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1. Introduction

The theory of totally positive matrices and kernels started with Kellog [9,10] and mainly developed
in monographs [5] by Gantmacher and Krein and [8] by Karlin, nowadays becomes an interesting and
important part of the modern analysis. A matrix A is called positive if all its elements a;; are positive.

A n x n matrix A is called strictly totally positive (STP) if its jth compound matrix AD is positive for

everyj =1, ..., n. (Recall that A is the matrix that consists of all the minors A ‘ I] , Where
1 ... K
1<ip <---<ij<n 1< k <--- <k < n,of the initial matrix A. The minors are listed in
; n!
the lexicographic order. The matrix A?) is (”) X (”) dimensional, where G) = — . The first
J J jin—=p!

compound matrix AW js equal to A).
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We introduce the following definition which gives a natural generalization of the class of STP
n
matrices. Given a family of proper cones {K, ..., K}, K; C ]R(f), we call an x n matrix A generalized

strictly totally positive (GSTP) with respect to {Ky, . . ., Ky} if its jth compound matrix A% maps K;\{0}
into int(K;) foreveryj =1, ..., n.

The following result of Schoenberg is known for STP matrices (see, for example [15]). Let us recall
the following two ways of counting for the number of sign changes of avectorx = (x', ..., x") € R".
S~ (x) denotes the number of sign changes in the sequence (x', . .., x") of the coordinates with zero
terms discarded. ST (x) denotes the maximum number of sign changes in the sequence (x', ..., x")
where zero terms are arbitrarily assigned values +1 (see, for example [15, p. 76]).

Theorem 1 (Schoenberg). Let an x n matrix A be STP. Then the following inequality holds for each nonzero
vectorx € R":

ST(Ax) < ST (x).

n
We construct special sets T(Kj)  R" with respect to the cones K; C R(j). Thus we obtain the
following generalization of the Schoenberg theorem.

Theorem 25. Letan x nmatrix A be GSTPwith respect to {Ky, . .., K, }. Then the interior of the set T(K;) is
nonempty and the inclusion x € T(K;)\ {0} implies the inclusion Ax € int(T(Kj)) foreveryj=1,..., n.

We also generalize the classical Gantmacher-Krein theorem (see, for example [1,15,16]) to the case
of GSTP matrices.

Theorem 2 (Gantmacher, Krein). Let the matrix A of a linear operator A : R" — R" be STP. Then all the
eigenvalues of the operator A are positive and simple:

pPA) =i >Xry > --> Ay >0.

The first eigenvector corresponding to the maximal eigenvalue A is strictly positive and the jth eigenvector
Xx; corresponding to the jth in absolute value eigenvalue A has exactly j — 1 changes of sign. Moreover, the
following inequalities hold:

p p
q—1<S~ (Zcix,) <st (Zcix,) <p—1
i=q i=q

foreach1 < q <p <nand 3_ cf #0.
We construct special sets T(K1, ..., Kj)) € R",j = 1, ..., n with respect to the given family of
cones {Ky, ..., Kn}, Kj C R(i).

Theorem 22. Let a linear operator A : R" — R" be GSTP with respect to a totally positive structure
{Ki, ..., Ky}. Then all the eigenvalues of the operator A are positive and simple:

pPA) =iy >Xry > > Ay > 0.

The first eigenvector x; corresponding to the maximal eigenvalue A, belongs to int(Ky) and the jth
eigenvector x; corresponding to the jth in absolute value eigenvalue A; belongs to int(T(Ky, ..., Kj))\
T(K1, ..., Kj—1). Moreover, the following inclusions hold:

14
> cxi € int(T(Ky, ..., Kp)\T(Kq, ..., Kg—1)
i=q
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foreach1 < q<p<nandc, #0;

p
> ocixi € T(Ky, ..., Kp\T(Kq, ..., Kg—1)
i=q

foreach1 < qg<p<n

The organization of this paper is as follows. In Section 2, we introduce basic definitions concerning
exterior powers of finite-dimensional spaces. In Section 3, we recall basic definitions of the theory of
cones and provide some examples. Here we also give the definition of a cone of a finite rank. Section
4 deals with a certain duality between cones of rank j in R" and proper cones in its jth exterior power
NR". In particular, we construct a special set T(K;) C R" for a given proper cone K; C A/R" and
study its topological properties. We conclude that under certain additional assumptions the set T (K;)
is a cone of rank j. In Section 5, we construct a set T(Kq, ..., Kj) with respect to a family of proper
coneskK; C R" K, C A’R",.. . K; C ANR™. We give examples of such sets and study their topological
properties. In Section 6, we state the main results of the theory of cone-preserving maps. In Section 7,
we recall basic facts concerning exterior powers of linear operators in R". In Section 8, we introduce
the concepts of generalized total positivity (with respect to a given family of proper cones), generalized
strict total positivity and generalized sign-regularity. Such definitions provides natural generalizations
of the classes of totally positive, strictly totally positive and sign-regular matrices, respectively. Basic
properties of GTP, GSTP and GSR operators are listed in Section 9. The results of this section shows
that the class of GSR operators covers the entire class of operators with real spectrum. In Section 10,
we state and prove the generalization of the result of Schoenberg concerning variation-diminishing
properties of SR matrices. The results of this section shows that a GSR (with respect to a family of
proper cones) operator preserves conic sets constructed as it was shown in Sections 4 and 5. Our main
result concerning spectral properties of GSTP operators is proved in Section 11. In this section we also
provide some conditions for a family of cones which are necessary for the existence of at least one GSTP
operator. Then we state and prove a stronger statement describing invariant sets of a GSSR operator.
In Section 12, we deduce the classical results on TP and STP operators (which are special cases of GTP
and GSTP operators) from the preceding reasoning. In Section 13, we study one more special case
of GTP matrices, in particular, matrices every compound of which is diagonally similar to a positive
matrix. We list some special properties of such matrices and provide examples which shows that this
statements are not valid for arbitrary GTP operators. Some conclusions are given in Section 14.

2. Exterior powers of the space R"

Let R" denote n-dimensional Euclidean space, and (R")’ denote an adjoint space of all linear
functionals on R". Since (R")’ is also n-dimensional, we consider linear functionals from (R")" as
vectors from R".

Let us recall some basic definitions and statements about the tensor and exterior powers of the
space R" (for more complete information see [6,14,23]).

Letj = 2, ..., n. The space of all multilinear functionals on xJ (R is called the jth tensor power
of the space R" and denoted by ® R". Its elements are called tensors.
Let xq, ..., x; be arbitrary vectors from R". Then the multilinear functional x; ® --- ® x;

(x/(R")) — R which acts according to the rule
(X‘l Q- ®xj)(f]7 .. 1])) = (X],f]) oo <x]1fj)

is called a tensor product of the vectors x1, . . ., x;. (Here the linear functionals f1, ..., fj € (R") are
considered as vectors from R").

The jth tensor power ® R" of the space R" is spanned by elementary tensor products of the form
X1 ®---®x;wherexy, ..., x € R".Examine an arbitrary basises, ..., e, in R". Then all the possible



540 0.Y. Kushel / Linear Algebra and its Applications 436 (2012) 537-560

tensor products of the forme;, ® - - - ® ej; (1 <iy,...,i; < n) of the initial basic vectors form a basis
in @ R". It follows that the space @ R" is finite-dimensional with dim(®'R") = nl.
Let (iy, ..., ij) be a permutation of the set [j] = {1, ..., j}. Define
. . 1, ifthe permutation (iy, ..., ij) is even;
x(@, ..., 0) =

—1, if the permutation is odd.

The jth exterior power AJR™ of the space R™ is a subspace of the space ®@R" consisting of all

antisymmetric tensors (i.e. all the tensors ¢ for which ¢(f1, ..., f) = x(G1,.... ey, ..., f;)
where fi, .. ., fj are arbitrary functionals from (R")").
Let x1, ..., Xj be arbitrary vectors from R". Then the multilinear functional x; A --- A X} :

xJ(R") — R which acts according to the rule

A A f) = D Xl D) ® - ®X) (1, )

(1)

(i1,.es

is called an exterior product of the vectors xp, ..., x;. Here the sum is taken with respect to all the
permutations (i1, . .., ij) of [j] and linear functionals fi, ..., fi € (R") are considered as vectors
from R".

It is easy to see, that the exterior product x; A - - - A X; is antisymmetric, i.e. the following equality
holds for every permutation (i1, . . ., ij) of []:

Xh/\-“/\X,'j=X(i1,...,ij)(X1/\-“AX]‘).

The space AR is spanned by all the exterior products x; A - - - A xj where xy, ..., x; € R". If the
vectors ey, . . ., e, form a basis in the initial space R" then the set of all exterior products of the type
{ei, A+ -/\e,-j} where 1 < iy < --- < ij < nforms a canonical basis in the space AVR" (see [5,15,17]).
Thus the space A/R" is finite dimensional with dim(A/R?) = (S’) (Here (;') = J,(r?ﬁ)

A scalar product on AJR" is defined by the formula:

KA AR, VI A AY) =X A AX)Y - Y)

(i150ens

It follows that the adjoint space (NR") can be considered as A/ (R")’ (see [23, p. 88]).
Let the element ¢ € AJR" be represented in the form of the exterior product x; A - - - A x; of some

vectors X1, ..., X; € R". Then ¢ is called a simple j-vector. The set of all simple j-vectors is called the
Grassmann cone and denoted AVIR". The equality NR" = A/R™ holds only forj = 1, n— 1 and n. (Note
that A'R" = R" and A"R" = R.)Ifj = 2,...,n — 2, then we can find elements of A/R" which

cannot be represented as simple j-vectors (see [17, p. 83]). It is not difficult to see that the set NR” is
uniform (i.e. the equality « N R™ = AMR" is true for every nonzero o € R) and closed in the space NR".
Let us define a map .4; acting from the set of all j-dimensional subspaces of R" to the set of 1-

dimensional subspaces (i.e. lines) of A/IR™ according to the following rule:
Ai(L) = {t(x1 A -+ A X} eeR,

where L is a j-dimensional subspace of R", x1, ..., x; are j arbitrary linearly independent vectors
from L.
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It is not difficult to see that the map .4; is well-defined, i.e. ifx1, ..., xjand y1, . .., yj are two sets
of linearly independent vectors, which belongs to the same j-dimensional subspace L, then their exterior
products xy A --- AXjandy1 A - - - A yj are collinear (see, e.g. [17]).

The map .4; is a bijective map between all j-dimensional subspaces of R" and all lines of NR" (see
[17, p. 86]).

Let us consider the (n — 1)th exterior power of the n-dimensional space R". Note that (nL) =n,
thus dim(A"~1R") = n. All the exterior products of the type {ei, A---Aej, Jwherel <ip < -+ <
in_1 < nof the initial basic vectors ey, . . ., e, form a basis in A" 'R". Let us define a bijective linear
operator J,, : A" IR"™ — R" in the following way:

Tnei, A Aei ) = (=) e,
where k = [n]\{i, ..., in—1}.

Letx; = (x,»l, ..., x)wherei =1,...,n—1ben— 1arbitrary linearly independent vectors from
R". Write the exterior product X; A - - - A x,_1 in the form
XAt

XT A AXp_1 = Z (E‘i]/\"'/\Ein,l).

(i1,sin—1) Xil in—1
n—1 -

It is not difficult to see, that the vector

i i er ... €en
XX
S k-+1 Xy X
j(xl/\"'AXn—l):z e e (=D ey =
k=11 i in—1 e
Xg_q -+ Xp_q ) .
Xn—] . xn—]
is orthogonal to the hyperplane spanned by the vectors x1, ..., X5—1.

3. Conic sets: basic definitions and statements

Let us recall some basic definitions of the theory of cones (see [3,11,21,22]).

A closed subset K C R" is called a proper cone, if it is a convex cone (i.e. forany x,y € K, « > 0
we have x + y, ax € K), pointed (K N (—K) = {0}) and solid (int(K) # @).

The set K* C (R™)’ defined in the following way:

K*={x*e R"Y : Vy eK (y,x*) >0}

is called the adjoint cone to the cone K. The set K is a proper cone in R" if and only if K* is a proper
cone in (R™)". The interior of K* is defined by the equality

int(K*) = {x* ¢ R") : Vy e K (y, x*) > 0}.

Example 1. Letxq, ..., x; € R" be linearly independent vectors. The set
n
K = Zc,-x,-: Cl,...,cp =0
i=1

of all linear combinations of the vectors x1, ..., x, with nonnegative coefficients is a proper cone in
R". Such a cone is called spanned by the vectors x1, ..., x,. The cone spanned by the basic vectors
e, ..., ey isdenoted by R} .
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Example 2. The set

K={x=0" .2 eR"%Jx)2+ + ()2 4 (H1)2 4 oo 4 (x1)2 < ¥

is a proper cone in R". Such a cone is called an ice-cream cone.

Example 3. Let F C R" be a closed, convex and bounded set. The set K (F) of all elements of the form
ax where ¢ > 0,x € F is a pointed convex cone in R". If int(F) # @, then the cone K (F) is obviously
proper.

Let us examine the cones spanned by the vectors €1eq, ..., €,e, where each¢; (i = 1,...,n) is
equal to +1 or —1. This cone is called a basic cone. The space R" with a fixed basis e, . . . , e, consists
of 2" basic cones, one of which is R"} .

We list some properties of basic cones which will be used later.

1. The projection of any basic cone on any basic subspace (i.e on a subspace spanned by any
subsystem of the initial basic vectors) is a basic cone in this subspace.
2. If K is a basic cone in R", then the adjoint cone K* is also a basic cone in (R")".

As it was mentioned above, every basis e, . .., e, in R" defines a basis in the space NR" = (;’)
which consists of all exterior products of the form {e;, A --- A ey}, where 1 < iy < -+ < ij < n.

Denote the cone spanned by this exterior basic vectors by AJR”+. Let us call a cone in A/R™ spanned
by the simple j-vectors of the form %(e;; A --- A ej;) where 1 < iy < --- < §j < n an exterior basic
cone defined by the basis ey, .. ., ey. It is easy to see, that not every basic cone in A/R" is an exterior
basic cone.

We list some obvious properties of exterior basic cones.

1. Let L be any basic subspace of R™. Then the projection of any exterior basic cone on the subspace
NL of the space A/RR" is an exterior basic cone in this subspace.
2. If Kj is an exterior basic cone in A/R", then the adjoint cone Kj* is an exterior basic cone in

(NR"Y = AI(R"Y.

Let us recall the following characterization of a proper cone K (see, for example [7]).
The angle 6% (K) defined by the equality

Omax(K) = sup arccos(x,y),
x,yeKNS,

where S, is the unit sphere in R", is called the maximal angle of the cone K.
Any basic cone in R" can be converted using some linear transformation to the cone R} . Thus we

b4
can assume without loss of generality that any basic cone K satisfies the inequality Opax (K) < 3

Besides cones we shall be interested in some other sets in R™. Recall the definitions of the following
conic sets (see [11]).

Aclosed subset T C R" is called a cone of rank k (0 < k < n) ifforeveryx € T, € R the element
ax € T and there is at least one k-dimensional subspace and no higher dimensional subspaces in T.

For the examples of cones of rank k see also [20,21]. Note that a cone of rank k is usually not convex.

Example 1. LetLy, ..., Ly be subspaces of R" with max; dim(L;) = k. Then ", L; is a cone of rank
kin R™.

Example 2. Let K C R" be a proper cone. Then K U (—K) is a cone of rank 1 in R", and R™\ (int(K) U
int(—K)) is a cone of rank n — 1in R".
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4. Set T(K;) and its properties

Given a proper cone K; C AR = R(f),j = 2,...,n. Let us define the set T(K;) C R" in the
following way:

T(Kj) = {x; e R" : dxy, ..., x € R", forwhichx; Axp A -+ A X € (int(Kj) U int(—K;))}.
Let us define the set T(Kj) in the following way:

T(K) = {x1 € R" : 3xy,...,x € R", forwhichx; Axy A -+ Ax € (KU (—K;))\{0}} U{0}.
It is not difficult to see, that the sets T(K;) and T(Kj) may not coincide for an arbitrary proper cone

Kj C NR",
The following lemma describes the structure of the sets T(K;) and T(Kj).

Lemma 3. LetK; C ANR™ be a proper cone. Then the set T(Kj), if it is not {0}, coincides with the set of all
j-dimensional subspaces L C R" for which corresponding lines A;(L) belong to K; U (—K;). The set T(K;),
if it is not empty, coincides with the closure of the set of all j-dimensional subspaces L C R" for which
corresponding lines A;j(L) belong to int(K;) U int(—Kj).

Proof. <=Theinclusion0 € f(Kj) follows from the definition of the setT(Kj). Let an arbitrary nonzero
vector x; belong to a j-dimensional subspace L for which the corresponding line 4;(L) belongs to

Kj U (—K;). Let us show that x; € T(Kj). Indeed, let us find vectors x,, . . ., Xj such that the system
{x1, x2, ..., x;} forms a basis of the j-dimensional subspace L. Examine the exterior product x; A xz A
-+ AXj.Since X1, Xp, ..., x;j are linearly independent, the element x; A X A - -+ A Xj is nonzero and
belongs to the line A;(L) C (KjU (—Kj)).Sincex; Axa A--- AXj € (KjU(—K;))\{0} for some nonzero
vectors xp, ..., xj € R", we have x; € T(Kj).

= The inclusion 0 € L is obvious for any subspace L C R". Let x; € T(Kj) be nonzero. Then
there exist nonzero vectors xy, ...,x; € R" for whichx; Axy A --- A X € (Kj U (—K;))\{0}.

Since X1 A Xp A --- A Xj # 0, they are linearly independent. Examine the j-dimensional subspace
L = Lin(x1, X2, ..., x;).Since K; U (—K;) isa cone of rank 1 in ARM, the line {t(x; AXz A~ - - AXj)}teR
corresponding to the subspace L belongs to Kj U (—Kj).

The second part of the lemma is proved analogically. O

Now examine the set T(Kj) defined in the following way:
T(K) = {x1 € R" : 3xp,...,x% € R", forwhichx; Axy A -+ Ax € (int(Kj) Uint(—Kj))}.

The above definition implies that T(Kj) C T(K;j) and T(Kj) C T(Kj). The following statement
describes the relations between the sets T(K;), T(Kj) and T(K;).

Theorem 4. Let K; C ANR™ be a proper cone. Then

T(Kj) = int(T(K)); (1
T(K) S T(K)). (2)
Proof. To prove (1), it is enough to show that the set T(Kj) is open. Let x; € T(Kj). Then there exist
elementsx,, ..., x € R"andanumberr > OsuchthatB(x; Axp A---AXxj, 1) C (int(K;) Uint(—K;)).
Let us find a number 1’ > 0 such that B(xy, ') C T(Kj). Taker’ = m Indeed, the following

inequalities hold for every x] € B(x1,1’):
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X] AXag Ao AX—x1 AX2 A AX = [[(X] — X1) AXxa A AKX

. . r
< = xallxal I < el D = T
JHx2 Xl

Sincex; Axg A+ AXj €B(Xg AXg A -+ A xj, 1) C (int(Kj) U int(—Kj)), we have Xy € T(I/(\j).

To prove (2), it is enough to show that the set T(K;) is closed. Let us take a sequence {x{}52; € T(K;)
which converges to a nonzero element x; € R". To show that x; € T(K;), let us take elements
X2, ...,x € R"forwhichx; Ax; A--- AXj € (Kj U (—=K;))\{0}.

Since the elements x belong to T(K;) foreveryn = 1, 2, .. .,wecanfind elementsxj, . . ., x}’ e R"
for which x] A x5 A -+ A x}1 € (Kj U (—K;))\{0}. Examine j — 1 sequences {x5}52, ..., {xJrl o0 1
Without loss of generality we can assume that ||x]'|| = 1foreveryi = 2,...,jandeveryn =1,2, ...

Indeed, the linearity of the exterior product implies that
A "2 AA Xf: = ! (X AXE A AXD € (K5 U (—K)\{0).
1511 EARNTIRNE

Without loss of generality we can also assume that the linearly independent vectors X, X3, ..., X'
are mutually orthogonal for everyn = 1, 2, .. .. Indeed, we can apply the Gram-Schmidt orthogonal-
ization process to the set of j linearly independent vectors x|, x3, ... ,x}’. The obtained orthogonal
vectors Xy, X5, ..., %1'7 define the same j-dimensional subspace in R" and the same line in A/R”.
Since all these sequences {x3},2;, . . ., {x/'};2; are bounded, we can find a converging subsequence
in everyone of them. Let us take the necessary element x; equal to the limit of the corresponding

. Mg .
converging subsequence Xj . It is not difficult to see, that the elements x1, X, . .., Xj are nonzero

and mutually orthogonal, so their exterior product X; A X A - -+ A X; is not equal to zero. Examine

the sequence {x' A x3' A -+ A X"}72; of the exterior products of re-numbered elements of the

Nk .
subsequences Xj ’. The estimates
X7 A XY A AKX = X1 Axg A AKXl
j
<X A ARt A (R — X)) A Xy AN

k=1
J

<5 Il e e — X
J =
1 Jj
m m
=5 X1 — x4+ D Il lxe — x|

k=2

imply that it converges to the elementxq A Xz A - - - Ax;. Since the sequence {xT' Ax3' A+ AX"}E

belongs to the closed set K; U (—Kj) and the limit x; A X2 A - -+ A X; is nonzero, we conclude that
X1 Axy Ao AXj € (Kj U (—=K;))\{0}. This implies that the element x; € T(K;). O

Theorem 5. Let K; C A'R" be a proper cone. Let there exist a basis €}, .. . , e}, of R" such that K; C K/

where K]-/ C AR is one of the exterior basic cones defined by this basis. Then the set T(K;), if it is not
empty, is a cone of rank j.

Proof. Firstlet us prove that the set T(K;) is uniform, i.e. that for every x; € T(K;), @ € R the element
ax; € T(Kj). It is enough to prove the above inclusion for every nonzero « and every x; € T(Kj).
Indeed, let x, ..., x; be nonzero elements for which x; A x A --- A X; € (int(Kj) U int(—Kj)).
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Let @ be an arbitrary nonzero number from RR. The linearity of the exterior product implies that
axy Axp A A dxi=x1 Axa A Axj € (int(K)) Uint(—K))).

Lemma 3 implies that the set T(Kj), if it is not empty, contains at least one j-dimensional subspace.
Then we have to prove, that there is no j+ 1-dimensional subspace lying in T (Kj). First prove this fact for

n = j+1.Letus show that T(K;) does not coincide with the whole of Ri*+1 Examine the space Rit! with
the basise], ..., leH wheree], ..., e]’-Jrl are given in the condition of the theorem. Then the exterior
products {el/»] Ao A elfj} where1 < iy < --- < ij < j+1formabasisin NIRRT So we conclude that
the cone K]-/ coincides with one of the basic cones of the space ATRIF Without loss of generality we
can assume that the maximal angle 6. (Kj’) = 7.Since K; Kj/ , we have Omax (Kj) < Omax (Kj/ )= 7.

Let us examine the set 7;1 1 (Kj) where the operator ;11 : ANRIT!T — Rt js defined in the following
way:

)
Ji+1(eiy A--- Aey) = (=Dt ey,

where k = [j + 1]\{i1, ..., ij}. Since the operator Jj; is linear and invertible, we conclude that
Ji+1(K;) is a proper cone in R/*!. Moreover, Ji+1(K;) belongs to Jj41 (Kj/) which coincides with one of
the basic cones of RIT1. So we conclude that Opax (Ji+1(K)) < Omax(Tj41 (Kj/)) = % Lemma 3 and the
properties of the operator Jj11 imply that the set T(Kj) is enclosed to the set of all hyperplanes which
orthogonal lines belong to 711 (Kj) U (—J41(Kj)). Let us show that int(J41 (Kj)) U int(—Jj11(Kj))
does not belong to T(Kj). Indeed, let x € (int(Jj4+1(Kj)) U int(—7;4+1(Kj))) N T(K;). Since x € T(K;),
there exists a hyperplane L such that x € L and the line n orthogonal to L belongs to int(Jj41(Kj)) U
int(—J7j1(K;)). Examine the angle 6 between n and x. It is equal to % However, x € int(Jj+1(Kj)),
so the inequality 6 < Omax(Jj+1(Kj)) < % holds. We came to the contradiction. Thus the set T(K;)

does not coincide with the whole of Rit*!. For n = j + 1 the theorem is proved.

Now let n > j + 1. Let us prove the theorem by contradiction. Let X1, ..., Xjy1 be j + 1 linearly
independent vectors, any linear combination cixy + - -+ + ¢j+1Xi41 (c1, ..., G+1 € R) of which
belongs to T(Kj). Let (xil, ..., x{") be the coordinates of the vector x; (i = 1,...,j -+ 1) in the basis
eq, cee, e;. If the vectors X1, . .., X1 are linearly independent, then at least one of the minors of the

i i
Xy Xy
form|... ... ...|wherel <i; <--- <ij;1 < nisnotequal tozero. Examine aj+ 1-dimensional
i1 fj+1
X1 .- X
subspace L of the space R" spanned by the basic vectors e§1 e elfj " and the corresponding subspace

/
lit1®
Examine a projection pr ,j; K of the cone K; to the subspace AL.Itis not difficult to see, that pr Kj €
pl'/\jLKj/ which is an exterior basic cone in AJL (see Section 3, property 1 of exterior basic cones).
Since the space L is (j + 1)-dimensional, the statement of the theorem holds. So we can find a vector
@ € (L\T(pr »j K;)) with the coordinates (¢j, . . ., ¢j;,, ). EXamine the system

AL of the space R(f) spanned by all the possible exterior products of the basic vectors egl Y

i i
ax{t 4+ Cj+1xj¢1 = Qijq-
This system has a unique solution (c{, ..., ¢, ;). The vector y; = c{x; 4 - + ¢, 1x;11 belongs to
T(K;). Examine the case when we can find nonzerovectorsy,, ..., yj € R" suchthaty; Ay, A- - -Ay; €
(int(K;) Uint(—Kj)). In this case pr ,j; (y1 Ay2 A - - - AYj) € pr i (int(Kj) Uint(—K;)) and is obviously
nonzero. However, since pr,j; (y1 Ay2 A+ - - AYj) = pry(y1) Aprp(y2) A- - - Aprp(yj) and pry(y1) = ¢,
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the above inclusionimplies that ¢ € T(pr ,j;Kj).In the case when the vectory; = C?)q +--- +C]Q+1Xj+1

is the limit of the converging sequence from T(Kj) we can construct the sequence of elements from
T(pr i Kj) converging to ¢. So ¢ € T(pr j; Kj). We came to the contradiction. [

Remark 1. Note, that we do not use the convexity of the cone K; in the proof of Theorem 5.

5. Construction of other cones of finite ranks

Given n proper cones K; C R", Ky C A?R", ..., K, C A"R".
Let us define successively the following sets T(Kq, . .., K;).

T(Ky) = K1 U (—Ky);
T(Ky,Ky) = {x; € R" : 3x, € T(Ky), for whichxq A x, € (int(Ky) U int(—K>))};
T(K1, K2, K3) = {x; € R" : Ax; € T(Ky), x3 € T(K1, K2)

for which x; A x3 A x3 € (int(K3) U int(—K3))};

T(K],...,Kj) = {Xl e R": 3)(2 (S T(K]),...,Xj (S T(K1, ...,Kj_l)

for whichx; Axy A+ A X € (int(Kj) U int(—Kj))};

T(K], . .,Kn) = {X] e R": EXZ S T(K]), Lo, Xp € T(K], . ,Kn71)
for whichx; A xp A -+« A X, € (int(Ky) U int(—Ky))}.
The inclusions T(K1, ..., Kj) € T(K;) are obvious for any proper cones K; C R", ..., K; C ANR™
and any j = 2, ..., n. The following theorem describes the structure of the sets T(Kq, .. ., Kj).

Theorem 6. LetK; C R", K C A*R", ... K, C A"R" beproper cones. Let foreveryj (j =2, ...,n)
there exist a basis €/ (j), . . ., e, (j) of R" such that K; I(j’ where Kj’ C NR" is one of the exterior basic
cones defined by this basis. Then every set T(Ky, ..., Kj), if it is not empty, is a cone of rank j.

Proof. First let us prove that for every x; € T(Ky, ..., Kj), @ € R the element ax; € T(Ky, ..., K;).
Let x; be an arbitrary element from T(Kj, ..., Kj). Without loss of generality we can assume that
there exist nonzero elements x; € T(Ky),...,x € T(Kq, ..., K1) for whichx; Axp A--- AXj €
(int(Kj) U int(—K;)). (Otherwise we shall consider x; as a limit of the converging sequence of the
elements which satisfy the above condition.) Let & be an arbitrary nonzero number from RR. Since the
set T(Ky) is obviously uniform and x; € T(K;), the element %xz also belongs to T(K7). The linearity
of the exterior product implies that awx; A %xz A AXp=X1 AXp A+ AXj € (int(Kp) Uint(—Kj)).
Itis obvious that 0 € T(Kq, ..., K;) fora = 0. Hence ax; € T(Ky, ..., K;) foreverya € R.

The definition of the set T(Ki,...,K;) implies that T(Kq,...,K;) is closed. The inclusion
T(Kq,...,K;) € T(Kj) implies that T(Kj, ..., Kj) does not contain any j + 1-dimensional sub-
space. Let us show that the set T(Ky, ..., Kj), if it is nonempty, contains at least one j-dimensional
subspace. Indeed, let there exist at least one x; € R" such that we can find nonzero elements
Xy € T(Kq),...,x; € T(Ky,...,Kj—1) for whichx; A x; A --- A X € (int(Kj) U int(—Kj)). Let
us prove that the j-dimensional subspace L = Lin(x1, x2, ..., Xj) belongs to T(Ky, ..., K;). Indeed,

examine the linear combination *}_,cix; where ¢1,...,¢; € R, YI_ c? # 0.1f c; # 0, then we

have the equality (Zji:]cix,-) AXp A ANXjp = c1(X1 Axg A -+ AX) € (int(Kj) U int(—Kj)).

So Z{Zlcixi € T(Kq, ..., K;) forany c; # 0.1f c; = 0, then there exists a sequence of the elements
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oo

1 . .
—X1 + ZJ,-ZZC,-xi € Lwhich converges to the vector Zji:zCiXi- It follows from the above reasoning,
n n=1

1 ; )
that —x; + Zjizzc,-x,- € T(Ky, ..., K;) for every n. So Zjizzc,-x,- €Tk, ..., K). O
n

Example 1. Let us examine the space R3 with a fixed basis e1, ey, es.Let K; C R3 be a basic cone
spanned by the vectors e, e;, —es.Let Ky C A%RR3 be an exterior basic cone spanned by the exterior
products e; A ey, e3 A eq, ez A es. In this case the set T(K>) is a cone of rank 2 which coincides with
the set R3\ (int(7(K2)) U int(—7(K»))). The cone 7 (K») is spanned by the vectors ej, ey, es, i.e.
is equal to R3.. So the cone T(K;) coincides with R?\ (int(R3 ) U int(—RR3)), i.e. with the set of all
vectors which have at least two coordinates of different signs or at least one zero coordinate. It is not
difficult to see, that the set T(Kj, K>) is the set of all 2-dimensional subspaces L C R? which satisfy
the following conditions:

1. The corresponding line A(L) belongs to K U (—K3).
2. The intersection L N K7 # {0}.

Since every 2-dimensional subspace from T(K>) has a nonzero intersection with the cone K7, we have
the equality T(K7, K) = T(K3).

Example 2. Let K; be Ri_, K, C A2R3 be an exterior basic cone spanned by the exterior products
e1 A ey, e3 Aeq, ez A es. In this case, as it was shown above, T(K;) = R3\(int(]Ri) U int(—Ri)).
It is easy to see, that the set T(K7, K2) C T(K>) is the union of three basic subspaces Lin(eq, e3),
Lin(eq, e3) and Lin(ey, e3), i.e. the set of all vectors which have at least one zero coordinate. Note,
that if K7 is any proper cone which satisfies the inclusion K1 C int(Ri), we obtain the equality
T(K1, K2) = 0. -
Let us define successively the following sets T(Kq, . . ., K;).
T(Ky) = int(K1) U (—int(K1));
T(Ki, K2) = {x; € R" : 3%, € T(K;), for whichx; A xp € (int(K») U int(—K2))};
T(Ki, K2, K3) = {x1 € R" : 3x; € T(Ky), x3 € T(Ky, K)
for which x; A x; A x3 € (int(K3) U int(—K3))};
T(Ki,...,K) ={x1 e R": Ixp € T(K1), ..., % € T(Ky, ..., Ki—1)
for whichx; Axy A+ A X € (int(Kj) U int(—Kj))};
TKi,...,K) ={x1 € R": 3% € T(Ky), ..., %0 € T(Kq, ..., Kuz1)
for whichxy Axy A -+ Axy € (int(Ky) U int(—Ky))}.
The inclusions T(K1, . . ., Kj) € T(Ig) and T(Ky, ..., Kj) C T(Ky, ..., Kj) are obvious for any proper

conesK; C R", ..., K; C ANR" and anyj = 2, ..., n.The following theorem describes the structure
of the sets T(Ky, ..., Kj).
Theorem 7. Let Ky C R", Ky C A2R", ..., K, C A"R" be proper cones. Then the following inclusion

is valid foreveryj (j =2,...,n):

T(K1, ..., K) Cint(T(Ki, ..., Kj)).
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Proof. It is enough for the proof to show that if the set T(Kq, . . ., K;) is nonempty, then it is open. The
proof is analogous to the proof of the first part of Theorem 4. [J

Note, that it is also not difficult to define successively the sets T(Kl, ..., Kj),j=2,...,n,using
the formulae:

T(K1) = Ky U (—Ky);
Ty, ..., K) = {x; € R": Ixy € TKD\{O}, ..., % € T(Kq, ..., K—1)\{0}
for whichx; Axp A -+ A X € (K U (—K;j))\{0}}.

6. Cone-preserving maps in R"

One of the most important results of the theory of nonnegative matrices is the famous Perron-
Frobenius theorem. This theorem states the existence of the greatest in absolute value positive eigen-
value with the corresponding nonzero nonnegative eigenvector of a nonsingular nonnegative matrix
(see, for example [3, p. 26]). Later we shall use the cone-theoretic generalizations of this result. So let
us recall some definitions and statements of the theory of cone-preserving maps (see [3,22]).

Let K C R" be a proper cone. A linear operator A : R" — R" is called K-positive or positive with
respect to the cone K if A(K\{0}) C int(K). In the case of K = R’} K-positive operators are called
positive. It is easy to see, that the operator is positive if and only if its matrix is positive.

Let us state the following generalization of the Perron theorem (see [3, p. 13, Theorem 3.26]). Recall
that an eigenfunctional of the operator A is defined as an eigenvector of the adjoint operator A*.

Theorem 8 (Generalized Perron). Let a linear operator A : R™ — R™ be positive with respect to a proper
cone K C R". Then:

1. The spectral radius p(A) is a simple positive eigenvalue of the operator A different in absolute value
from the remaining eigenvalues.

2. The eigenvector x1 corresponding to the eigenvalue A1 = p(A) belongs to int(K).

3. The eigenfunctional X} corresponding to the eigenvalue A1 = p(A) belongs to int(K*) (i.e. satisfies
the inequality (x, x{) > 0 for every nonzero x € K).

A linear operator A : R" — R" is called K-nonnegative or nonnegative with respect to the cone K if
it leaves the cone K invariant (i.e. AK C K). In the case of K = R’} K-nonnegative operators are called
nonnegative.

Recall the following obvious fact.

Lemma9. AlinearoperatorA : R" — R"is K-nonnegative (K-positive) if and only if the adjoint operator
A* . (R™Y — (R™) is K*-nonnegative (respectively, K*-positive).

A weaker version of the generalized Perron theorem is correct for
K-nonnegative operators (see [3, p. 6, Theorem 3.2]).

Theorem 10. Let a linear operator A : R" — R" be nonnegative with respect to a proper cone K C R".
Then:

1. The spectral radius p (A) is a nonnegative eigenvalue of the operator A.
2. The eigenvector x1 corresponding to the eigenvalue A1 = p(A) belongs to K.
3. The eigenfunctional X} corresponding to the eigenvalue A1 = p(A) belongs to K*.

Let us also state the “inverse” Perron theorem (see [3, p. 8, Theorem 3.5 and p. 13, Theorem 3.26]).
Here deg()) denotes the size of the largest diagonal block in the Jordan canonical form of A which
contains A.
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Theorem 11 (Inverse Perron). Let p (A) be an eigenvalue of a linear operator A : R™ — R". Let deg(1) <
deg(p(A)) for every eigenvalue X such that || = p(A). Then A is nonnegative with respect to some proper
cone K. Moreover, if p (A) is a simple eigenvalue of A greater in absolute value than the remaining eigenvalues,
then A is positive with respect to some proper cone K.

Examine a subclass in the class of K-nonnegative operators which has the same spectral properties
that K-positive operators. A linear operator A : R" — R" is called K-primitive or primitive with respect
to the cone K, if AK C K and the only nonempty subset of d (K) which is left invariant by A is {0}. This
definition was given by Barker (see [2], see also [22]). The following statement is correct (see [3, p. 18,
Corollary 4.13]).

Lemma 12. A linear operator A : R" — R" is primitive with respect to some proper cone K if and only if
there exists a proper cone K such that A is positive with respect to K.

Let us examine the operators which leave invariant basic cones in R". Every basic cone can be
transformed into the cone R’, by asimple linear transformation with a diagonal transformation matrix.
Thus a linear operator A : R™ — R" leaves invariant a basic cone in R" if and only if its matrix A can be
represented in the following form:

A =DAD ',
where A is a nonnegative matrix, D is a diagonal matrix, which diagonal elements are equal to 1.
Let J be any subset of [n] := {1, 2, ..., n}. ThenJ := [n]\J and

(M x[n]=0xDUJ xJ)IUUxJ)UJ x])

is a partition of [n] x [n] into four pairwise disjoint subsets.
A matrix A = {a,-j}ﬂj=1 is called J-sign-symmetric (JS) if

aj >0 on (Jx))U(° xJ)
and
aj <0 on (JxJHU(J x)).

A matrix A = {a,j}ﬁj=1 is called strictly J-sign-symmetric (SJS) if

aij >0 on (Jx))U(°xJ)
and
aj <0 on (JxJHU(J x)).

It is easy to see, that the number of all different types of strictly J-sign-symmetric n X n matrices
is equal to the number of basic cones divided by 2, i.e. 2"~ 1.

We recall a simple fact that a matrix is diagonally similar to a nonnegative (positive) matrix if
and only if it is J-sign-symmetric (respectively, strictly J-sign-symmetric) (see, e.g. [13]). Thus a linear
operator A : R" — R" is nonnegative (positive) with respect to some basic cone K if and only if its
matrix A is J-sign-symmetric (respectively, strictly J-sign-symmetric).

7. Exterior powers of operators in R"

Let us recall the following definitions and statements. )
“Let A be a linear operator acting in the space R". Then a linear operator AJA acting in the space
NR™" according to the rule:
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(NAYx A - AX) = AX] A -+ A AXj

is called the jth exterior power of the operator A.
Later we shall use the following properties of AJA (see, for example [23]).

1. /\J:A = 0ifand only ifj > r where r is the rank of the operator A.

2. NIgn = I ,jgn where I is the identity operator.

3. Let A, B : R" — RR" be two linear operators. Then N(AB) = (NA)(NB) (the Cauchy-Binet
formula). ) )

4. The following equality is correct for every natural number m: (NA)™ = AJ(A™).

5. Thejthexterior power of an invertible operator is invertible and the following equality is correct:
(NA)TT = N@A. '

6. Since (AMR")’ can be considered as A/ (R")’, the following equality for adjoint operators is
correct: (NA)* = N (A*) (see [23, p. 89]).

If the operator A is defined by the matrix A = {aij}}fjﬂ in the basis eq, . .., ey, then the matrix of
AAin the basis {ei, A+~ Aej}wherel < iy < -+ < ij < ncoincides with the jth compound matrix

A of the initial matrix A (see, for example [15]). '
Recall the following statement concerning the eigenvalues of A/A.

Theorem 13 (Kronecker). Let {);}i; be the set of all eigenvalues of the operator A : R" — R" repeated
according to multiplicity. Then all the possible products of the form {A;, .. .A,-j}, wherel < i1 < -+ <

ij < n forms the set of all the possible eigenvalues of the jth exterior power NA of the operator A repeated
according to multiplicity.

The Kronecker theorem is stated in terms of compound matrices and proved without using exterior
products in [5] (see [5, p. 80, Theorem 23]).

8. Generalized totally positive operators

Let us give the basic definition of a generalized totally positive operator. Let us fix n proper cones
K1 C R, Ky € A*R", ..., K, C A™R". Note, that the idea of fixing cones in the exterior powers
of the initial space was first given by Yudovich [24]. Slightly changing the terminology of [24], we call
the family of proper cones K1 C R", K» C A*R™, ..., K, C A"R" a totally positive structure on the
space R".

Alinear operator A is called generalized totally positive (GTP) with respect to a totally positive struc-
ture {Ky, ..., Ky} if it is nonnegative with respect to the proper cone K1 C R" and its jth exterior
power A/A is nonnegative with respect to the proper cone Kj; C ANVR" foreveryj (j =2, ..., n).

Alinear operator A is called generalized strictly totally positive (GSTP) with respect to a totally positive
structure {Kj, ..., Ky} if it is positive with respect to the proper cone K; C R" and its jth exterior
power AJA is positive with respect to the proper cone K; C A/RR" foreveryj (j = 2, ..., n).

In the case when K; = /\fR"+ foreveryj =1, ..., n, the definitions given above coincide with the
classical definitions of totally positive and strictly totally positive operators given by Gantmacher and
Krein [5].

It is easy to see, that there exists at least one nonsingular GTP operator for every totally positive
structure on the space R" (for example, the identity operator I which exterior powers according to
Property 2 are also the identity operators). We call a totally positive structure strictly totally positive
if there exists at least one strictly totally positive with respect to this structure operator. Later we are
going to show, that not every totally positive structure on R" is strictly totally positive.

Now it is also possible to give the definition of generalized oscillatory operator which extends the
class of oscillatory operators introduced by Gantmacher and Krein [5].
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A linear operator A is called generalized oscillatory (GO) with respect to a totally positive structure
{K1, ..., Ky} if it is primitive with respect to the proper cone K; C R" and its jth exterior power AJA
is primitive with respect to the proper cone K; C AR foreveryj (j =2,...,n).

Alinear operator A is called generalized sign-regular (GSR) with respect to a totally positive structure
{Ky, ..., Ky} if there exist numbers €1, ..., €; each equal to =1 such that €;A is nonnegative with
respect to the proper cone K; C R" and ¢ A A is nonnegative with respect to the proper cone
K; C AR foreveryj (j =2, ..., n).

A linear operator A is called generalized strictly sign-regular (GSSR) with respect to a totally positive
structure {Ki, ..., K} if there exists numbers €1, . .., €, each equal to £1 such that €A is positive
with respect to the proper cone K1 C R" and €; A/ A is positive with respect to the proper cone
K; C AR foreveryj (j =2, ..., n).

Let us fix a natural number k, 1 < k < nand choose k proper conesK; C R*, K, C A2R", ..., K
C AKR™. We call the sequence of proper cones K; C R", Ky € AZR", ... K, C AKR" a k-totally
positive structure on the space R".

Alinear operator A is called generalized k-totally positive with respect to a k-totally positive structure
{K1, ..., Ky} if it is nonnegative with respect to the proper cone K1 C R" and its jth exterior power
N A is nonnegative with respect to the proper cone K; C AJR" foreveryj j =2, ..., k).

We can easily give analogical definitions of generalized strictly k-totally positive, k-sign-regular
and strictly k-sign-regular operators.

9. Basic properties of GTP and GSTP operators

Let us list some basic properties of GTP and GSTP operators.
Proposition 14. Let a linear operator A : R" — R™ be GTP (GSTP) with respect to a totally positive
structure {Ky, ..., K,}. Then A* (the adjoint of A) is GTP (respectively, GSTP) with respect to the totally
positive structure {K;, ..., Ki}.
Proof. The proof follows from Lemma 9 and Property 6 of exterior powers (see Section 7). [J
Proposition 15. Let linear operators A, B : R" — R™ be GTP with respect to a totally positive structure
{Ki, ..., Ky}. Then AB is also GTP with respect to the structure {K1, ..., K,}. If in this case one of the
operators A or B is GSTP, while the other is nonsingular GTP, then AB is GSTP with respect to the structure
{Ky, ..., Ky,}. Inparticular, ifA is GTP (GSTP) with respect to a totally positive structure {Ky, . . ., K,}, then

the operator A™ is GTP (respectively, GSTP) with respect to the same structure for every natural number m.

Proof. The proof follows from the Cauchy-Binet formula (see Section 7, Property 3 of exterior pow-
ers). [

If the operators A and B are GTP with respect to different totally positive structures, then the state-
ment of Proposition 15 may not be correct.

Proposition 16. Let a linear operator A : R" — R" be GO with respect to a totally positive structure
{Ki, ..., Ky}. Then A is GSTP with respect to some other totally positive structure {Ky, . .., Ky}.

Proof. The proof follows from Lemma 12. O

Proposition 16 reduces the study of GO operators to the study of GSTP operators.
Now let us prove some propositions which describe the structure of the class of GTP operators.

Proposition 17. Every linear operator A : R" — R" similar to a GTP (GSTP) operator is GTP (respectively,
GSTP). In particular, if A is similar to a TP (STP) operator, then A is GTP (respectively, GSTP).
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Proof. Let us represent the operator A in the form A = TAT !, where T is nonsingular, A is GTP (GSTP)
with respect to a totally positive structure {K7, . .., K, }. Then the Cauchy-Binet formula and Property
5 of the exterior powers imply that A is GTP (GSTP) with respect to the totally positive structure
{(T(Ky), ..., (A"T)(Ky)}. O

Note, that the “inverse” statement that every GTP operator is similar to some TP operator is not
correct.

Proposition 17 shows that if all the eigenvalues of A are positive and simple, then A is GTP. Indeed,
since the Jordan canonical form J of the operator A is represented by a nonnegative diagonal matrix,
we conclude that J is TP. Then the equality A = UJU~! implies that A is GTP with respect to the totally
positive structure {U(R?), ..., (A"U)(A"R)}.

Using the “inverse” Perron theorem (see Theorem 11) stated above, we can prove more general
statements about operators with real spectrum. In this case the Jordan canonical form may not be
totally positive or sign-regular.

Proposition 18. Let all the eigenvalues of a linear operator A : R" — R" be real. Then A is GSR. Moreover,
if all the eigenvalues of A are real, simple and different in absolute value from each other then A is GSSR.

Proof. Let us enumerate the eigenvalues of the operator A in descending order of their absolute values
(without taking into account their multiplicities):

A1l = [A2] =2 A3 = -+ = [Aml.

Examine the greatest in absolute value eigenvalue Aq. The reality of the spectrum implies that if
the equality |A1| = |A3]| is true, then A; = —A,. Assume that deg(A1) > deg(),), otherwise we shall
re-number them. If the eigenvalue A is nonnegative, then it satisfies the conditions of Theorem 11.
Applying Theorem 11 to the operator A, we obtain that A is nonnegative with respect to some proper
cone K; C R™ If the eigenvalue A; is non-positive, then —A4 is nonnegative. Considering —A{ as the
greatest in absolute value eigenvalue of the operator —A we obtain that it satisfies the conditions of
Theorem 11. Applying Theorem 11 to the operator —A we obtain that —A is nonnegative with respect
to some proper cone K; C R".

Examine the second exterior power A%A. The Kronecker theorem implies A%A has no other eigen-
values, except all the possible products of the form A;, A;,, where 1 < iy < ip < n. Therefore the
greatest in absolute value eigenvalue Agz) of A2A can be represented in the form of the product Aiy Ay
with some values of the indices i1, i3, i1 < iy.This representation implies that Agz) is also real. Without

( @ @

loss of generality we can assume that deg(klz)) > deg(A, ) where A, is any other eigenvalue of

A2A equal in absolute value to )»32) Jf ,\§2) is nonnegative, we apply Theorem 11 to the operator A2A,
otherwise we apply Theorem 11 to the operator — A% A. Thus we obtain that either A%A or — A% A is
nonnegative with respect to some proper cone K C AR ‘

Repeating the above reasoning for AJA, j = 3, ..., n we obtain that either the operator AJA or
— A A is nonnegative with respect to some proper cone K; C A/R™. So we have constructed the
totally positive structure {K7, ..., K;} such that the operator A is GSR with respect to this structure.
The second part of the proposition is proved analogically. O

Proposition 19. Let all the eigenvalues of a linear operator A : R" — R" be nonnegative. Then A is TP.
Moreover, if all the eigenvalues of A are positive and simple then A is GSTP.

Proof. The proof follows from Proposition 18. [

Later we shall show that a GSTP operator always has a simple positive spectrum. However, the
spectrum of a GTP operator may not be real.
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Proposition 18 shows that the introduced above class of GSR operators covers the entire class of

operators with real spectrum. This also implies that any operation which preserves the reality of the
spectrum of an operator, preserves the class of GSR operators.

Proposition 20. Let a linear operator A : R" — R" be nonsingular GSR (GSSR). Then A™! is GSR
(respectively, GSSR). In particular, if A is nonsingular GTP (GSTP). Then A~ is GTP (respectively, GSTP).

Proof. The proof follows from Proposition 18 and Proposition 19. O

10. Variation diminishing property of GTP operators

Now we shall prove the generalization of the results by Schoenberg concerning variation diminish-
ing property of totally positive matrices (see [18,19]).

Theorem 21. Let a linear operator A : R" — R" be nonsingular GSR with respect to a totally positive

structure {K1, . .., K,}. Then the following inclusions hold for everyj =1, ..., n:
AT (K)) < T(K)); (3)
AT(Ky, ..., K) STKy, ..., K)). (4)
Proof. Let us assume that all the sets T(Kj) are nonzero and all the sets T(Kq, . . ., K;) are nonempty,

otherwise the corresponding inclusions will be obvious.

Let x; be an arbitrary vector from T(Kj). We prove that Ax; € T(Kj). Let us find the elements
X2, ..., % € R"forwhichx; Axy A--- Ax; € (KjU (—K;))\{0}. Examine the elements Ax,, . . ., AX;.
Since the operator A/A is nonsingular nonnegative with respect to the cone Kj, we have Ax; A Axy A

“AAX) = (NAY(X1 AXa A - Ax) € (KU (—K;))\{0}. Thus Ax; € T(K;).

Let us prove inclusion (4) using the induction on j. The inclusion
A(T(K1)) - T(K;) is obvious. Let us take j = 2 and prove that
A(T(K1,K2)) € T(Ki, Ky). Let there exists a nonzero element x, € T(Kq) such that x; A x; €
(K2 U (—K2))\{0}. Examine the element Ax. Since the operator A is nonsingular nonnegative with
respect to the cone Ky, we have Ax, € T(K;)\{0}. Examine the element Ax; A Ax;. Since the element
X1 A Xy € (Ky U (—K2))\{0} and the operator A2A is nonsingular nonnegative with respect to the
cone K5, we have Ax; A Axy = (A2A)(x1 AXz) € (Ko U (— 1(2))\{0} Thus Ax; € T(Kq, K3). Now let us
consider the case when x1 is the limit of a sequence {x]}32; such that there exists a nonzero element
Xy € T(Ky) satisfying x1 AxY e (KU (— 1(2))\{0}} for every element x. It follows from the above
reasoning, that Ax € T(K, K) foreveryn =1, 2, .. .. Since the sequence {Ax]}52, converges to the
vector Axq, we conclude Ax; € T(Kl, K>).

Let the statement of the theorem holds for j — 1. Now let us prove inclusions (3) and (4) for j.
Let x; be an arbitrary vector from T(Kj, . . ., Kj). Prove, that Ax; € Ty, ..., Kj). As it was shown
above, without loss of generality we can assume that there exist nonzero elements x; € TK), ...,
Xj € T(K, ..., Kj_1) suchthatx; AxoA- - -AX; € (KU(—K;))\{0}. Examine the elements Ax,, . . . , Ax;
which are also nonzero. Using the inductive hypothesis, we obtain that Ax, € T(IG)\{O}, L Ax €
Ty, ..., Kj_1)\{0}. Since the element x; A Xy A --- A Xj € (Kj U (—K;))\{0} and the operator NA
is nonsingular nonnegative with respect to the cone Kj, we have Ax; A Axy A -+ - ANAXj = (NA)(x1 A
X Ao AX) € (KU (—K;)\{0}. Thus Ax; € T(Kq, ... Kj). O

11. Gantmacher-Krein theorem for GSTP operators

Let us state and prove the main theorem concerning spectral properties of GSTP operators.
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Theorem 22. Let a linear operator A : R" — R" be GSTP with respect to a totally positive structure
{Ki, ..., Ky}. Then all the eigenvalues of the operator A are positive and simple:

PA) =i >Xry > > Ay > 0.

The first eigenvector x1 corresponding to the maximal eigenvalue .1 belongs to int(Ky) and the jth eigenvec-
tor x; corresponding to the jth in absolute value eigenvalue A; belongs to int(T(Kq,...,K;))\
T(Ki, ..., Kj—1). Moreover, the following inclusions hold:

14
> cixi € int(T(Ky, ..., K)\T(Kq, ..., Kg—1)
i=q

foreach1 < q < p<nandc, #0;

p
> cixi € T(Ky, ..., Kp\T(K1, ..., Kg—1)
i=q

foreach1 < qg<p<n

Proof. The first part of the proof literally repeats the arguments used originally by Gantmacher and
Krein. Let us list the eigenvalues of the operator A in descending order of their absolute values (taking
into account their multiplicities):

A1l = (A2l 2 A3 = -+ = [Anl.

Applying the generalized Perron theorem to the operator A (which is positive with respect to the
proper cone K7 ), we get: A1 = p(A) > 0isasimple positive eigenvalue of A, different in absolute value
from the remaining eigenvalues. The corresponding eigenvector x; belongs to int(K;). Examine the
second exterior power A2A which is positive with respect to the proper cone K, C A*R™. Applying
generalized Perron theorem to A2A, we get: p(A%A) > 0 is a simple positive eigenvalue of A2A,
different in absolute value from the remaining eigenvalues. The corresponding eigenvector ¢, belongs
to int(Ky).

As it follows from the statement of the Kronecker theorem, A%A has no other eigenvalues, except
all the possible products of the form A;; A;, where 1 < iy < i < n. Therefore p(/\ZA) > 0 can be
represented in the form of the product A;, A;, with some values of the indices i1, i, i1 < ip. The facts
that the eigenvalues are listed in a descending order and there is only one eigenvalue on the spectral

circle || = p(A) imply that p(A2A) = A1A2 = p(A)Az. Therefore .y = 254 - g

) p(A)
Repeating the same reasoning for AJA,j = 3, ..., n, we obtain the relations:
p(NA)
j = PV > U,
PNTIA)
where j = 3, ..., n. The simplicity of the eigenvalues A; for every j also follows from the above

relations and the simplicity of p (/\jA). Note, that the eigenvector ¢; of the operator NA corresponding
to the eigenvalue p(AJA) belongs to int(Kj).

Now let us prove that the jth eigenvector x; corresponding to the jth in absolute value eigenvalue
Aj belongs to int(T(Ky, ..., Kj))\T(K1, ..., Kj_1). Let us prove this statement by induction on j. First
take j = 2.

Since p(A%A) = AqAy, the eigenvector ¢, corresponding to p(A%A) can be represented in the form
of the exterior product ¢ = x1 A x; of the first eigenvector x; € int(K;) and the second eigenvector
x2. The inclusion ¢, € int(Ky) implies x, € T(K7, K2) € int(T(Ky, K3)).
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Let us show, that the vector x, does not belong to K1 U (—Kj). It is enough for this to show that x;
belongs to the subspace

X, ={xeR": x{(x) =0},

where x7 is the first eigenfunctional of the operator A corresponding to the maximal eigenvalue 11 =
p(A). Indeed, (x},x2) = 5-((xf, A2%2) = - ((xf, Ax2)) = 5L (A", %)) = L ((hixf, x2)) =
%((XT, X2)). Since % # 1, the equality above is valid if and only if (x], x2) = 0. It follows from the
generalized Perron theorem that x; € int(K;). This inclusion implies that (K; U (—K;)) N X, = {0}.
So we have that x; € int(T(Ky, K2))\ (K3 U (—Ky)).

Let the statement of the theorem hold for j — 1. Prove it for j.

Since p(NA) = Aq .. . Aj, the eigenvector ¢; corresponding to p(NA) can be represented in the
form of the exterior product ¢; = x; A --- A x; of the first j — 1 eigenvectors x; € int(Ky), X, €

T(Ki,K2), . .., Xj_1 € T(K1,..., K;j—1) and the jth eigenvector ;. The inclusion ¢; € int(K;) implies
X € T(Ky, ..., K) € int(T(Ky, ..., K))).

Let us show that the vector x; does not belong to T(K1, ..., Kj_1). Assume the contrary: let x; €
T(Ky, ..., Kj—1).Since all the eigenvalues of the operator A are distinct, it is not difficult to see, that x;
belongs to the subspace

Xj’ ={xeR": (¥ +---+G1x_ ) =0 foranycy, -+, ¢-1 € R}
Herexy, ..., x]?“_1 are the firstj — 1 eigenfunctionals of the operator A corresponding to the eigenvalues
A1, ..., Aj—1,1espectively. Thatis the vectorx; is orthogonal'E)the subspaceLin(xj, . .. ,xjfk_l) spanned
by the vectors x7, . . ., x}’;l. Since x; € T(Ky, ..., Kj—1) € T(Kj_1), we can find vectors y1, ..., yj_2

suchthaty; A- - -Ayj—2 AXj € (Ki—1U(—Kj—1))\{0}. Let us examine the exterior productxj A- - -/\le1 .
It is not difficult to see, that xj A - -+ A x]t] belongs to int(Kj’i]) U (—int(Kj’ﬂl)). Examine the scalar
product

Y1 A AYiea /\xj,xf/\---/\xf_l)

=1 A AV AXDEGL LX)
= > x(i,....i-1) v, %) .. (J’j—z,Xij,z)(Xj,XZl]) =0.
(i15s1j—1)

We came to the contradiction.
Finally, let us prove the inclusion

P
> cixi € int(T(Ky, ..., Kp)\T(Kq, ..., Kg—1)
i=q

foreach1 <qg<p<nc, #0.

First let us prove, that any linear combination Zf’:qc,-xi belongs to
int(T(Kq, ..., Kp)). Since the exterior product of the eigenvectors x; € int(Kj), xo € T(K1, K2),
<owXp—1 € T(Kq, ..., Ky—1),x, belongs to int(Kj), we have x, € T(Kj, ..., Kj). Examine the exterior
productxy A---AXp_1 A (Zfzqcixi) which is obviously equal to ¢, (x; A - - - AX,_1 AXp). Since ¢, # 0,
we have ¢, (X1 A+ - - AXp—1 AXp) € (int(Kj) Uint(—K;)). So the inclusion Zfzqcix,- eTKy, ..., Kp) <
int(T(Kq, ..., Kp)) is correct.

In the case when ¢, = 0 and X
o0

_ 1
Zf:q]qxi + fxpl € int(T(Ky, ..., Kp)).
n

n=1

p—1 2

ieqCi 7 0, we construct a converging sequence
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The fact, that Zf:qc,-xi doesnotbelongtoT(Ky, ..., K;—1) follows from the inclusion Zf:qcixi € X{Z.
As it is shown above, X‘; has zero intersection with the set T(Ky—1). O

Now we can state some necessary conditions for strict total positivity of a totally positive structure
Ky, ..., Kn).

Corollary 23. Let a totally positive structure {Ky, . . ., K,} on the space R" be strictly totally positive. Then
the intersection int(Kj) N NVIR" is nonzero for every j (j = 2, ..., n).

Proof. If the structure {Ky, ..., K} is strictly totally positive, then there exists at least one operator A
which is GSTP with respect to the structure {Kj, ..., Kj}. Theorem 22 implies that the eigenvector g;

corresponding to the maximal eigenvalue of AJA, belongs to int(K;). On the other hand, ¢; is a simple
Jj-vector, since it can be represented in the form of the exterior product x; A - - - A Xj, where xq, . . ., X;
are the eigenvectors of the operator A. 0

Note, that we can find a proper cone K; which belongs to NR™ AR" foreveryj =2,...,n—2.
Indeed, the set AR" is closed in the space A/R", so its complement A/R™\ A/ R" is open. Since AJR™\ A
R"is nonempty, we can find an element ¢ € (/\jR”\ A R”). Since it is open, there exists avaluer > 0

) _ r , _
such that B(p, r) C (AMNR™ A R") and the closed ball B (go, 5) C B(p,r) C (NR™ A R"). Thus

—
we can construct a proper cone K; (B (go, 2)) as it is shown in Example 3 (see Section 3).

Corollary 24. Let the totally positive structure {K1, . .., Ky} on R" be strictly totally positive. Then the
setint(T(Ky, ..., Kj)) is nonempty for everyj (j = 2, ..., n).

Proof. The proof obviously follows from Theorem 22. O

Remark 2. Itis not difficult to see, that the spectrum of a GTP operator is not necessarily real, and not
every GTP operator can be approximated by GSTP operators.

Analogically, it is not difficult to generalize Theorem 22 to the case of k-GSTP operators (k =
2, ..., n) and GSSR operators.
Now we can state the following property of GSSR operators.

Theorem 25. Let a linear operator A : R" — R" be GSSR with respect to a totally positive structure
{Ki, ..., Ky}. Then the interior of the set T(K;) is nonempty and the following inclusions hold for every
j=1,..., n:

A(T(K))) < int(T(Kj)).

Proof. It follows from the proof of Theorem 22 that a GSSR operator A has n nonzero real simple eigen-
values A1, ..., A, with the corresponding n linearly independent eigenvectors x1, . . ., X,. Moreover,
we have the inclusion x; € int(T(K;)) for the jth eigenvector x;. Thus the interior of the set T(Kj)
contains at least one element foreveryj =1, ..., n.

Let x; be an arbitrary vector from T(K;). Let us prove that Ax; € int(T(K;)). Since T(K;) € T(Kj),
we can find the elements x;, ..., x; € R" such thatx; Ax; A --- AX; € (Kj U (—K;j))\{0}. Examine
the elements Ax,, ..., Ax;. Since the operator NA is positive with respect to the cone K;j, we have
the inclusion Ax; A Axp A -+ - A Axj = (NAY (1 AXg Ao A xj) € (int(K;) U int(—=K;))\{0}. So
Ax; € T(Kj) = int(T(Kj)). O
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12. Classical theory of total positivity

Let us examine the space R" with the standard basis ey, .. ., e, and its jth (j = 2, ..., n) exterior
powers A/R™ with the canonical basis which consists of the exterior products of the form {e;, A- - - /\eij}
where 1 < iy < --- < ij < n. Asitis mentioned above, we denote the cone spanned by basic vectors

by R’}r and the cone spanned by the jth exterior basic vectors by N ]Ri. S~ (x) denotes the number of

sign changes in the sequence (x', . .., x") of the coordinates with zero terms discarded. ST (x) denotes
the maximum number of sign changes in the sequence (x', . .., x") where zero terms are arbitrarily
assigned values £1.

The following lemma describes the link between the sign changes of vectors in R" and their exterior
products (see [1, p. 198, Lemma 5.1]).

Lemma 26. Letxy, ..., x; € R" Inorder for

i
st (Zc,-x,-) <j—1
i=1

foreach Clyeees G € Rand Zf:qciz # 0it is necessary and sufficient thatx; A - - - AXj € (int(/\jR'j_) U
int(— A RY)).

Examine the set
M@j) = {x e R"; S”(x) <j—1}.

The set M(j) is closed, solid and uniform (see, for example [11,20]). The following equality for its
interior is valid:

int(M()) = {x € R"; s*(0) <j—1}.

Proposition 27. The following equalities hold for everyj = 2, ..., n:
M(@) = T(NRY) = TR, ..., NRY);
int(M;) = T(NRY) = T(R", ..., NR).

Proof. The proof obviously follows from Lemma 26. [

Let us recall the following definitions. A matrix A of a linear operator A : R" — R"is called totally
positive (TP) if it is nonnegative and its jth compound matrices AY are also nonnegative for every j
G=2,...,n).

A matrix A of a linear operator A : R"™ — R" is called strictly totally positive (STP) if it is positive
and its jth compound matrices A are also positive for everyj (j = 2, ..., n).

A matrix A of a linear operator A : R" — R"is called sign-regular (SR), if there exist numbers
€1, ..., €peachequal to £1 such that the matrices ejA(’) are nonnegative foreveryj(j = 1, 2, ..., n).

A matrix A of a linear operator A : R" — R" is called strictly sign-regular (SSR) if there exist
such numbers €1, . .., €, each equal to £1 such that the matrices GjA(l) are positive for every j (j =
1, 2,...,n).

Now Theorem 25 turns into the following statement (see, for example [15]).

Theorem 28. Let the matrix A of a linear operator A : R" — R™ be SSR. Then the following inequality
holds for each nonzero vector x € R™:

st(Ax) < S™(x).
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Theorem 22 turns into the classical Gantmacher-Krein theorem (Theorem 2).

13. Totally J-sign-symmetric matrices

Since it is easy to see if a matrix is diagonally similar to a nonnegative one, let us reformulate the
given above definitions and theorems in terms of compound matrices. In this case the conditions of
generalized total positivity become easily verified.

Let us give the following definitions.

A matrix A of a linear operator A : R" — R" is called totally J-sign-symmetric (TJS), if it is ]-sign-
symmetric, and its jth compound matrices A are also J-sign-symmetric for everyj (j =2, ..., n).

A matrix A of a linear operator A : R" — R" is called strictly totally J-sign-symmetric (STJS), if it
is strictly J-sign-symmetric, and its jth compound matrices AD are also strictly J-sign-symmetric for
everyj(j=2,...,n).

It is easy to see, that the class of TP matrices belongs to the class of TJS matrices, and the class of
STP matrices belongs to the class of STJS matrices.

Note that it is also not difficult to reformulate the definitions of generalized sign-regularity and
generalized strict sign-regularity in terms of compound matrices and to introduce the classes of k-
totally J-sign-symmetric and strictly k-totally J-sign-symmetric matrices for every k = 2, ..., n.

Now we examine basic properties of TJS and STJS matrices.

Proposition 29. Let the matrix A of a linear operator A : R" — R™ be TJS (STJS). Then AT (the transpose
of A), as well as every principal submatrix of A and AT is TJS (respectively STJS).

Proof. As M denotes an arbitrary subset of [n], A(M) is the principal submatrix which consists of the
rows and columns with the numbers from M. Let us consider A(M) as the matrix of the restriction
Alrm) of A to the subspace L(M) spanned by the basic vectors with the numbers from M. Since A is
JS, the operator A leaves invariant some basic cone K C R". It is not difficult to see, that A () leaves
invariant the set K(M) = pryK i.e the projection of K on the subspace L(M). According to Property
1 of basic cones (see Section 3), the set K(M) is a basic cone in the space L(M). So we conclude that
the submatrix A(M) is JS.

Applying the same reasoning to the Ith compound matrix (A(M)) (herel = 2, ..., Card(M)), we
obtain that (A(M))" is also JS. The case of STJS matrices is considered analogically. The fact, that AT,
as well as every principal submatrix of AT is TJS (STJS) follows from Proposition 14. O

Remark 3. If A is a TP (STP) matrix then every submatrix of A and AT is obviously TP (respectively,
STP). However, if A is a TJS (STJS) matrix then the analogous of this statement is true only for principal
submatrices. It is easy to see, that an arbitrary submatrix of a TJS matrix A may not be JS.

Since the projection of an arbitrary proper cone on a basic subspace may not be a proper cone in
this subspace, Proposition 29 may not be correct for an arbitrary GTP (GSTP) operator.
Example. Let a linear operator A : R*> — R> be a rotation operator with the angle 6 around the axis
defined by ej3. It has the following matrix representation:

cos(f) —sin(@) 0
A = |sin(@) cos() 0
0 0 1

It is not difficult to see, that the rotation operator A leaves invariant the ice-cream cone K; defined
in the following way:

K = lx= (28 e B3 Jod)? + (2)2) < x3} .
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Examine the second exterior power A2A of the operator A. It is represented by the second compound
matrix A in the basis e1 A ey ep Aes, ey A es.

1 0 0
A@ = [0 cos(®) —sin(®)
0 sin(f) cos(0)

It is obvious, that A2A is a rotation in A%?R3 with the same angle @ around the axis defined by
e1 A ey. So it leaves invariant the ice-cream cone K> defined in the following way:

K ={p = (¢', 9% ¢%) € AR /(922 + (93)2) < wl} :

The matrix of the third exterior power A>A consists of only one element det A = 1. So A3A leaves
invariant the cone K3 which is the positive real axis.

Thus the operator A is GTP with respect to the structure {K;, Ko, K3}.

But the principal submatrix A(1, 2) which is the matrix of the restriction of A on a basic sub-
space L(1, 2) spanned by the vectors eq, e; is not GTP. It is not K-nonnegative. Indeed, examine the
eigenvalues of

A(L2) = cos(f) — sin(6@)
" \sin@) cos(@) |

In the case of 0 < 6 < m they are Ay = cos(f) + isin(f), A, = cos(0) — isin(f) and both are
complex.

The reasoning of the proof of Proposition 29 is not valid in this case, since the projection of the
ice-cream cone Ky on L(1, 2) coincides with the whole L(1, 2).

Proposition 30. Let the matrix A of a linear operator A : R" — R" be TJS (STJS). Let P be an arbitrary
permutation of [n] and P be the corresponding permutation matrix. Then the matrix PAP™" obtained from
the initial matrix by re-numerating of both the rows and columns in order P is TJS (respectively, STJS). In
particular, the matrix obtained from A by reversing the order of both its rows and columns is TJS (STJS) of
the same structure.

Proof. The proof is obvious since any similarity transformation with the permutation matrix is just
re-numbering of the basic vectors. O

Theorem 31. Let the matrix A of a linear operator A : R" — R™ be STJS. Then all the eigenvalues of the
operator A are positive and simple:

pPA) =i >ty > > Ay >0.
Corollary 32. All principal minors of a STJS matrix A are positive.
Proof. The positivity of every real eigenvalue of A as well as of every real eigenvalue of each principal
submatrix of A implies the positivity of all principal minors of A (see [4, p. 385, Theorem 3.3]). [
14. Conclusions
Many important properties of GTP and GSTP operators like the criteria of generalized total positivity
and generalized strict total positivity, the factorization of GTP and GSTP operators, determinantal

inequalities, the interlacing properties of the eigenvalues as well as many important examples of GTP
operators are not considered in this paper. The application of the obtained theory to multi-dimensional
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boundary-value problems is also not mentioned. However, the author hopes that it would be possible
to state GSTP properties of the corresponding Green’s functions for certain classes of such problems.
This would imply the positivity of the spectra of the corresponding differential operators.
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