)-frames. We note that in order to determine an equiangular cyclic (n, k)-frame as
above, we need to determine the frame vector f1 only. Therefore, we will call the vector f1 as
the generator of the frame. In [4], complex equiangular frames were conjectured to exist by
numerical experimentation for many pairs (n, k). Most of these can be shown to exist because
of the existence of difference sets of the appropriate sizes. Many of the following results were
discovered while attempting to construct these frames.

Since the absolute value of a sum does not change when the entries are permuted, thus we will
mainly consider the set sj = {wjn1 , wjn2 , . . . , wjnk } of the entries in vector

fj = 1√
n




wjn1

wjn2

...

wjnk


 .
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Therefore although we will state the results for the vectors {fj }j∈J , it would suffice to prove it
for the sets {sj }j∈J .

These frames were studied in [8] where the following result is proved for complex MWBE
(Maximum Welch Bound Equality) codebooks. The construction of these codebooks show that
they are the same as equiangular cyclic frames and therefore, we state the theorem for equiangular
cyclic frame and provide a slightly different proof.

Theorem 4.1. The collection {f0, f1, f2, . . . , fn−1} is an equiangular cyclic (n, k)-frame if and
only if the set {n1, n2, . . . , nk} is a (n, k, λ)-difference set, where

fj = 1√
n




wjn1

wjn2

...

wjnk


 .

Proof. Let the collection {f0, f1, f2, . . . , fn−1} be an equiangular cyclic (n, k)-frame. Then by
[2], we know that for every l /= 0, we have

|〈f0, fl〉|2 = 1

n2

k∑
i,j=1

wl(ni−nj ) = c2,

where c =
√

k(n−k)

n2(n−1)
.

Let ar be the order of the set {(i, j) | ni − nj ≡ r(mod n}. Then a0 = k. Clearly,

1

n2

k∑
i,j=1

wl(ni−nj ) = 1

n2

n−1∑
t=0

atw
lt = c2.

Let p(z) = a0 + a1z + · · · + an−1z
n−1. Then p(wl) = n2c2 ∀l /= 0 and p(1) = a0 + a1 +

· · · + an−1.
Consider the n × n matrix U = (wij )i,j . Then U∗ = (w−ij )i,j and

U∗U =
(

n−1∑
t=0

w−itwtj

)
i,j

=
(

n−1∑
t=0

w(j−i)t

)
i,j

= nI.

Therefore,

U




a0
a1
a2
...

an−1


 =




a0 + a1 + · · · + an−1
p(w)

p(w2)
...

p(wn−1)


 =




a0 + a1 + a2 + · · · + an−1

n2c2

n2c2

...

n2c2


 .

So, we get,

n




a0
a1
a2
...

an−1


 = U∗U




a0
a1
a2
...

an−1


 = U∗




a0 + a1 + a2 + · · · + an−1

n2c2

n2c2

...

n2c2


 .
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Thus,

n




a0
a1
a2
...

an−1


 =




a0 + a1 + a2 + · · · + an−1 + (n − 1)n2c2

a0 + a1 + a2 + · · · + an−1 − n2c2

a0 + a1 + a2 + · · · + an−1 − n2c2

...

a0 + a1 + a2 + · · · + an−1 − n2c2


 .

Hence, nar = a0 + a1 + a2 + · · · + an−1 − n2c2, which is independent of r . Therefore,

a1 = a2 = · · · = an−1 = λ

for some constant λ. So, nλ = k + (n − 1)λ − n2c2. Thus,

λ = k − n2c2 = k − k(n − k)

n − 1
= k(k − 1)

n − 1
.

Hence, {n1, n2, . . . , nk} forms a difference set.
Conversely, let {n1, n2, . . . , nk} be a difference set. For each non-zero j , define

fj = 1√
n




wjn1

wjn2

...

wjnk


 .

Then [2] showed that the collection {f0, f1, f2, . . . , fn−1} is equiangular if and only if

|〈fi, fj 〉| = c

for all i /= j . Consider

|〈fi, fj 〉|2 = 〈fi, fj 〉〈fi, fj 〉

= 1

n2

(
k∑

l=1

winl−jnl

)(
k∑

m=1

wjnm−inm

)

= 1

n2


 k∑

l,m=1

w(i−j)(nl−nm)




= 1

n2

(
k +
∑
l /=m

w(i−j)(nl−nm)

)

= 1

n2

(
k +

n−1∑
r=1

arw
(i−j)r

)

= 1

n2

(
k +

n−1∑
r=1

λw(i−j)r

)

= 1

n2

(
k + λ

n−1∑
r=1

w(i−j)r

)

= 1

n2 (k + λ(−1)) = 1

n2 (k − λ) = c2.
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Hence, as the absolute condition is satisfied, therefore the collection {fi}n−1
i=0 is an equiangular

cyclic (n, k)-frame. �

If {n1, n2, . . . , nk} is a (n, k, λ)-difference set, then we can generate another (n, k, λ)-differ-
ence set by translation, i.e., {n1 + a, n2 + a, . . . , nk + a} for some a (mod n). The equiangular
cyclic frame generated by the translated difference set is type III equivalent to the one generated
by original difference set. If the elements of a difference set are multiplied by a number j (mod
n), then the equiangular cyclic frame generated by new difference set is type II equivalent to the
equiangular cyclic frame generated by the original set. However, there exist multiple (n, k, λ)-
difference sets for some pair (n, k) which generate inequivalent cyclic frames. We shall see more
on the difference sets that are inequivalent in this sense, later in this article.

Since λ = k(k−1)
n−1 must be an integer, we have the following corollary which gives a necessary

condition for the existence of a (n, k, λ)-difference set.

Corollary 4.2. If there exist a (n, k, λ)-difference set, then n − 1 must divide k(k − 1).

We now look at the following results which are obtained independently of [8]. These examine
equiangular cyclic frames without involving difference sets. A close observation of the results
from [8] with the following results reveal some very interesting properties of difference sets which
might not be that obvious by their definition.

We start with an example of an equiangular cyclic (7, 3)-frame and depict the use of the
absolute condition.

For n = 7 and k = 3, let us choose

f1 = 1√
7


w

w2

w3


 .

So s1 = {w, w2, w3}. We can check that the absolute condition fails as

|〈f1, f0〉| = |w + w2 + w3| /= |w2 + w4 + w6| = |〈f2, f0〉|.
Thus, the above chosen f1 does not generate an equiangular cyclic (7, 3)-frame.

However, let us now choose

fj = 1√
7


w

w2

w4


 .

So s1 = {w, w2, w4}. Then we can check that si = {w, w2, w4} for i = 1, 2, 4 and si =
{w3, w5, w6} for i = 3, 5, 6, and

|w + w2 + w4| = |w3 + w5 + w6|.
Thus the absolute condition is satisfied and hence f1 generates such an equiangular cyclic (7, 3)-
frame.

The following is our first theorem which demonstrates the relation between n, k and the roots
of unity required to generate an equiangular cyclic (n, k)-frame.

Theorem 4.3. Let {n1, n2, . . . , nk} ⊆ Zn such that ∀j ∈ {2, 3, . . . , n − 1}, ∃lj ∈ Zn and a per-
mutation πj of Zk such that either
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(i) jni − nπj (i) ≡ lj (mod n) ∀i = 1, 2, . . . , k

or,

(ii) jni + nπj (i) ≡ lj (mod n) ∀i = 1, 2, . . . , k.

Then the collection {f0, f1, f2, . . . , fn−1} is an equiangular cyclic (n, k)-frame with

fj = 1√
n




wjn1

wjn2

...

wjnk


 .

Proof. Let {n1, n2, . . . , nk} ⊆ Zn be chosen as above. Then {f0, f1, f2, . . . , fn−1} will be an
equiangular cyclic (n, k)-frame if and only if the absolute condition is satisfied, i.e. for each
j ∈ {2, 3, . . . , n − 1}∣∣∣∣∣

k∑
i=1

wni

∣∣∣∣∣ =
∣∣∣∣∣

k∑
i=1

wjni

∣∣∣∣∣ .
Firstly, choose j such that (i) is satisfied. Then for j ∈ {2, 3, . . . , n − 1},

fj = 1√
n




wjn1

wjn2

...

wjnk


 .

Then sj = {wjn1 , wjn2 , . . . , wjnk }.
Then,

wjnm = w
lj +nπj

(m) = wlj w
nπj

(m)
.

Therefore,∣∣∣∣∣
k∑

i=1

wjni

∣∣∣∣∣ =
∣∣∣∣∣

k∑
i=1

wlj w
nπj (i)

∣∣∣∣∣ =
∣∣∣∣∣wlj

k∑
i=1

w
nπj (i)

∣∣∣∣∣ = |wlj |
∣∣∣∣∣

k∑
m=1

wnm

∣∣∣∣∣ =
∣∣∣∣∣

k∑
m=1

wnm

∣∣∣∣∣ .
Now, choose j such that (ii) is satisfied. Then,

wjnm = w
lj −nπj

(m) = wlj w
nπj

(m)
.

Therefore,∣∣∣∣∣
k∑

i=1

wjni

∣∣∣∣∣ =
∣∣∣∣∣

k∑
i=1

wlj w
nπj (i)

∣∣∣∣∣ =
∣∣∣∣∣wlj

k∑
i=1

w
nπj (i)

∣∣∣∣∣ = |wlj |
∣∣∣∣∣∣

k∑
m=1

wnm

∣∣∣∣∣∣ =
∣∣∣∣∣

k∑
m=1

wnm

∣∣∣∣∣ .
Thus the absolute condition is satisfied for all j . Hence, {f0, f1, f2, . . . , fn−1} is an equiangular

cyclic (n, k)-frame. �

Since a set {n1, n2, . . . , nk} ⊆ Zn generates an equiangular cyclic (n, k)-frame if and only if
the set is a difference set, we have the following corollary.

Corollary 4.4. Any set {n1, n2, . . . , nk} ⊆ Zn satisfying the properties of Theorem 4.2 must be a
difference set.
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More frames can be developed from a given frame. We use the fact that the sum of all roots of
unity is zero to prove the following theorem.

Theorem 4.5. Let w be a primitive nth root of unity. Let n1, n2, . . . , nk ∈ Zn such that

f1 = 1√
n




wn1

wn2

...

wnk




generates an equiangular cyclic (n, k)-frame. Then the remaining roots of unity generate an
equiangular cyclic (n, n − k)-frame generated by

h1 = 1√
n




wnk+1

wnk+2

...

wnn


 .

Proof. Let {nk+1, nk+2, . . . , nn} ⊆ Zn such that {wnk+1 , wnk+2 , . . . , wnn} forms the set of remain-
ing nth roots of unity. Since

wn1 + wn2 + · · · + wnn = 0,

therefore,

wjn1 + wjn2 + · · · + wjnn = 0.

As n is prime, then

wjnr = wjns ⇔ nr ≡ ns (mod n).

So,

wjn1 + wjn2 + · · · + wjnk = −wjnk+1 − wjnk+2 − · · · + wjnn ∀1 � j � n − 1.

Then,

|wn1 + wn2 + · · · + wnk | = |wnk+1 + wnk+2 + · · · + wnn |
and,

|wjn1 + wjn2 + · · · + wjnk | = |wjnk+1 + wjnk+2 + · · · + wjnn |.
But {fi} is an equiangular cyclic (n, k)-frame, therefore,

|wn1 + wn2 + · · · + wnk | = |wjn1 + wjn2 + · · · + wjnk |.
Therefore the absolute condition is satisfied, i.e.,

|wnk+1 + wnk+2 + · · · + wnn | = |wjnk+1 + wjnk+2 + · · · + wjnn |.
So {g0, g1, . . . , gn−1} generated by set t1 = {wnk+1 , wnk+2 , . . . , wnn} is an equiangular cyclic
(n, k + 1)-frame. �

Then by Theorem 3.4 we get that the frame generated byg′
1 = (1, w3, w5, w6) is an equiangular

cyclic (7, 4)-frame.
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In general, if {fi}Mi=1 is a uniform Parseval frame for lN2 then without loss of generality we
may assume fi ∈ lM2 and the orthogonal projection P of lM2 onto the span of the {fi} satisfies
Pei = fi for i = 1, 2, . . . , M where {ei}Mi=1 is the orthonormal basis of lM2 . Now, {(I − P)ei}Mi=1
is also an uniform Parseval frame for lM−N

2 .

Corollary 4.6. If {n1, n2, . . . , nk} ⊆ Zn is a (n, k, λ)-difference set, then the complement must
also be a (n, n − k, λ̄)-difference set, where

λ̄ = (n − k)(n − k − 1)

n − 1
.

Since λ̄ = (n−k)(n−k−1)
n−1 must be an integer, n − 1 must divide the two quantities k(k − 1) and

(n − k)(n − k − 1). Note that

(n − k)(n − k − 1) (mod n) ≡ k2 + k (mod n) ≡ k(k − 1) (mod n).

Therefore it suffices to state that n − 1 must divide k(k − 1).
Note that the assumption of Corollary 4.6 hold for any equiangular cyclic (n, k)-frame which

is generated by nth roots of unity as above. It can also be deduced from above that we always
have an equiangular cyclic (n, 1)-frame, and hence, an equiangular cyclic (n, n − 1)-frame.

Look at the example of an equiangular cyclic (7, 3)-frame. We note that the set {1, 2, 4} is the
set of quadratic residues of 7. Also, these are the powers of w which generate an equiangular
cyclic (7, 3)-frame.

We now generalize the above observation for the case of an equiangular cyclic (7, 3)-frame.

Theorem 4.7. Let n be a prime integer such that n = 2k + 1, where k is odd. For each j ∈
{0, 1, . . . , n − 1}, define

fj = 1√
n




wj12

wj22

...

wjk2


 .

Then the collection {f0, f1, . . . , fn−1} is an equiangular cyclic (n, k)-frame.

Proof. Let m be in the reduced residue system of n. Since in a reduced residue system, the
product of two quadratic residues (non-residues) is a quadratic residue and product of a quadratic
non-residue with a quadratic residue is a quadratic non-residue, thus jm2 is a quadratic residue
(non-residue) if and only if j is a quadratic residue (non-residue). Let {−12, −22, . . . ,−k2} be
the set of quadratic non-residues of n. Since the set of all quadratic residues is closed with respect
to multiplication, it follows that sj = {w12

, w22
, . . . , wk2} when j is a quadratic residue, and,

sj = {w−12
, w−22

, . . . , w−k2} when j is a quadratic non-residue. Since a is a quadratic residue
(non-residue) of n if and only if (n − a) is a quadratic non-residue (residue) of n, we have

|w12 + w22 + · · · + wk2 | = |w12 + w22 + · · · + wk2 | = |w12 + w22 + · · · + wk2 |
= |w12 + w22 + · · · + wk2 | = |wn−12 + wn−22 + · · · + wn−k2 |
= |w−12 + w−22 + · · · + w−k2 |.
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Since the absolute condition is satisfied, {f0, f1, . . . , fn−1} is an equiangular cyclic (n, k)-
frame. �

We now look at another way of generating frames from a given equiangular cyclic (n, k)-frame.

Corollary 4.8. Let n be a prime integer such that n = 2k + 1, where k is odd. Let

fj = 1√
n




wj12

wj22

...

wjk2




for each j ∈ {0, 1, . . . , n − 1} be the equiangular cyclic (n, k)-frame constructed as above. Then

Re(w12 + w22 + · · · + wk2
) = −1

2
.

Consequently,

g1 = 1√
n




1

w12

w22

...

wk2




generates an equiangular cyclic (n, k + 1)-frame.

Proof. Since all nth roots of unity sum up to zero,

1 +
k∑

i=1

wi2 = −
k∑

i=1

w−i2
.

So, ∣∣∣∣∣1 +
k∑

i=1

wi2

∣∣∣∣∣ =
∣∣∣∣∣

k∑
i=1

w−i2

∣∣∣∣∣ =
∣∣∣∣∣

k∑
i=1

wi2

∣∣∣∣∣ .
Also, since n is prime, therefore, for each non-zero j ∈ Zn

1 +
k∑

i=1

wji2 = −
k∑

i=1

w−ji2
.

Therefore,∣∣∣∣∣1 +
k∑

i=1

wji2

∣∣∣∣∣ =
∣∣∣∣∣

k∑
i=1

w−ji2

∣∣∣∣∣ =
∣∣∣∣∣

k∑
i=1

wji2

∣∣∣∣∣ .
Since |1 + z| = |z| if and only if Re(z) = − 1

2 , we get

Re(w12 + w22 + · · · + wk2
) = −1

2
.
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Then, Re(1 + w12 + w22 + · · · + wk2
) = 1

2 , such that∣∣∣∣∣1 +
k∑

i=1

wi2

∣∣∣∣∣ =
∣∣∣∣∣

k∑
i=1

wi2

∣∣∣∣∣ .
As {f0, f1, . . . , fn−1} is an equiangular cyclic (n, k)-frame, for each non-zero j ∈ Zn,∣∣∣∣∣

k∑
i=1

wi2

∣∣∣∣∣ =
∣∣∣∣∣

k∑
i=1

wji2

∣∣∣∣∣ .
Thus for each non-zero j ∈ Zn,∣∣∣∣∣1 +

k∑
i=1

wi2

∣∣∣∣∣ =
∣∣∣∣∣1 +

k∑
i=1

wji2

∣∣∣∣∣ .
Hence

g1 = 1√
n




1

w12

w22

...

wk2




generates an equiangular cyclic (n, k + 1)-frame. �

Corollary 4.9. Let n be a prime integer such that n = 2k + 1 where k is odd. Then the set of
quadratic residues form a difference set. Moreover, the set of residues together with {0} also form
a difference set.

Let n be a prime integer such that n = 2k + 1 where k is odd. We have now seen two different
ways of generating equiangular cyclic (n, k + 1)-frames. Let us now look more closely at these
two frames.

Let G be the frame generated by

g1 = 1√
n




1

w12

w22

...

wk2




.

And, let H be the frame generated by

h1 = 1√
n




1

w−12

w−22

...

w−k2




.
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Note that

w(n−j)i2 = w−ji2 = wj(n−i2).

Thus gj = hn−j for every j . Therefore, the two frames G and H are just permutations of each
other, and hence, are type I equivalent.

5. Gauss sums and equiangular cyclic frames

We shall now look at various properties of equiangular cyclic frames that are derived from
the concept of Gauss sums. We first start with the definition of a Gauss sum (Gauss period).
This is also useful in gaining some specific information on the projection matrices of the above
constructed equiangular cyclic frames.

Definition 5.1. A Gauss sum is a sum of roots of unity written as

ϕ(a, n) =
∑
r∈Zn

e
−iπr2a

n ,

where a and n are relatively prime integers.

We look at the case a = −2 and odd prime n ≡ 3 (mod 4). These are also called quadratic
Gauss sums. Then,

ϕ(−2, n) =
∑
r∈Zn

wr2
.

Define R, T and N as

R =
k∑

r=1

wr2
, T =

n−1∑
r=1

( r

n

)
L

wr and N =
k∑

r=1

w−r2
.

Clearly, N = R and ϕ(−2, n) = 1 + 2R.
Also, T = R − N and 1 + R + N = 0.

Therefore, T = N + R = 1 + 2R = ϕ(−2, n).

Then Gauss showed that ϕ(−2, n) = √
ni. Let R = a + bi. So,

√
ni = ϕ(−2, n) = 1 + 2R = (1 + 2a) + 2bi.

Let us now compare real and imaginary parts. We get a = − 1
2 as shown earlier and b =

√
n

2 .
Hence,

R = −1

2
+

√
n

2
i, N = R = −1

2
−

√
n

2
i

and,

|R| = |N | =
√

n + 1

2
.

Using Gauss sums we were able to identify the value of R which is used in the following
results.

Proposition 5.2. Let n be a prime integer such that n = 2k + 1 where k is odd. Consider the
equiangular cyclic (n, k)-frame generated by
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f1 = 1√
n




w12

w22

...

wk2


 .

Then,

〈fj , fi〉 =
{

1
n
R (j − i) is a quadratic residue,

1
n
R (j − i) is a quadratic non�residue.

Proof. Let us consider the inner-product 〈fj , fi〉 as follows:

〈
1√
n




wj12

wj22

...

wjk2


 ,

1√
n




wi12

wi22

...

wik2



〉

= 1

n

k∑
r=0

w(j−i)r2
.

Hence, we get

〈fj , fi〉 =
{

1
n

∑k
r=0 wr2

(j − i) is a quadratic residue,

1
n

∑k
r=0 wr2

(j − i) is a quadratic non�residue.

Therefore,

〈fj , fi〉 =
{

1
n
R (j − i) is a quadratic residue,

1
n
R (j − i) is a quadratic non�residue. �

As these frames are equiangular, we know that |〈fj , fi〉| = c for all i /= j , where c is some
constant. By [2], we know that for equiangular cyclic (n, k)-frames, the value of this constant is
given by

c =
√

k(n − k)

n2(n − 1)
.

Let us first consider the case when (j − i) is a quadratic residue and let 〈fj , fi〉 = cλij such
that |λij | = 1. Therefore, by the above proposition, we get√

k(n − k)

n2(n − 1)
λij = R

n
= − 1

2n
+

√
n

2n
i.

Now by comparing real and imaginary parts, we can show that

λij = −1√
n + 1

+
√

n

n + 1
i.

Then we can see that

λij =



−1√
n+1

+
√

n
n+1 i (j − i) is a quadratic residue,

−1√
n+1

−
√

n
n+1 i (j − i) is a quadratic non�residue.
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Now, we use Gauss sums for prime n ≡ 1 (mod 4) such that n = 4k2 + 1, where k is an odd
integer. We know that for such prime numbers n, the set of quartic residues forms a difference set
and hence, generates an equiangular cyclic (n, k2)-frame.

Define

QS =
∑
r∈S

wr

for some set S.
As shown before, the four orbits of H4 form a partition of Zn. Let us denote the orbits as

{H4, H 4, N4, N4}, where N4 is the orbit aH4 for some quadratic non-residue a. As H4 generates
an equiangular cyclic frame, therefore,

|QH4 | = |QH 4
| = |QN4 | = |QN4

|.
Also we know that QH4 = QH 4

and QN4 = QN4
.

Let QH4 = a + bi and QN4 = c + di. Then, Gauss showed 1 + 4QH4 = √
n +√2n + 2

√
n.

Now comparing the real and imaginary parts we get, a =
√

n−1
4 and b =

√
2n+2

√
n

4 .
As shown above, T = QH2 − QH 2

. Then, T = √
n. Since QH2 = 2a and QH 2

= 2c, there-

fore, c = −√
n−1
4 and d =

√
2n−2

√
n

4 .
By giving similar arguments as above, we can prove the following proposition.

Proposition 5.3. Let n be a prime integer such that n = 4k2 + 1 for some odd integer k. Consider
the equiangular cyclic (n, k2)-frame generated by

f1 = 1√
n




wn1

wn2

...

wn
k2


 ,

where {n1, n2, . . . , nk2} is the set of all quartic residues of n. Then,

〈fj , fi〉 =




1
n
QH4 if (j − i) ∈ H4,

1
n
QH4 if (j − i) ∈ H 4,

1
n
QN4 if (j − i) ∈ N4,

1
n
QN4 if (j − i) ∈ N4.

As these frames are also equiangular, therefore we know that 〈fj , fi〉 = c for all i /= j , where
c is some constant. In this case,

c =
√

k2(n − k2)

n2(n − 1)
.

Let us first consider the case when (j − i) is in H4 and let 〈fj , fi〉 = cλij such that |λij | = 1.
Therefore, by proposition above, we get√

k2(n − k2)

n2(n − 1)
λij = R

n
=

√
n − 1

4n
+
√

2n + 2
√

n

4n
i.
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Now by comparing real and imaginary parts, we can show that

λij =
√

n − 1√
3n + 1

+
√

2n + 2
√

n

3n + 1
i.

Similarly, it can be shown that

λij =




√
n−1√
3n+1

+
√

2n+2
√

n
3n+1 i if (j − i) ∈ H4,

√
n−1√
3n+1

−
√

2n+2
√

n
3n+1 i if (j − i) ∈ H 4,

−√
n−1√

3n+1
+
√

2n−2
√

n
3n+1 i if (j − i) ∈ N4,

−√
n−1√

3n+1
−
√

2n−2
√

n
3n+1 i if (j − i) ∈ N4.

We shall use this information in the following section.

6. Random and burst errors

Recall from [2] that the operator norm of the m × m correlation matrix (〈fik , fil 〉)mk,l=1 gives
the error of m-erasures occurring in locations {i1, . . . , im}.

Definition 6.1. A set of m-erasures is called a burst error if {i1, i2, . . . , im} are consecutive inte-
gers. For any arbitrary collection {i1, . . . , im}, the set of m-erasures is called a random error.

We shall now look at the characteristic properties of the correlation matrix (〈fj , fi〉)ij . In case
of j erasures, we consider the corresponding adjacent submatrix of order j . Recall from Section
3 that the correlation matrix of an equiangular cyclic (n, k)-frame is Toeplitz. Hence all principle
submatrices with consecutive rows and columns are same. Therefore we get the following result.

Proposition 6.2. For every m, the norm of the burst error for m-erasures is constant.

Since burst errors are a particular type of random errors, it is natural to assume that the minimum
random error would be very small as compared to the burst error. However, it need not be true. As
can be seen by numerical computation, for the case of equiangular cyclic (11, 5)-frame generated
by quadratic residues, the minimum random error 0.7106 is less than the burst error 0.7611.
However for the case of equiangular cyclic (7, 3)-frame generated by quadratic residues, the
minimum random error 0.7517 is same as the burst error.

By [2], we know that the equiangular cyclic frames are all optimal for 2-erasures. Let us now
consider the case of 3-erasures.

First consider the case when n is prime such that n = 2k + 1, where k is odd. Let us consider
the case when the {i, j, l} coefficients are lost. Then the 3 × 3 correlation matrix is given by

Ci,j,l =

〈fi, fi〉 〈fj , fi〉 〈fl, fi〉

〈fi, fj 〉 〈fj , fj 〉 〈fl, fj 〉
〈fi, fl〉 〈fj , fl〉 〈fl, fl〉


 .

We shall now try to get some information about the norm of this correlation submatrix. We
know that 〈fa, fb〉 =∑k

t=1 w(a−b)t2
. Therefore
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Ci,j,l =




k
n

∑k
t=1 w(j−i)t2 ∑k

t=1 w(l−i)t2

∑k
t=1 w(i−j)t2 k

n

∑k
t=1 w(l−j)t2

∑k
t=1 w(i−l)t2 ∑k

t=1 w(j−l)t2 k
n


 .

It is shown in the above theorem that there are only two possible off-diagonal entries in the
error matrix. Hence,

Ci,j,l =



k
n

λij c λilc

λ̄ij c
k
n

λjlc

λ̄ilc λ̄j lc
k
n


 .

Then we can write Ci,j,l = k
n
I + cJ , where J is given by

J =

 0 λij λil

λ̄ij 0 λjl

λ̄il λ̄j l 0


 ,

where the only possible values for λij , λil, λjl are λ or λ̄ depending on whether (i − j), (i − l),

(j − l) are quadratic residues or non-residues respectively. Note that the eigenvalue of Ci,j,l is
given by k

n
+ cα where α is an eigenvalue of J . Computing the characteristic polynomial of J

we get

−x3 + 3x + 2Re(λij λ̄ilλjl) = 0.

It is easy to check that

Re(λij λ̄ilλjl) =
{

Re(λ3) λij = λjl /= λil,

Re λ otherwise.

Therefore, the matrix Ci,j,l can have at most two distinct possible norms in this case. Also we
get that following are the only inequivalent possible forms of matrices for 3-erasures. These are
obtained as DCi,j,lD

−1, where D is a diagonal matrix chosen to make the off-diagonal entries of
first row as 1.

(i)


0 1 1

1 0 λ

1 λ̄ 0


 , (ii)


0 1 1

1 0 λ3

1 λ̄3 0


 ,

(iii)


0 1 1

1 0 λ̄

1 λ 0


 , (iv)


0 1 1

1 0 λ̄3

1 λ3 0


 .

Note that to obtain two different sets of eigenvalues, we only need to consider forms (i) and (ii).
As mentioned above, the only possible values for λij , λil, λjl are λ or λ̄ depending on whether

(i − j), (i − l), (j − l) are quadratic residues or non-residues respectively. We also know that
for a burst error, the corresponding adjacent submatrix is Toeplitz. Let j = i + 1 and l = i + 2.
Then we know that λij = λjl . As shown above, we get the following equivalent classes of J in
case of burst errors.

(a)


0 λ λ

λ̄ 0 λ

λ̄ λ̄ 0


 , (b)


0 λ λ̄

λ̄ 0 λ

λ λ̄ 0


 .
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Observe that to obtain form (a) or (b), we must have 2 as a quadratic residue or non-residue
respectively. Now by combining Theorem 2.5 with this observation, we get the following result
about the matrix J defined above.

Proposition 6.3. The matrix J is of the form (a) or (b) whenever n ≡ ±1 (mod 8) or n ≡ ±3
(mod 8) respectively.

Similarly the inequivalent forms of Ei1,...,im can be obtained for m > 3 and similar observations
can be made.

Also, we can follow the same procedure to find such forms for n ≡ 1 (mod 4) such that
n = 4k2 + 1, k is odd.

7. Inequivalent frames

From Section 2, we know that there exist multiple types of difference sets. Thus, it is natural to
find out whether different types of difference sets generate equivalent or inequivalent equiangular
cyclic (n, k)-frames.

From [2], we know that the errors for any m-erasures are the same for equivalent frames.
Therefore, one way to find out is to check for the error of 3-erasures in case more than one
difference set exists for (n, k).

There exist two distinct types of difference sets for n = 31, k = 15 and n = 43, k = 21 as seen
in [9]. On numerically computing the maximum of norms of all 3 × 3 correlation submatrices for
equiangular cyclic (31, 15)-frames, we see that the frames generated by type H6 gives 0.6663 and
the one generated by type Q gives 0.6555. In case of n = 43, k = 21, the maximum of norms of
all 3 × 3 correlation submatrices generated by type H6 is 0.6426 whereas for the frame generated
by type Q is 0.6321.

As can be seen, in these cases, the frames generated by the set of quadratic residues is optimal
for 3 erasures. The computations also show that the two frames generated by distinct difference
sets need not be equivalent. Following is a list of cases from [9], where multiple difference sets
exist.

n k Type Difference set

31 15 H6 1, 2, 3, 4, 6, 8, 12, 15, 16, 17, 23, 24, 27, 29, 30
31 15 Q 1, 2, 4, 5, 7, 8, 9, 10, 14, 16, 18, 19, 20, 25, 28
43 21 H6 1, 2, 3, 4, 5, 8, 11, 12, 16, 19, 20, 21, 22, 27, 32, 33, 35

37, 39, 41, 42
43 21 Q 1, 4, 6, 9, 10, 11, 13, 14, 15, 16, 17, 21, 23, 24, 25, 31, 35

36, 38, 40, 41

8. Spherical 1-design

A characterization of spherical 1-design and 2-designs for real uniform frames is given in [2].
In the following theorem, we show that the same characterization holds for spherical 1-designs
for the case of complex uniform frames. Let us begin by the definition of a spherical 1-design.

Definition 8.1. A set of vectors {v1, v2, . . . , vn} forms a spherical 1-design if and only if
{v1, v2, . . . , vn} is in the sphere of Ck and
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∫
f dS = 1

n

n∑
i=1

f (vi)

for all polynomials f of degree 1.

The following gives a characterization of the spherical 1-designs for complex frames.

Theorem 8.2. Let {v1, v2, . . . , vn}be a set of vectors in Ck.Then the set of vectors {v1, v2, . . . , vn}
forms a 1-design if and only if

n∑
i=1

vi = 0.

Proof. Let

f (z) = a0 + a1z + · · · + akzk + b1z̄1 + b2z̄2 + · · · + bkz̄k

be a polynomial of degree 1. Let zi = xi + yi .
Then z̄i = xi − yi . So,

f (z) = a0 + (a1 + b1)x1 + · · · + (ak + bk)xk + (a1 − b1)y1i + · · · + (ak − bk)yki.

Therefore,∫
f dS = a0.

Let a = (a1 + b1, (a1 − b1)i, . . . , ak + bk, (ak − bk)i). Let

vj =




cj1 + dj1i

cj2 + dj2i
...

cjk + djki


 .

Then consider vj → wj such that

wj =




cj1
dj1
cj2
dj2
...

cjk

djk




.

Then f (vi) = a0 + a · wi . Therefore,

1

n

n∑
i=1

f (vi) = 1

n

n∑
i=1

(a0 + a · wi) = a0 + 1

n
a.

n∑
i=1

wi.

Hence,∫
f dS = a0 = 1

n

n∑
i=1

f (vi)
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if and only if
n∑

i=1

vi = 0. �

Note that for a prime n, every equiangular cyclic (n, k)-frames form a spherical 1-design since
n∑

i=0

fi = 0.
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