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This paper is devoted to the generalization of the theory of total

positivity.We say that a linear operator A : R
n → R

n is generalized

totally positive (GTP), if its jth exterior power∧jA preserves a proper

cone Kj ⊂ ∧j
R

n for every j = 1, . . . , n. We also define generalized

strictly totally positive (GSTP) operators.Weprove that the spectrum

of a GSTP operator is positive and simple, moreover, its eigenvectors

are localized in special sets. The existence of invariant cones of finite

ranks is shownunder someadditional conditions. Somenewinsights

and alternative proofs of the well-known results of Gantmacher and

Kreindescribing theproperties of TP andSTPmatrices are presented.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The theory of totally positivematrices and kernels startedwith Kellog [9,10] andmainly developed

in monographs [5] by Gantmacher and Krein and [8] by Karlin, nowadays becomes an interesting and

important part of the modern analysis. A matrix A is called positive if all its elements aij are positive.

A n × n matrix A is called strictly totally positive (STP) if its jth compound matrix A(j) is positive for

every j = 1, . . . , n. (Recall that A(j) is the matrix that consists of all the minors A

⎛⎝ i1 . . . ij

k1 . . . kj

⎞⎠, where

1 � i1 < · · · < ij � n, 1 � k1 < · · · < kj � n, of the initial matrix A. The minors are listed in

the lexicographic order. The matrix A(j) is
(
n

j

)
×

(
n

j

)
dimensional, where

(
n

j

)
= n!

j!(n − j)! . The first

compound matrix A(1) is equal to A).
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We introduce the following definition which gives a natural generalization of the class of STP

matrices. Given a family of proper cones {K1, . . . , Kn}, Kj ⊂ R
(nj), we call a n× nmatrix A generalized

strictly totally positive (GSTP)with respect to {K1, . . . , Kn} if its jth compound matrix A(j) maps Kj\{0}
into int(Kj) for every j = 1, . . . , n.

The following result of Schoenberg is known for STP matrices (see, for example [15]). Let us recall

the following twoways of counting for the number of sign changes of a vector x = (x1, . . . , xn) ∈ R
n.

S−(x) denotes the number of sign changes in the sequence (x1, . . . , xn) of the coordinates with zero

terms discarded. S+(x) denotes the maximum number of sign changes in the sequence (x1, . . . , xn)
where zero terms are arbitrarily assigned values ±1 (see, for example [15, p. 76]).

Theorem1 (Schoenberg). Let a n×nmatrixA be STP. Then the following inequality holds for each nonzero

vector x ∈ R
n:

S+(Ax) � S−(x).

We construct special sets T(Kj) ⊆ R
n with respect to the cones Kj ⊂ R

(nj). Thus we obtain the

following generalization of the Schoenberg theorem.

Theorem25. Let a n×nmatrixA be GSTPwith respect to {K1, . . . , Kn}. Then the interior of the set T(Kj) is
nonempty and the inclusion x ∈ T(Kj)\{0} implies the inclusion Ax ∈ int(T(Kj)) for every j = 1, . . . , n.

We also generalize the classical Gantmacher–Krein theorem (see, for example [1,15,16]) to the case

of GSTP matrices.

Theorem 2 (Gantmacher, Krein). Let the matrix A of a linear operator A : R
n → R

n be STP. Then all the

eigenvalues of the operator A are positive and simple:

ρ(A) = λ1 > λ2 > · · · > λn > 0.

The first eigenvector corresponding to the maximal eigenvalue λ1 is strictly positive and the jth eigenvector

xj corresponding to the jth in absolute value eigenvalue λj has exactly j − 1 changes of sign. Moreover, the

following inequalities hold:

q − 1 � S−
⎛⎝ p∑

i=q

cixi

⎞⎠ � S+
⎛⎝ p∑

i=q

cixi

⎞⎠ � p − 1

for each 1 � q � p � n and
∑p

i=qc
2
i �= 0.

We construct special sets T(K1, . . . , Kj) ⊆ R
n, j = 1, . . . , n with respect to the given family of

cones {K1, . . . , Kn}, Kj ⊂ R
(nj).

Theorem 22. Let a linear operator A : R
n → R

n be GSTP with respect to a totally positive structure

{K1, . . . , Kn}. Then all the eigenvalues of the operator A are positive and simple:

ρ(A) = λ1 > λ2 > · · · > λn > 0.

The first eigenvector x1 corresponding to the maximal eigenvalue λ1 belongs to int(K1) and the jth

eigenvector xj corresponding to the jth in absolute value eigenvalue λj belongs to int(T(K1, . . . , Kj))\
T(K1, . . . , Kj−1). Moreover, the following inclusions hold:

p∑
i=q

cixi ∈ int(T(K1, . . . , Kp))\T(K1, . . . , Kq−1)
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for each 1 � q � p � n and cp �= 0;

p∑
i=q

cixi ∈ T(K1, . . . , Kp)\T(K1, . . . , Kq−1)

for each 1 � q � p � n.

The organization of this paper is as follows. In Section 2, we introduce basic definitions concerning

exterior powers of finite-dimensional spaces. In Section 3, we recall basic definitions of the theory of

cones and provide some examples. Here we also give the definition of a cone of a finite rank. Section

4 deals with a certain duality between cones of rank j in R
n and proper cones in its jth exterior power

∧j
R

n. In particular, we construct a special set T(Kj) ⊂ R
n for a given proper cone Kj ⊂ ∧j

R
n and

study its topological properties. We conclude that under certain additional assumptions the set T(Kj)
is a cone of rank j. In Section 5, we construct a set T(K1, . . . , Kj) with respect to a family of proper

conesK1 ⊂ R
n,K2 ⊂ ∧2

R
n, . . .,Kj ⊂ ∧j

R
n.We give examples of such sets and study their topological

properties. In Section 6, we state the main results of the theory of cone-preserving maps. In Section 7,

we recall basic facts concerning exterior powers of linear operators in R
n. In Section 8, we introduce

the concepts of generalized total positivity (with respect to a given family of proper cones), generalized

strict total positivity and generalized sign-regularity. Such definitions provides natural generalizations

of the classes of totally positive, strictly totally positive and sign-regular matrices, respectively. Basic

properties of GTP, GSTP and GSR operators are listed in Section 9. The results of this section shows

that the class of GSR operators covers the entire class of operators with real spectrum. In Section 10,

we state and prove the generalization of the result of Schoenberg concerning variation-diminishing

properties of SR matrices. The results of this section shows that a GSR (with respect to a family of

proper cones) operator preserves conic sets constructed as it was shown in Sections 4 and 5. Our main

result concerning spectral properties of GSTP operators is proved in Section 11. In this section we also

provide some conditions for a family of coneswhich are necessary for the existence of at least oneGSTP

operator. Then we state and prove a stronger statement describing invariant sets of a GSSR operator.

In Section 12, we deduce the classical results on TP and STP operators (which are special cases of GTP

and GSTP operators) from the preceding reasoning. In Section 13, we study one more special case

of GTP matrices, in particular, matrices every compound of which is diagonally similar to a positive

matrix. We list some special properties of such matrices and provide examples which shows that this

statements are not valid for arbitrary GTP operators. Some conclusions are given in Section 14.

2. Exterior powers of the space R
n

Let R
n denote n-dimensional Euclidean space, and (Rn)′ denote an adjoint space of all linear

functionals on R
n. Since (Rn)′ is also n-dimensional, we consider linear functionals from (Rn)′ as

vectors from R
n.

Let us recall some basic definitions and statements about the tensor and exterior powers of the

space R
n (for more complete information see [6,14,23]).

Let j = 2, . . . , n. The space of all multilinear functionals on ×j(Rn)′ is called the jth tensor power

of the space R
n and denoted by ⊗j

R
n. Its elements are called tensors.

Let x1, . . . , xj be arbitrary vectors from R
n. Then the multilinear functional x1 ⊗ · · · ⊗ xj :

(×j(Rn)′) → R which acts according to the rule

(x1 ⊗ · · · ⊗ xj)(f1, . . . , fj) = 〈x1, f1〉 . . . 〈xj, fj〉
is called a tensor product of the vectors x1, . . . , xj . (Here the linear functionals f1, . . . , fj ∈ (Rn)′ are
considered as vectors from R

n).

The jth tensor power ⊗j
R

n of the space R
n is spanned by elementary tensor products of the form

x1 ⊗· · ·⊗xj where x1, . . . , xj ∈ R
n. Examine an arbitrary basis e1, . . . , en inR

n. Then all the possible
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tensor products of the form ei1 ⊗· · ·⊗ eij (1 � i1, . . . , ij � n) of the initial basic vectors form a basis

in ⊗j
R

n. It follows that the space ⊗j
R

n is finite-dimensional with dim(⊗j
R

n) = nj .

Let (i1, . . . , ij) be a permutation of the set [j] = {1, . . . , j}. Define

χ(i1, . . . , ij) =
⎧⎨⎩ 1, if the permutation (i1, . . . , ij) is even;

−1, if the permutation is odd.

The jth exterior power ∧j
R

n of the space R
n is a subspace of the space ⊗j

R
n consisting of all

antisymmetric tensors (i.e. all the tensors ϕ for which ϕ(f1, . . . , fj) = χ(i1, . . . , ij)ϕ(fi1 , . . . , fij)

where f1, . . . , fj are arbitrary functionals from (Rn)′).
Let x1, . . . , xj be arbitrary vectors from R

n. Then the multilinear functional x1 ∧ · · · ∧ xj :
×j(Rn)′ → R which acts according to the rule

(x1 ∧ · · · ∧ xj)(f1, . . . , fj) = ∑
(i1,...,ij)

χ(i1, . . . , ij)(xi1 ⊗ · · · ⊗ xij)(f1, . . . , fj)

= ∑
(i1,...,ij)

χ(i1, . . . , ij) 〈xi1 , f1〉 . . . 〈xij , fj〉

is called an exterior product of the vectors x1, . . . , xj . Here the sum is taken with respect to all the

permutations (i1, . . . , ij) of [j] and linear functionals f1, . . . , fj ∈ (Rn)′ are considered as vectors

from R
n.

It is easy to see, that the exterior product x1 ∧ · · · ∧ xj is antisymmetric, i.e. the following equality

holds for every permutation (i1, . . . , ij) of [j]:
xi1 ∧ · · · ∧ xij = χ(i1, . . . , ij)(x1 ∧ · · · ∧ xj).

The space ∧j
R

n is spanned by all the exterior products x1 ∧ · · · ∧ xj where x1, . . . , xj ∈ R
n. If the

vectors e1, . . . , en form a basis in the initial space R
n then the set of all exterior products of the type

{ei1 ∧· · ·∧eij}where 1 � i1 < · · · < ij � n forms a canonical basis in the space∧j
R

n (see [5,15,17]).

Thus the space ∧j
R

n is finite dimensional with dim(∧j
R

n) =
(
n

j

)
. (Here

(
n

j

)
= n!

j!(n−j)! .)
A scalar product on ∧j

R
n is defined by the formula:

〈x1 ∧ · · · ∧ xj, y1 ∧ · · · ∧ yj〉 = (x1 ∧ · · · ∧ xj)(y1, . . . , yj)

= ∑
(i1,...,ij)

χ(i1, . . . , ij) 〈xi1 , y1〉 . . . 〈xij , yj〉.

It follows that the adjoint space (∧j
R

n)′ can be considered as ∧j(Rn)′ (see [23, p. 88]).

Let the element ϕ ∈ ∧j
R

n be represented in the form of the exterior product x1 ∧ · · · ∧ xj of some

vectors x1, . . . , xj ∈ R
n. Then ϕ is called a simple j-vector. The set of all simple j-vectors is called the

Grassmann cone and denoted�j
R

n. The equality�j
R

n = ∧j
R

n holds only for j = 1, n−1 and n. (Note

that ∧1
R

n = R
n and ∧n

R
n = R.) If j = 2, . . . , n − 2, then we can find elements of ∧j

R
n which

cannot be represented as simple j-vectors (see [17, p. 83]). It is not difficult to see that the set �j
R

n is

uniform (i.e. the equality α �j
R

n = �j
R

n is true for every nonzero α ∈ R) and closed in the space ∧j
R

n.

Let us define a map Aj acting from the set of all j-dimensional subspaces of R
n to the set of 1-

dimensional subspaces (i.e. lines) of ∧j
R

n according to the following rule:

Aj(L) = {t(x1 ∧ · · · ∧ xj)}t∈R,

where L is a j-dimensional subspace of R
n, x1, . . . , xj are j arbitrary linearly independent vectors

from L.
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It is not difficult to see that the map Aj is well-defined, i.e. if x1, . . . , xj and y1, . . . , yj are two sets

of linearly independent vectors, which belongs to the same j-dimensional subspace L, then their exterior

products x1 ∧ · · · ∧ xj and y1 ∧ · · · ∧ yj are collinear (see, e.g. [17]).

The mapAj is a bijective map between all j-dimensional subspaces of Rn and all lines of �j
R

n (see

[17, p. 86]).

Let us consider the (n − 1)th exterior power of the n-dimensional space R
n. Note that

(
n

n−1

)
= n,

thus dim(∧n−1
R

n) = n. All the exterior products of the type {ei1 ∧· · ·∧ ein−1
}where 1 � i1 < · · · <

in−1 � n of the initial basic vectors e1, . . . , en form a basis in ∧n−1
R

n. Let us define a bijective linear

operator Jn : ∧n−1
R

n → R
n in the following way:

Jn(ei1 ∧ · · · ∧ ein−1
) = (−1)k+1ek,

where k = [n]\{i1, . . . , in−1}.
Let xi = (x1i , . . . , x

n
i )where i = 1, . . . , n− 1 be n− 1 arbitrary linearly independent vectors from

R
n. Write the exterior product x1 ∧ · · · ∧ xn−1 in the form

x1 ∧ · · · ∧ xn−1 = ∑
(i1,...,in−1)

∣∣∣∣∣∣∣∣∣
x
i1
1 . . . x

in−1

1

. . . . . . . . .

x
i1
n−1 . . . x

in−1

n−1

∣∣∣∣∣∣∣∣∣ (ei1 ∧ · · · ∧ ein−1
).

It is not difficult to see, that the vector

J (x1 ∧ · · · ∧ xn−1) =
n∑

k=1

∣∣∣∣∣∣∣∣∣
x
i1
1 . . . x

in−1

1

. . . . . . . . .

x
i1
n−1 . . . x

in−1

n−1

∣∣∣∣∣∣∣∣∣ (−1)k+1ek =

∣∣∣∣∣∣∣∣∣∣∣∣

e1 . . . en

x11 . . . xn1

. . . . . . . . .

x1n−1 . . . xnn−1

∣∣∣∣∣∣∣∣∣∣∣∣
is orthogonal to the hyperplane spanned by the vectors x1, . . . , xn−1.

3. Conic sets: basic definitions and statements

Let us recall some basic definitions of the theory of cones (see [3,11,21,22]).

A closed subset K ⊂ R
n is called a proper cone, if it is a convex cone (i.e. for any x, y ∈ K, α � 0

we have x + y, αx ∈ K), pointed (K ∩ (−K) = {0}) and solid (int(K) �= ∅).
The set K∗ ⊂ (Rn)′ defined in the following way:

K∗ = {x∗ ∈ (Rn)′ : ∀y ∈ K 〈y, x∗〉 � 0}
is called the adjoint cone to the cone K . The set K is a proper cone in R

n if and only if K∗ is a proper

cone in (Rn)′. The interior of K∗ is defined by the equality

int(K∗) = {x∗ ∈ (Rn)′ : ∀y ∈ K 〈y, x∗〉 > 0}.
Example 1. Let x1, . . . , xn ∈ R

n be linearly independent vectors. The set

K =
⎧⎨⎩

n∑
i=1

cixi : c1, . . . , cn � 0

⎫⎬⎭
of all linear combinations of the vectors x1, . . . , xn with nonnegative coefficients is a proper cone in

R
n. Such a cone is called spanned by the vectors x1, . . . , xn. The cone spanned by the basic vectors

e1, . . . , en is denoted by R
n+.
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Example 2. The set

K = {x = (x1, . . . , xn) ∈ R
n;

√
(x1)2 + · · · + (xk−1)2 + (xk+1)2 + · · · + (xn)2 � xk

is a proper cone in R
n. Such a cone is called an ice-cream cone.

Example 3. Let F ⊂ R
n be a closed, convex and bounded set. The set K(F) of all elements of the form

αx where α � 0, x ∈ F is a pointed convex cone in R
n. If int(F) �= ∅, then the cone K(F) is obviously

proper.

Let us examine the cones spanned by the vectors ε1e1, . . . , εnen where each εi (i = 1, . . . , n) is

equal to +1 or −1. This cone is called a basic cone. The space R
n with a fixed basis e1, . . . , en consists

of 2n basic cones, one of which is R
n+.

We list some properties of basic cones which will be used later.

1. The projection of any basic cone on any basic subspace (i.e on a subspace spanned by any

subsystem of the initial basic vectors) is a basic cone in this subspace.

2. If K is a basic cone in R
n, then the adjoint cone K∗ is also a basic cone in (Rn)′.

As it was mentioned above, every basis e1, . . . , en in R
n defines a basis in the space ∧j

R
n =

(
n

j

)
which consists of all exterior products of the form {ei1 ∧ · · · ∧ eij}, where 1 � i1 < · · · < ij � n.

Denote the cone spanned by this exterior basic vectors by ∧j
R

n+. Let us call a cone in ∧j
R

n spanned

by the simple j-vectors of the form ±(ei1 ∧ · · · ∧ eij) where 1 � i1 < · · · < ij � n an exterior basic

cone defined by the basis e1, . . . , en. It is easy to see, that not every basic cone in ∧j
R

n is an exterior

basic cone.

We list some obvious properties of exterior basic cones.

1. Let L be any basic subspace ofRn. Then the projection of any exterior basic cone on the subspace

∧jL of the space ∧j
R

n is an exterior basic cone in this subspace.

2. If Kj is an exterior basic cone in ∧j
R

n, then the adjoint cone K∗
j is an exterior basic cone in

(∧j
R

n)′ = ∧j(Rn)′.

Let us recall the following characterization of a proper cone K (see, for example [7]).

The angle θmax(K) defined by the equality

θmax(K) = sup
x,y∈K∩Sn

arccos〈x, y〉,

where Sn is the unit sphere in R
n, is called themaximal angle of the cone K .

Any basic cone in R
n can be converted using some linear transformation to the cone R

n+. Thus we

can assume without loss of generality that any basic cone K satisfies the inequality θmax(K) � π

2
.

Besides coneswe shall be interested in some other sets inR
n. Recall the definitions of the following

conic sets (see [11]).

A closed subset T ⊂ R
n is called a cone of rank k (0 � k � n) if for every x ∈ T ,α ∈ R the element

αx ∈ T and there is at least one k-dimensional subspace and no higher dimensional subspaces in T .

For the examples of cones of rank k see also [20,21]. Note that a cone of rank k is usually not convex.

Example 1. Let L1, . . . , Lm be subspaces of R
n with maxi dim(Li) = k. Then

⋃m
i=1Li is a cone of rank

k in R
n.

Example 2. Let K ⊂ R
n be a proper cone. Then K ∪ (−K) is a cone of rank 1 in R

n, and R
n\(int(K) ∪

int(−K)) is a cone of rank n − 1 in R
n.
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4. Set T(Kj) and its properties

Given a proper cone Kj ⊂ ∧j
R

n = R
(nj), j = 2, . . . , n. Let us define the set T(Kj) ⊂ R

n in the

following way:

T(Kj) = {x1 ∈ Rn : ∃ x2, . . . , xj ∈ Rn, for which x1 ∧ x2 ∧ · · · ∧ xj ∈ (int(Kj) ∪ int(−Kj))}.
Let us define the set T̂(Kj) in the following way:

T̂(Kj) = {x1 ∈ R
n : ∃ x2, . . . , xj ∈ R

n, for which x1 ∧ x2 ∧ · · · ∧ xj ∈ (Kj ∪ (−Kj))\{0}}∪ {0}.
It is not difficult to see, that the sets T(Kj) and T̂(Kj) may not coincide for an arbitrary proper cone

Kj ⊂ ∧j
R

n.

The following lemma describes the structure of the sets T(Kj) and T̂(Kj).

Lemma 3. Let Kj ⊂ ∧j
R

n be a proper cone. Then the set T̂(Kj), if it is not {0}, coincides with the set of all

j-dimensional subspaces L ⊂ R
n for which corresponding lines Aj(L) belong to Kj ∪ (−Kj). The set T(Kj),

if it is not empty, coincides with the closure of the set of all j-dimensional subspaces L ⊂ R
n for which

corresponding lines Aj(L) belong to int(Kj) ∪ int(−Kj).

Proof. ⇐ The inclusion 0 ∈ T̂(Kj) follows from the definition of the set T̂(Kj). Let an arbitrary nonzero

vector x1 belong to a j-dimensional subspace L for which the corresponding line Aj(L) belongs to

Kj ∪ (−Kj). Let us show that x1 ∈ T̂(Kj). Indeed, let us find vectors x2, . . . , xj such that the system

{x1, x2, . . . , xj} forms a basis of the j-dimensional subspace L. Examine the exterior product x1 ∧ x2 ∧
· · · ∧ xj . Since x1, x2, . . . , xj are linearly independent, the element x1 ∧ x2 ∧ · · · ∧ xj is nonzero and

belongs to the lineAj(L) ⊂ (Kj ∪ (−Kj)). Since x1 ∧x2 ∧· · ·∧xj ∈ (Kj ∪ (−Kj))\{0} for some nonzero

vectors x2, . . . , xj ∈ R
n, we have x1 ∈ T̂(Kj).

⇒ The inclusion 0 ∈ L is obvious for any subspace L ⊂ R
n. Let x1 ∈ T̂(Kj) be nonzero. Then

there exist nonzero vectors x2, . . . , xj ∈ R
n for which x1 ∧ x2 ∧ · · · ∧ xj ∈ (Kj ∪ (−Kj))\{0}.

Since x1 ∧ x2 ∧ · · · ∧ xj �= 0, they are linearly independent. Examine the j-dimensional subspace

L = Lin(x1, x2, . . . , xj). Since Kj ∪ (−Kj) is a cone of rank 1 in∧j
R

n, the line {t(x1 ∧ x2 ∧· · ·∧ xj)}t∈R

corresponding to the subspace L belongs to Kj ∪ (−Kj).
The second part of the lemma is proved analogically. �

Now examine the set T̃(Kj) defined in the following way:

T̃(Kj) = {x1 ∈ R
n : ∃ x2, . . . , xj ∈ R

n, for which x1 ∧ x2 ∧ · · · ∧ xj ∈ (int(Kj) ∪ int(−Kj))}.
The above definition implies that T̃(Kj) ⊂ T(Kj) and T̃(Kj) ⊂ T̂(Kj). The following statement

describes the relations between the sets T(Kj), T̂(Kj) and T̃(Kj).

Theorem 4. Let Kj ⊂ ∧j
R

n be a proper cone. Then

T̃(Kj) = int(T(Kj)); (1)

T(Kj) ⊆ T̂(Kj). (2)

Proof. To prove (1), it is enough to show that the set T̃(Kj) is open. Let x1 ∈ T̃(Kj). Then there exist

elements x2, . . . , xj ∈ R
n and a number r > 0 such that B(x1∧x2∧· · ·∧xj, r) ⊂ (int(Kj)∪ int(−Kj)).

Let us find a number r′ > 0 such that B(x1, r
′) ⊂ T̃(Kj). Take r′ = r

2j!‖x2‖...‖xj‖ . Indeed, the following

inequalities hold for every x′
1 ∈ B(x1, r

′):



544 O.Y. Kushel / Linear Algebra and its Applications 436 (2012) 537–560

‖x′
1 ∧ x2 ∧ · · · ∧ xj − x1 ∧ x2 ∧ · · · ∧ xj‖ = ‖(x′

1 − x1) ∧ x2 ∧ · · · ∧ xj‖
� j!‖x′

1 − x1‖‖x2‖ . . . ‖xj‖ < j! r

j!‖x2‖ . . . ‖xj‖‖x2‖ . . . ‖xj‖ = r.

Since x′
1 ∧ x2 ∧ · · · ∧ xj ∈ B(x1 ∧ x2 ∧ · · · ∧ xj, r) ⊂ (int(Kj) ∪ int(−Kj)), we have x′

1 ∈ T̃(Kj).

To prove (2), it is enough to show that the set T̂(Kj) is closed. Let us take a sequence {xn1}∞n=1 ∈ T̂(Kj)

which converges to a nonzero element x1 ∈ R
n. To show that x1 ∈ T̂(Kj), let us take elements

x2, . . . , xj ∈ R
n for which x1 ∧ x2 ∧ · · · ∧ xj ∈ (Kj ∪ (−Kj))\{0}.

Since the elements xn1 belong to T̂(Kj) for every n = 1, 2, . . ., we canfind elements xn2, . . . , x
n
j ∈ R

n

for which xn1 ∧ xn2 ∧ · · · ∧ xnj ∈ (Kj ∪ (−Kj))\{0}. Examine j − 1 sequences {xn2}∞n=1, . . . , {xnj }∞n=1.

Without loss of generalitywe can assume that ‖xni ‖ = 1 for every i = 2, . . . , j and every n = 1, 2, . . .
Indeed, the linearity of the exterior product implies that

xn1 ∧ xn2

‖xn2‖
∧ · · · ∧ xnj

‖xnj ‖
= 1

‖xn2‖ . . . ‖xnj ‖
(xn1 ∧ xn2 ∧ · · · ∧ xnj ) ∈ (Kj ∪ (−Kj))\{0}.

Without loss of generality we can also assume that the linearly independent vectors xn1, x
n
2, . . . , x

n
j

are mutually orthogonal for every n = 1, 2, . . .. Indeed, we can apply the Gram–Schmidt orthogonal-

ization process to the set of j linearly independent vectors xn1, xn2, . . . , x
n
j . The obtained orthogonal

vectors x̃n1, x̃n2, . . . , x̃
n
j define the same j-dimensional subspace in R

n and the same line in ∧j
R

n.

Since all these sequences {xn2}∞n=1, . . . , {xnj }∞n=1 are bounded,we canfind a converging subsequence

in everyone of them. Let us take the necessary element xj equal to the limit of the corresponding

converging subsequence x
nkj
j . It is not difficult to see, that the elements x1, x2, . . . , xj are nonzero

and mutually orthogonal, so their exterior product x1 ∧ x2 ∧ · · · ∧ xj is not equal to zero. Examine

the sequence {xm1 ∧ xm2 ∧ · · · ∧ xmj }∞m=1 of the exterior products of re-numbered elements of the

subsequences x
nkj
j . The estimates

‖xm1 ∧ xm2 ∧ · · · ∧ xmj − x1 ∧ x2 ∧ · · · ∧ xj‖

�
j∑

k=1

‖x1 ∧ · · · ∧ xk−1 ∧ (xk − xmk ) ∧ xmk+1 · · · ∧ xmj ‖

� 1

j!
j∑

k=1

‖x1‖ . . . ‖xk−1‖‖xk − xmk ‖‖xmk+1‖ . . . ‖xmj ‖

= 1

j!

⎛⎝‖x1 − xm1 ‖ +
j∑

k=2

‖x1‖‖xk − xmk ‖
⎞⎠

imply that it converges to the element x1 ∧ x2 ∧ · · · ∧ xj . Since the sequence {xm1 ∧ xm2 ∧ · · · ∧ xmj }∞m=1

belongs to the closed set Kj ∪ (−Kj) and the limit x1 ∧ x2 ∧ · · · ∧ xj is nonzero, we conclude that

x1 ∧ x2 ∧ · · · ∧ xj ∈ (Kj ∪ (−Kj))\{0}. This implies that the element x1 ∈ T̂(Kj). �

Theorem 5. Let Kj ⊂ ∧j
R

n be a proper cone. Let there exist a basis e′1, . . . , e′n of Rn such that Kj ⊆ K ′
j

where K ′
j ⊂ ∧j

R
n is one of the exterior basic cones defined by this basis. Then the set T(Kj), if it is not

empty, is a cone of rank j.

Proof. First let us prove that the set T(Kj) is uniform, i.e. that for every x1 ∈ T(Kj), α ∈ R the element

αx1 ∈ T(Kj). It is enough to prove the above inclusion for every nonzero α and every x1 ∈ T̃(Kj).
Indeed, let x2, . . . , xj be nonzero elements for which x1 ∧ x2 ∧ · · · ∧ xj ∈ (int(Kj) ∪ int(−Kj)).
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Let α be an arbitrary nonzero number from R. The linearity of the exterior product implies that

αx1 ∧ x2 ∧ · · · ∧ 1
α
xj = x1 ∧ x2 ∧ · · · ∧ xj ∈ (int(Kj) ∪ int(−Kj)).

Lemma 3 implies that the set T(Kj), if it is not empty, contains at least one j-dimensional subspace.

Thenwehave toprove, that there is no j+1-dimensional subspace lying in T(Kj). First prove this fact for

n = j+1. Letus showthatT(Kj)doesnot coincidewith thewholeofRj+1. Examine the spaceR
j+1 with

the basis e′1, . . . , e′j+1 where e′1, . . . , e′j+1 are given in the condition of the theorem. Then the exterior

products {e′i1 ∧· · ·∧ e′ij}where 1 � i1 < · · · < ij � j+1 form a basis in∧j
R

j+1. So we conclude that

the cone K ′
j coincides with one of the basic cones of the space ∧j

R
j+1. Without loss of generality we

can assume that themaximal angle θmax(K
′
j ) = π

2
. Since Kj ⊆ K ′

j , we have θmax(Kj) � θmax(K
′
j ) = π

2
.

Let us examine the setJj+1(Kj)where the operatorJj+1 : ∧j
R

j+1 → R
j+1 is defined in the following

way:

Jj+1(ei1 ∧ · · · ∧ eij) = (−1)k+1ek,

where k = [j + 1]\{i1, . . . , ij}. Since the operator Jj+1 is linear and invertible, we conclude that

Jj+1(Kj) is a proper cone inR
j+1. Moreover, Jj+1(Kj) belongs to Jj+1(K

′
j )which coincides with one of

the basic cones ofRj+1. Sowe conclude that θmax(Jj+1(Kj)) � θmax(Jj+1(K
′
j )) = π

2
. Lemma3 and the

properties of the operator Jj+1 imply that the set T(Kj) is enclosed to the set of all hyperplanes which

orthogonal lines belong to Jj+1(Kj) ∪ (−Jj+1(Kj)). Let us show that int(Jj+1(Kj)) ∪ int(−J j+1(Kj))
does not belong to T(Kj). Indeed, let x ∈ (int(Jj+1(Kj)) ∪ int(−J j+1(Kj))) ∩ T(Kj). Since x ∈ T(Kj),
there exists a hyperplane L such that x ∈ L and the line n orthogonal to L belongs to int(Jj+1(Kj)) ∪
int(−J j+1(Kj)). Examine the angle θ between n and x. It is equal to π

2
. However, x ∈ int(Jj+1(Kj)),

so the inequality θ < θmax(Jj+1(Kj)) � π
2
holds. We came to the contradiction. Thus the set T(Kj)

does not coincide with the whole of R
j+1. For n = j + 1 the theorem is proved.

Now let n > j + 1. Let us prove the theorem by contradiction. Let x1, . . . , xj+1 be j + 1 linearly

independent vectors, any linear combination c1x1 + · · · + cj+1xj+1 (c1, . . . , cj+1 ∈ R) of which

belongs to T(Kj). Let (x1i , . . . , x
n
i ) be the coordinates of the vector xi (i = 1, . . . , j + 1) in the basis

e′1, . . . , e′n. If the vectors x1, . . . , xj+1 are linearly independent, then at least one of the minors of the

form

∣∣∣∣∣∣∣∣∣
x
i1
1 . . . x

i1
j+1

. . . . . . . . .

x
ij+1

1 . . . x
ij+1

j+1

∣∣∣∣∣∣∣∣∣where 1 � i1 < · · · < ij+1 � n is not equal to zero. Examine a j+1-dimensional

subspace L of the spaceR
n spanned by the basic vectors e′i1 , . . . , e

′
ij+1

and the corresponding subspace

∧jL of the space R
(nj) spanned by all the possible exterior products of the basic vectors e′i1 , . . . , e

′
ij+1

.

Examine a projection pr∧jLKj of the cone Kj to the subspace∧jL. It is not difficult to see, that pr∧jLKj ⊆
pr∧jLK

′
j which is an exterior basic cone in ∧jL (see Section 3, property 1 of exterior basic cones).

Since the space L is (j + 1)-dimensional, the statement of the theorem holds. So we can find a vector

ϕ ∈ (L\T(pr∧jLKj)) with the coordinates (ϕi1 , . . . , ϕij+1
). Examine the system⎧⎪⎪⎪⎨⎪⎪⎪⎩

c1x
i1
1 + · · · + cj+1x

i1
j+1 = ϕi1;

. . . . . . . . .

c1x
ij+1

1 + · · · + cj+1x
ij+1

j+1 = ϕij+1
.

This system has a unique solution (c01, . . . , c
0
j+1). The vector y1 = c01x1 + · · · + c0j+1xj+1 belongs to

T(Kj). Examine the casewhenwecanfindnonzerovectorsy2, . . . , yj ∈ R
n such thaty1∧y2∧· · ·∧yj ∈

(int(Kj)∪ int(−Kj)). In this case pr∧jL(y1 ∧y2 ∧· · ·∧yj) ∈ pr∧jL(int(Kj)∪ int(−Kj)) and is obviously

nonzero. However, since pr∧jL(y1∧y2∧· · ·∧yj) = prL(y1)∧prL(y2)∧· · ·∧prL(yj) and prL(y1) = ϕ,
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the above inclusion implies thatϕ ∈ T(pr∧jLKj). In the casewhen the vector y1 = c01x1+· · ·+c0j+1xj+1

is the limit of the converging sequence from T̃(Kj) we can construct the sequence of elements from

T(pr∧jLKj) converging to ϕ. So ϕ ∈ T(pr∧jLKj). We came to the contradiction. �

Remark 1. Note, that we do not use the convexity of the cone Kj in the proof of Theorem 5.

5. Construction of other cones of finite ranks

Given n proper cones K1 ⊂ R
n, K2 ⊂ ∧2

R
n, . . . , Kn ⊂ ∧n

R
n.

Let us define successively the following sets T(K1, . . . , Kj).

T(K1) = K1 ∪ (−K1);
T(K1, K2) = {x1 ∈ Rn : ∃ x2 ∈ T(K1), for which x1 ∧ x2 ∈ (int(K2) ∪ int(−K2))};
T(K1, K2, K3) = {x1 ∈ Rn : ∃ x2 ∈ T(K1), x3 ∈ T(K1, K2)

for which x1 ∧ x2 ∧ x3 ∈ (int(K3) ∪ int(−K3))};
. . . . . . . . .

T(K1, . . . , Kj) = {x1 ∈ Rn : ∃ x2 ∈ T(K1), . . . , xj ∈ T(K1, . . . , Kj−1)

for which x1 ∧ x2 ∧ · · · ∧ xj ∈ (int(Kj) ∪ int(−Kj))};
. . . . . . . . .

T(K1, . . . , Kn) = {x1 ∈ Rn : ∃ x2 ∈ T(K1), . . . , xn ∈ T(K1, . . . , Kn−1)

for which x1 ∧ x2 ∧ · · · ∧ xn ∈ (int(Kn) ∪ int(−Kn))}.
The inclusions T(K1, . . . , Kj) ⊆ T(Kj) are obvious for any proper cones K1 ⊂ R

n, . . . , Kj ⊂ ∧j
R

n

and any j = 2, . . . , n. The following theorem describes the structure of the sets T(K1, . . . , Kj).

Theorem 6. Let K1 ⊂ R
n, K2 ⊂ ∧2

R
n, . . . , Kn ⊂ ∧n

R
n be proper cones. Let for every j (j = 2, . . . , n)

there exist a basis e′1(j), . . . , e′n(j) of Rn such that Kj ⊆ K ′
j where K ′

j ⊂ ∧j
R

n is one of the exterior basic

cones defined by this basis. Then every set T(K1, . . . , Kj), if it is not empty, is a cone of rank j.

Proof. First let us prove that for every x1 ∈ T(K1, . . . , Kj), α ∈ R the element αx1 ∈ T(K1, . . . , Kj).
Let x1 be an arbitrary element from T(K1, . . . , Kj). Without loss of generality we can assume that

there exist nonzero elements x2 ∈ T(K1), . . . , xj ∈ T(K1, . . . , Kj−1) for which x1 ∧ x2 ∧ · · · ∧ xj ∈
(int(Kj) ∪ int(−Kj)). (Otherwise we shall consider x1 as a limit of the converging sequence of the

elements which satisfy the above condition.) Let α be an arbitrary nonzero number from R. Since the

set T(K1) is obviously uniform and x2 ∈ T(K1), the element 1
α
x2 also belongs to T(K1). The linearity

of the exterior product implies that αx1 ∧ 1
α
x2 ∧ · · · ∧ xj = x1 ∧ x2 ∧ · · · ∧ xj ∈ (int(Kj) ∪ int(−Kj)).

It is obvious that 0 ∈ T(K1, . . . , Kj) for α = 0. Hence αx1 ∈ T(K1, . . . , Kj) for every α ∈ R.

The definition of the set T(K1, . . . , Kj) implies that T(K1, . . . , Kj) is closed. The inclusion

T(K1, . . . , Kj) ⊆ T(Kj) implies that T(K1, . . . , Kj) does not contain any j + 1-dimensional sub-

space. Let us show that the set T(K1, . . . , Kj), if it is nonempty, contains at least one j-dimensional

subspace. Indeed, let there exist at least one x1 ∈ R
n such that we can find nonzero elements

x2 ∈ T(K1), . . . , xj ∈ T(K1, . . . , Kj−1) for which x1 ∧ x2 ∧ · · · ∧ xj ∈ (int(Kj) ∪ int(−Kj)). Let
us prove that the j-dimensional subspace L = Lin(x1, x2, . . . , xj) belongs to T(K1, . . . , Kj). Indeed,

examine the linear combination
∑j

i=1cixi where c1, . . . , cj ∈ R,
∑j

i=1c
2
i �= 0. If c1 �= 0, then we

have the equality
(∑j

i=1cixi

)
∧ x2 ∧ · · · ∧ xj = c1(x1 ∧ x2 ∧ · · · ∧ xj) ∈ (int(Kj) ∪ int(−Kj)).

So
∑j

i=1cixi ∈ T(K1, . . . , Kj) for any c1 �= 0. If c1 = 0, then there exists a sequence of the elements
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1

n
x1 + ∑j

i=2cixi

}∞

n=1
∈ Lwhich converges to thevector

∑j
i=2cixi. It follows fromtheabove reasoning,

that
1

n
x1 + ∑j

i=2cixi ∈ T(K1, . . . , Kj) for every n. So
∑j

i=2cixi ∈ T(K1, . . . , Kj). �

Example 1. Let us examine the space R
3 with a fixed basis e1, e2, e3. Let K1 ⊂ R

3 be a basic cone

spanned by the vectors e1, e2, −e3. Let K2 ⊂ ∧2
R

3 be an exterior basic cone spanned by the exterior

products e1 ∧ e2, e3 ∧ e1, e2 ∧ e3. In this case the set T(K2) is a cone of rank 2 which coincides with

the set R
3\(int(J (K2)) ∪ int(−J (K2))). The cone J (K2) is spanned by the vectors e1, e2, e3, i.e.

is equal to R
3+. So the cone T(K1) coincides with R

3\(int(R3+) ∪ int(−R
3+)), i.e. with the set of all

vectors which have at least two coordinates of different signs or at least one zero coordinate. It is not

difficult to see, that the set T(K1, K2) is the set of all 2-dimensional subspaces L ⊂ R
3 which satisfy

the following conditions:

1. The corresponding line A(L) belongs to K2 ∪ (−K2).
2. The intersection L ∩ K1 �= {0}.

Since every 2-dimensional subspace from T(K2) has a nonzero intersection with the cone K1, we have

the equality T(K1, K2) = T(K2).

Example 2. Let K1 be R
3+, K2 ⊂ ∧2

R
3 be an exterior basic cone spanned by the exterior products

e1 ∧ e2, e3 ∧ e1, e2 ∧ e3. In this case, as it was shown above, T(K2) = R
3\(int(R3+) ∪ int(−R

3+)).
It is easy to see, that the set T(K1, K2) ⊂ T(K2) is the union of three basic subspaces Lin(e1, e2),
Lin(e1, e3) and Lin(e2, e3), i.e. the set of all vectors which have at least one zero coordinate. Note,

that if K1 is any proper cone which satisfies the inclusion K1 ⊂ int(R3+), we obtain the equality

T(K1, K2) = ∅.
Let us define successively the following sets T̃(K1, . . . , Kj).

T̃(K1) = int(K1) ∪ (−int(K1));
T̃(K1, K2) = {x1 ∈ R

n : ∃ x2 ∈ T̃(K1), for which x1 ∧ x2 ∈ (int(K2) ∪ int(−K2))};
T̃(K1, K2, K3) = {x1 ∈ R

n : ∃ x2 ∈ T̃(K1), x3 ∈ T̃(K1, K2)

for which x1 ∧ x2 ∧ x3 ∈ (int(K3) ∪ int(−K3))};
. . . . . . . . .

T̃(K1, . . . , Kj) = {x1 ∈ R
n : ∃ x2 ∈ T̃(K1), . . . , xj ∈ T̃(K1, . . . , Kj−1)

for which x1 ∧ x2 ∧ · · · ∧ xj ∈ (int(Kj) ∪ int(−Kj))};
. . . . . . . . .

T̃(K1, . . . , Kn) = {x1 ∈ R
n : ∃ x2 ∈ T̃(K1), . . . , xn ∈ T̃(K1, . . . , Kn−1)

for which x1 ∧ x2 ∧ · · · ∧ xn ∈ (int(Kn) ∪ int(−Kn))}.
The inclusions T̃(K1, . . . , Kj) ⊆ T̃(Kj) and T̃(K1, . . . , Kj) ⊂ T(K1, . . . , Kj) are obvious for any proper

cones K1 ⊂ R
n, . . . , Kj ⊂ ∧j

R
n and any j = 2, . . . , n. The following theorem describes the structure

of the sets T̃(K1, . . . , Kj).

Theorem 7. Let K1 ⊂ R
n, K2 ⊂ ∧2

R
n, . . . , Kn ⊂ ∧n

R
n be proper cones. Then the following inclusion

is valid for every j (j = 2, . . . , n):

T̃(K1, . . . , Kj) ⊆ int(T(K1, . . . , Kj)).
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Proof. It is enough for the proof to show that if the set T̃(K1, . . . , Kj) is nonempty, then it is open. The

proof is analogous to the proof of the first part of Theorem 4. �

Note, that it is also not difficult to define successively the sets T̂(K1, . . . , Kj), j = 2, . . . , n, using
the formulae:

T̂(K1) = K1 ∪ (−K1);
T̂(K1, . . . , Kj) = {x1 ∈ Rn : ∃ x2 ∈ T̂(K1)\{0}, . . . , xj ∈ T̂(K1, . . . , Kj−1)\{0}

for which x1 ∧ x2 ∧ · · · ∧ xj ∈ (Kj ∪ (−Kj))\{0}}.
6. Cone-preserving maps in R

n

One of the most important results of the theory of nonnegative matrices is the famous Perron–

Frobenius theorem. This theorem states the existence of the greatest in absolute value positive eigen-

value with the corresponding nonzero nonnegative eigenvector of a nonsingular nonnegative matrix

(see, for example [3, p. 26]). Later we shall use the cone-theoretic generalizations of this result. So let

us recall some definitions and statements of the theory of cone-preserving maps (see [3,22]).

Let K ⊂ R
n be a proper cone. A linear operator A : R

n → R
n is called K-positive or positive with

respect to the cone K if A(K\{0}) ⊆ int(K). In the case of K = R
n+ K-positive operators are called

positive. It is easy to see, that the operator is positive if and only if its matrix is positive.

Let us state the following generalization of the Perron theorem (see [3, p. 13, Theorem 3.26]). Recall

that an eigenfunctional of the operator A is defined as an eigenvector of the adjoint operator A∗.

Theorem 8 (Generalized Perron). Let a linear operator A : R
n → R

n be positive with respect to a proper

cone K ⊂ R
n. Then:

1. The spectral radius ρ(A) is a simple positive eigenvalue of the operator A different in absolute value

from the remaining eigenvalues.

2. The eigenvector x1 corresponding to the eigenvalue λ1 = ρ(A) belongs to int(K).
3. The eigenfunctional x∗

1 corresponding to the eigenvalue λ1 = ρ(A) belongs to int(K∗) (i.e. satisfies
the inequality 〈x, x∗

1〉 > 0 for every nonzero x ∈ K).

A linear operator A : R
n → R

n is called K-nonnegative or nonnegative with respect to the cone K if

it leaves the cone K invariant (i.e. AK ⊆ K). In the case of K = R
n+ K-nonnegative operators are called

nonnegative.

Recall the following obvious fact.

Lemma9. A linear operator A : R
n → R

n is K-nonnegative (K-positive) if and only if the adjoint operator

A∗ : (Rn)′ → (Rn)′ is K∗-nonnegative (respectively, K∗-positive).

A weaker version of the generalized Perron theorem is correct for

K-nonnegative operators (see [3, p. 6, Theorem 3.2]).

Theorem 10. Let a linear operator A : R
n → R

n be nonnegative with respect to a proper cone K ⊂ R
n.

Then:

1. The spectral radius ρ(A) is a nonnegative eigenvalue of the operator A.

2. The eigenvector x1 corresponding to the eigenvalue λ1 = ρ(A) belongs to K.

3. The eigenfunctional x∗
1 corresponding to the eigenvalue λ1 = ρ(A) belongs to K∗.

Let us also state the “inverse" Perron theorem (see [3, p. 8, Theorem 3.5 and p. 13, Theorem 3.26]).

Here deg(λ) denotes the size of the largest diagonal block in the Jordan canonical form of A which

contains λ.
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Theorem11 (Inverse Perron). Letρ(A) be an eigenvalue of a linear operator A : R
n → R

n. Let deg(λ) �
deg(ρ(A)) for every eigenvalue λ such that |λ| = ρ(A). Then A is nonnegative with respect to some proper

coneK.Moreover, ifρ(A) is a simpleeigenvalueofAgreater inabsolutevalue than the remainingeigenvalues,

then A is positive with respect to some proper cone K.

Examine a subclass in the class of K-nonnegative operators which has the same spectral properties

that K-positive operators. A linear operator A : R
n → R

n is called K-primitive or primitive with respect

to the cone K , if AK ⊆ K and the only nonempty subset of ∂(K) which is left invariant by A is {0}. This
definition was given by Barker (see [2], see also [22]). The following statement is correct (see [3, p. 18,

Corollary 4.13]).

Lemma 12. A linear operator A : R
n → R

n is primitive with respect to some proper cone K if and only if

there exists a proper cone K̃ such that A is positive with respect to K̃ .

Let us examine the operators which leave invariant basic cones in R
n. Every basic cone can be

transformed into the coneR
n+ bya simple linear transformationwithadiagonal transformationmatrix.

Thus a linear operator A : R
n → R

n leaves invariant a basic cone in R
n if and only if its matrix A can be

represented in the following form:

A = DÃD−1,

where Ã is a nonnegative matrix, D is a diagonal matrix, which diagonal elements are equal to ±1.

Let J be any subset of [n] := {1, 2, . . . , n}. Then Jc := [n]\J and
[n] × [n] = (J × J) ∪ (Jc × Jc) ∪ (J × Jc) ∪ (Jc × J)

is a partition of [n] × [n] into four pairwise disjoint subsets.

A matrix A = {aij}ni,j=1 is called J-sign-symmetric (JS) if

aij � 0 on (J × J) ∪ (Jc × Jc)

and

aij � 0 on (J × Jc) ∪ (Jc × J).

A matrix A = {aij}ni,j=1 is called strictly J-sign-symmetric (SJS) if

aij > 0 on (J × J) ∪ (Jc × Jc)

and

aij < 0 on (J × Jc) ∪ (Jc × J).

It is easy to see, that the number of all different types of strictly J-sign-symmetric n × n matrices

is equal to the number of basic cones divided by 2, i.e. 2n−1.

We recall a simple fact that a matrix is diagonally similar to a nonnegative (positive) matrix if

and only if it is J-sign-symmetric (respectively, strictly J-sign-symmetric) (see, e.g. [13]). Thus a linear

operator A : R
n → R

n is nonnegative (positive) with respect to some basic cone K if and only if its

matrix A is J-sign-symmetric (respectively, strictly J-sign-symmetric).

7. Exterior powers of operators in R
n

Let us recall the following definitions and statements.

Let A be a linear operator acting in the space R
n. Then a linear operator ∧jA acting in the space

∧j
R

n according to the rule:
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(∧jA)(x1 ∧ · · · ∧ xj) = Ax1 ∧ · · · ∧ Axj

is called the jth exterior power of the operator A.

Later we shall use the following properties of ∧jA (see, for example [23]).

1. ∧jA = 0 if and only if j � r where r is the rank of the operator A.

2. ∧jIRn = I∧jRn where I is the identity operator.

3. Let A, B : R
n → R

n be two linear operators. Then ∧j(AB) = (∧jA)(∧jB) (the Cauchy–Binet

formula).

4. The following equality is correct for every natural number m: (∧jA)m = ∧j(Am).
5. The jth exterior power of an invertible operator is invertible and the following equality is correct:

(∧jA)−1 = ∧j(A−1).
6. Since (∧j

R
n)′ can be considered as ∧j(Rn)′, the following equality for adjoint operators is

correct: (∧jA)∗ = ∧j(A∗) (see [23, p. 89]).

If the operator A is defined by the matrix A = {aij}ni,j=1 in the basis e1, . . . , en, then the matrix of

∧jA in the basis {ei1 ∧· · ·∧ eij}where 1 � i1 < · · · < ij � n coincides with the jth compoundmatrix

A(j) of the initial matrix A (see, for example [15]).

Recall the following statement concerning the eigenvalues of ∧jA.

Theorem 13 (Kronecker). Let {λi}ni=1 be the set of all eigenvalues of the operator A : R
n → R

n repeated

according to multiplicity. Then all the possible products of the form {λi1 . . . λij}, where 1 � i1 < · · · <

ij � n forms the set of all the possible eigenvalues of the jth exterior power ∧jA of the operator A repeated

according to multiplicity.

The Kronecker theorem is stated in terms of compoundmatrices and provedwithout using exterior

products in [5] (see [5, p. 80, Theorem 23]).

8. Generalized totally positive operators

Let us give the basic definition of a generalized totally positive operator. Let us fix n proper cones

K1 ⊂ R
n, K2 ⊂ ∧2

R
n, . . . , Kn ⊂ ∧n

R
n. Note, that the idea of fixing cones in the exterior powers

of the initial space was first given by Yudovich [24]. Slightly changing the terminology of [24], we call

the family of proper cones K1 ⊂ R
n, K2 ⊂ ∧2

R
n, . . . , Kn ⊂ ∧n

R
n a totally positive structure on the

space R
n.

A linear operator A is called generalized totally positive (GTP)with respect to a totally positive struc-

ture {K1, . . . , Kn} if it is nonnegative with respect to the proper cone K1 ⊂ R
n and its jth exterior

power ∧jA is nonnegative with respect to the proper cone Kj ⊂ ∧j
R

n for every j (j = 2, . . . , n).
A linear operatorA is called generalized strictly totally positive (GSTP)with respect to a totally positive

structure {K1, . . . , Kn} if it is positive with respect to the proper cone K1 ⊂ R
n and its jth exterior

power ∧jA is positive with respect to the proper cone Kj ⊂ ∧j
R

n for every j (j = 2, . . . , n).

In the case when Kj = ∧j
R

n+ for every j = 1, . . . , n, the definitions given above coincide with the

classical definitions of totally positive and strictly totally positive operators given by Gantmacher and

Krein [5].

It is easy to see, that there exists at least one nonsingular GTP operator for every totally positive

structure on the space R
n (for example, the identity operator I which exterior powers according to

Property 2 are also the identity operators). We call a totally positive structure strictly totally positive

if there exists at least one strictly totally positive with respect to this structure operator. Later we are

going to show, that not every totally positive structure on R
n is strictly totally positive.

Now it is also possible to give the definition of generalized oscillatory operator which extends the

class of oscillatory operators introduced by Gantmacher and Krein [5].
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A linear operator A is called generalized oscillatory (GO) with respect to a totally positive structure

{K1, . . . , Kn} if it is primitive with respect to the proper cone K1 ⊂ R
n and its jth exterior power ∧jA

is primitive with respect to the proper cone Kj ⊂ ∧j
R

n for every j (j = 2, . . . , n).
A linear operator A is called generalized sign-regular (GSR)with respect to a totally positive structure

{K1, . . . , Kn} if there exist numbers ε1, . . . , εn each equal to ±1 such that ε1A is nonnegative with

respect to the proper cone K1 ⊂ R
n and εj ∧j A is nonnegative with respect to the proper cone

Kj ⊂ ∧j
R

n for every j (j = 2, . . . , n).
A linear operator A is called generalized strictly sign-regular (GSSR)with respect to a totally positive

structure {K1, . . . , Kn} if there exists numbers ε1, . . . , εn each equal to ±1 such that ε1A is positive

with respect to the proper cone K1 ⊂ R
n and εj ∧j A is positive with respect to the proper cone

Kj ⊂ ∧j
R

n for every j (j = 2, . . . , n).

Let us fix a natural number k, 1 � k � n and choose k proper cones K1 ⊂ R
n, K2 ⊂ ∧2

R
n, . . . , Kk⊂ ∧k

R
n. We call the sequence of proper cones K1 ⊂ R

n, K2 ⊂ ∧2
R

n, . . . , Kk ⊂ ∧k
R

n a k-totally

positive structure on the space R
n.

A linear operatorA is called generalized k-totally positivewith respect to a k-totally positive structure

{K1, . . . , Kk} if it is nonnegative with respect to the proper cone K1 ⊂ R
n and its jth exterior power

∧jA is nonnegative with respect to the proper cone Kj ⊂ ∧j
R

n for every j (j = 2, . . . , k).
We can easily give analogical definitions of generalized strictly k-totally positive, k-sign-regular

and strictly k-sign-regular operators.

9. Basic properties of GTP and GSTP operators

Let us list some basic properties of GTP and GSTP operators.

Proposition 14. Let a linear operator A : R
n → R

n be GTP (GSTP) with respect to a totally positive

structure {K1, . . . , Kn}. Then A∗ (the adjoint of A) is GTP (respectively, GSTP) with respect to the totally

positive structure {K∗
1 , . . . , K∗

n }.
Proof. The proof follows from Lemma 9 and Property 6 of exterior powers (see Section 7). �

Proposition 15. Let linear operators A, B : R
n → R

n be GTP with respect to a totally positive structure

{K1, . . . , Kn}. Then AB is also GTP with respect to the structure {K1, . . . , Kn}. If in this case one of the

operators A or B is GSTP, while the other is nonsingular GTP, then AB is GSTP with respect to the structure

{K1, . . . , Kn}. In particular, if A is GTP (GSTP) with respect to a totally positive structure {K1, . . . , Kn}, then
the operator Am is GTP (respectively, GSTP) with respect to the same structure for every natural number m.

Proof. The proof follows from the Cauchy–Binet formula (see Section 7, Property 3 of exterior pow-

ers). �

If the operators A and B are GTP with respect to different totally positive structures, then the state-

ment of Proposition 15 may not be correct.

Proposition 16. Let a linear operator A : R
n → R

n be GO with respect to a totally positive structure

{K1, . . . , Kn}. Then A is GSTP with respect to some other totally positive structure {K̃1, . . . , K̃n}.
Proof. The proof follows from Lemma 12. �

Proposition 16 reduces the study of GO operators to the study of GSTP operators.

Now let us prove some propositions which describe the structure of the class of GTP operators.

Proposition 17. Every linear operator A : R
n → R

n similar to a GTP (GSTP) operator is GTP (respectively,

GSTP). In particular, if A is similar to a TP (STP) operator, then A is GTP (respectively, GSTP).
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Proof. Let us represent the operator A in the form A = TÃT−1, where T is nonsingular, Ã is GTP (GSTP)

with respect to a totally positive structure {K1, . . . , Kn}. Then the Cauchy–Binet formula and Property

5 of the exterior powers imply that A is GTP (GSTP) with respect to the totally positive structure

{T(K1), . . . , (∧nT)(Kn)}. �

Note, that the “inverse" statement that every GTP operator is similar to some TP operator is not

correct.

Proposition 17 shows that if all the eigenvalues of A are positive and simple, then A is GTP. Indeed,

since the Jordan canonical form J of the operator A is represented by a nonnegative diagonal matrix,

we conclude that J is TP. Then the equality A = UJU−1 implies that A is GTP with respect to the totally

positive structure {U(Rn+), . . . , (∧nU)(∧n
R

n+)}.
Using the “inverse" Perron theorem (see Theorem 11) stated above, we can prove more general

statements about operators with real spectrum. In this case the Jordan canonical form may not be

totally positive or sign-regular.

Proposition 18. Let all the eigenvalues of a linear operator A : R
n → R

n be real. Then A is GSR. Moreover,

if all the eigenvalues of A are real, simple and different in absolute value from each other then A is GSSR.

Proof. Let us enumerate the eigenvalues of the operator A in descending order of their absolute values

(without taking into account their multiplicities):

|λ1| � |λ2| � |λ3| � · · · � |λm|.
Examine the greatest in absolute value eigenvalue λ1. The reality of the spectrum implies that if

the equality |λ1| = |λ2| is true, then λ1 = −λ2. Assume that deg(λ1) � deg(λ2), otherwise we shall

re-number them. If the eigenvalue λ1 is nonnegative, then it satisfies the conditions of Theorem 11.

Applying Theorem 11 to the operator A, we obtain that A is nonnegative with respect to some proper

cone K1 ⊂ R
n. If the eigenvalue λ1 is non-positive, then −λ1 is nonnegative. Considering −λ1 as the

greatest in absolute value eigenvalue of the operator −A we obtain that it satisfies the conditions of

Theorem 11. Applying Theorem 11 to the operator −A we obtain that −A is nonnegative with respect

to some proper cone K1 ⊂ R
n.

Examine the second exterior power ∧2A. The Kronecker theorem implies ∧2A has no other eigen-

values, except all the possible products of the form λi1λi2 , where 1 � i1 < i2 � n. Therefore the

greatest in absolute value eigenvalue λ
(2)
1 of ∧2A can be represented in the form of the product λi1λi2

with some values of the indices i1, i2, i1 � i2. This representation implies thatλ
(2)
1 is also real.Without

loss of generality we can assume that deg(λ
(2)
1 ) � deg(λ

(2)
2 ) where λ

(2)
2 is any other eigenvalue of

∧2A equal in absolute value to λ
(2)
1 . If λ

(2)
1 is nonnegative, we apply Theorem 11 to the operator ∧2A,

otherwise we apply Theorem 11 to the operator − ∧2 A. Thus we obtain that either ∧2A or − ∧2 A is

nonnegative with respect to some proper cone K2 ⊂ ∧2
R

n.

Repeating the above reasoning for ∧jA, j = 3, . . . , n we obtain that either the operator ∧jA or

− ∧j A is nonnegative with respect to some proper cone Kj ⊂ ∧j
R

n. So we have constructed the

totally positive structure {K1, . . . , Kn} such that the operator A is GSR with respect to this structure.

The second part of the proposition is proved analogically. �

Proposition 19. Let all the eigenvalues of a linear operator A : R
n → R

n be nonnegative. Then A is TP.

Moreover, if all the eigenvalues of A are positive and simple then A is GSTP.

Proof. The proof follows from Proposition 18. �

Later we shall show that a GSTP operator always has a simple positive spectrum. However, the

spectrum of a GTP operator may not be real.
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Proposition 18 shows that the introduced above class of GSR operators covers the entire class of

operators with real spectrum. This also implies that any operation which preserves the reality of the

spectrum of an operator, preserves the class of GSR operators.

Proposition 20. Let a linear operator A : R
n → R

n be nonsingular GSR (GSSR). Then A−1 is GSR

(respectively, GSSR). In particular, if A is nonsingular GTP (GSTP). Then A−1 is GTP (respectively, GSTP).

Proof. The proof follows from Proposition 18 and Proposition 19. �

10. Variation diminishing property of GTP operators

Nowwe shall prove the generalization of the results by Schoenberg concerning variation diminish-

ing property of totally positive matrices (see [18,19]).

Theorem 21. Let a linear operator A : R
n → R

n be nonsingular GSR with respect to a totally positive

structure {K1, . . . , Kn}. Then the following inclusions hold for every j = 1, . . . , n:

A(T̂(Kj)) ⊆ T̂(Kj); (3)

A(T̂(K1, . . . , Kj)) ⊆ T̂(K1, . . . , Kj). (4)

Proof. Let us assume that all the sets T̂(Kj) are nonzero and all the sets T̂(K1, . . . , Kj) are nonempty,

otherwise the corresponding inclusions will be obvious.

Let x1 be an arbitrary vector from T̂(Kj). We prove that Ax1 ∈ T̂(Kj). Let us find the elements

x2, . . . , xj ∈ R
n for which x1 ∧ x2 ∧ · · · ∧ xj ∈ (Kj ∪ (−Kj))\{0}. Examine the elements Ax2, . . . , Axj .

Since the operator ∧jA is nonsingular nonnegative with respect to the cone Kj , we have Ax1 ∧ Ax2 ∧
· · · ∧ Axj = (∧jA)(x1 ∧ x2 ∧ · · · ∧ xj) ∈ (Kj ∪ (−Kj))\{0}. Thus Ax1 ∈ T̂(Kj).

Let us prove inclusion (4) using the induction on j. The inclusion

A(T̂(K1)) ⊆ T̂(K1) is obvious. Let us take j = 2 and prove that

A(T̂(K1, K2)) ⊆ T̂(K1, K2). Let there exists a nonzero element x2 ∈ T̂(K1) such that x1 ∧ x2 ∈
(K2 ∪ (−K2))\{0}. Examine the element Ax2. Since the operator A is nonsingular nonnegative with

respect to the cone K1, we have Ax2 ∈ T̂(K1)\{0}. Examine the element Ax1 ∧ Ax2. Since the element

x1 ∧ x2 ∈ (K2 ∪ (−K2))\{0} and the operator ∧2A is nonsingular nonnegative with respect to the

cone K2, we have Ax1 ∧ Ax2 = (∧2A)(x1 ∧ x2) ∈ (K2 ∪ (−K2))\{0}. Thus Ax1 ∈ T̂(K1, K2). Now let us

consider the case when x1 is the limit of a sequence {xn1}∞n=1 such that there exists a nonzero element

xn2 ∈ T̂(K1) satisfying xn1 ∧ xn2 ∈ (K2 ∪ (−K2))\{0}} for every element xn1. It follows from the above

reasoning, that Axn1 ∈ T̂(K1, K2) for every n = 1, 2, . . .. Since the sequence {Axn1}∞n=1 converges to the

vector Ax1, we conclude Ax1 ∈ T̂(K1, K2).
Let the statement of the theorem holds for j − 1. Now let us prove inclusions (3) and (4) for j.

Let x1 be an arbitrary vector from T̂(K1, . . . , Kj). Prove, that Ax1 ∈ T̂(K1, . . . , Kj). As it was shown

above, without loss of generality we can assume that there exist nonzero elements x2 ∈ T̂(K1), . . . ,
xj ∈ T̂(K1, . . . , Kj−1) such that x1∧x2∧· · ·∧xj ∈ (Kj∪(−Kj))\{0}. Examine theelementsAx2, . . . , Axj
which are also nonzero. Using the inductive hypothesis, we obtain that Ax2 ∈ T̂(K1)\{0}, . . . , Axj ∈
T̂(K1, . . . , Kj−1)\{0}. Since the element x1 ∧ x2 ∧ · · · ∧ xj ∈ (Kj ∪ (−Kj))\{0} and the operator ∧jA

is nonsingular nonnegative with respect to the cone Kj , we have Ax1 ∧ Ax2 ∧ · · · ∧ Axj = (∧jA)(x1 ∧
x2 ∧ · · · ∧ xj) ∈ (Kj ∪ (−Kj))\{0}. Thus Ax1 ∈ T̂(K1, . . . Kj). �

11. Gantmacher–Krein theorem for GSTP operators

Let us state and prove the main theorem concerning spectral properties of GSTP operators.
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Theorem 22. Let a linear operator A : R
n → R

n be GSTP with respect to a totally positive structure

{K1, . . . , Kn}. Then all the eigenvalues of the operator A are positive and simple:

ρ(A) = λ1 > λ2 > · · · > λn > 0.

The first eigenvector x1 corresponding to themaximal eigenvalueλ1 belongs to int(K1) and the jth eigenvec-
tor xj corresponding to the jth in absolute value eigenvalue λj belongs to int(T(K1, . . . , Kj))\
T(K1, . . . , Kj−1). Moreover, the following inclusions hold:

p∑
i=q

cixi ∈ int(T(K1, . . . , Kp))\T(K1, . . . , Kq−1)

for each 1 � q � p � n and cp �= 0;

p∑
i=q

cixi ∈ T(K1, . . . , Kp)\T(K1, . . . , Kq−1)

for each 1 � q � p � n.

Proof. The first part of the proof literally repeats the arguments used originally by Gantmacher and

Krein. Let us list the eigenvalues of the operator A in descending order of their absolute values (taking

into account their multiplicities):

|λ1| � |λ2| � |λ3| � · · · � |λn|.
Applying the generalized Perron theorem to the operator A (which is positive with respect to the

proper cone K1), we get:λ1 = ρ(A) > 0 is a simple positive eigenvalue of A, different in absolute value

from the remaining eigenvalues. The corresponding eigenvector x1 belongs to int(K1). Examine the

second exterior power ∧2A which is positive with respect to the proper cone K2 ⊂ ∧2
R

n. Applying

generalized Perron theorem to ∧2A, we get: ρ(∧2A) > 0 is a simple positive eigenvalue of ∧2A,

different in absolute value from the remaining eigenvalues. The corresponding eigenvector ϕ2 belongs

to int(K2).
As it follows from the statement of the Kronecker theorem, ∧2A has no other eigenvalues, except

all the possible products of the form λi1λi2 where 1 � i1 < i2 � n. Therefore ρ(∧2A) > 0 can be

represented in the form of the product λi1λi2 with some values of the indices i1, i2, i1 < i2. The facts

that the eigenvalues are listed in a descending order and there is only one eigenvalue on the spectral

circle |λ| = ρ(A) imply that ρ(∧2A) = λ1λ2 = ρ(A)λ2. Therefore λ2 = ρ(∧2A)
ρ(A)

> 0.

Repeating the same reasoning for ∧jA, j = 3, . . . , n, we obtain the relations:

λj = ρ(∧jA)

ρ(∧j−1A)
> 0,

where j = 3, . . . , n. The simplicity of the eigenvalues λj for every j also follows from the above

relations and the simplicity of ρ(∧jA). Note, that the eigenvector ϕj of the operator∧jA corresponding

to the eigenvalue ρ(∧jA) belongs to int(Kj).
Now let us prove that the jth eigenvector xj corresponding to the jth in absolute value eigenvalue

λj belongs to int(T(K1, . . . , Kj))\T(K1, . . . , Kj−1). Let us prove this statement by induction on j. First

take j = 2.

Sinceρ(∧2A) = λ1λ2, the eigenvectorϕ2 corresponding toρ(∧2A) can be represented in the form

of the exterior product ϕ2 = x1 ∧ x2 of the first eigenvector x1 ∈ int(K1) and the second eigenvector

x2. The inclusion ϕ2 ∈ int(K2) implies x2 ∈ T̃(K1, K2) ⊆ int(T(K1, K2)).
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Let us show, that the vector x2 does not belong to K1 ∪ (−K1). It is enough for this to show that x2
belongs to the subspace

X′
2 = {x ∈ R

n : x∗
1(x) = 0},

where x∗
1 is the first eigenfunctional of the operator A corresponding to the maximal eigenvalue λ1 =

ρ(A). Indeed, 〈x∗
1, x2〉 = 1

λ2
(〈x∗

1, λ2x2〉) = 1
λ2

(〈x∗
1, Ax2〉) = 1

λ2
(〈A∗x∗

1, x2〉) = 1
λ2

(〈λ1x
∗
1, x2〉) =

λ1

λ2
(〈x∗

1, x2〉). Since λ1

λ2
�= 1, the equality above is valid if and only if 〈x∗

1, x2〉 = 0. It follows from the

generalized Perron theorem that x∗
1 ∈ int(K∗

1 ). This inclusion implies that (K1 ∪ (−K1)) ∩ X′
2 = {0}.

So we have that x2 ∈ int(T(K1, K2))\(K1 ∪ (−K1)).
Let the statement of the theorem hold for j − 1. Prove it for j.

Since ρ(∧jA) = λ1 . . . λj , the eigenvector ϕj corresponding to ρ(∧jA) can be represented in the

form of the exterior product ϕj = x1 ∧ · · · ∧ xj of the first j − 1 eigenvectors x1 ∈ int(K1), x2 ∈
T̃(K1, K2), . . ., xj−1 ∈ T̃(K1, . . . , Kj−1) and the jth eigenvector xj . The inclusion ϕj ∈ int(Kj) implies

xj ∈ T̃(K1, . . . , Kj) ⊆ int(T(K1, . . . , Kj)).
Let us show that the vector xj does not belong to T(K1, . . . , Kj−1). Assume the contrary: let xj ∈

T(K1, . . . , Kj−1). Since all the eigenvalues of the operator A are distinct, it is not difficult to see, that xj
belongs to the subspace

X′
j = {x ∈ R

n : (c1x
∗
1 + · · · + cj−1x

∗
j−1)(x) = 0 for any c1, · · · , cj−1 ∈ R}.

Here x∗
1, . . . , x

∗
j−1 are the first j−1 eigenfunctionals of the operatorA corresponding to the eigenvalues

λ1, . . . , λj−1, respectively. That is thevectorxj is orthogonal to thesubspaceLin(x
∗
1, . . . , x

∗
j−1) spanned

by the vectors x∗
1, . . . , x

∗
j−1. Since xj ∈ T(K1, . . . , Kj−1) ⊆ T̂(Kj−1), we can find vectors y1, . . . , yj−2

such thaty1∧· · ·∧yj−2∧xj ∈ (Kj−1∪(−Kj−1))\{0}. Let us examine theexteriorproduct x∗
1∧· · ·∧x∗

j−1.

It is not difficult to see, that x∗
1 ∧ · · · ∧ x∗

j−1 belongs to int(K∗
j−1) ∪ (−int(K∗

j−1)). Examine the scalar

product

〈y1 ∧ · · · ∧ yj−2 ∧ xj, x
∗
1 ∧ · · · ∧ x∗

j−1〉
= (y1 ∧ · · · ∧ yj−2 ∧ xj)(x

∗
1, . . . , x

∗
j−1)

= ∑
(i1,...,ij−1)

χ(i1, . . . , ij−1) 〈y1, x∗
i1
〉 . . . 〈yj−2, xij−2

〉〈xj, x∗
ij−1

〉 = 0.

We came to the contradiction.

Finally, let us prove the inclusion

p∑
i=q

cixi ∈ int(T(K1, . . . , Kp))\T(K1, . . . , Kq−1)

for each 1 � q � p � n, cp �= 0.

First let us prove, that any linear combination
∑p

i=qcixi belongs to

int(T(K1, . . . , Kp)). Since the exterior product of the eigenvectors x1 ∈ int(K1), x2 ∈ T̃(K1, K2),

. . ., xp−1 ∈ T̃(K1, . . . , Kp−1), xp belongs to int(Kp), we have xp ∈ T̃(K1, . . . , Kp). Examine the exterior

product x1∧· · ·∧xp−1∧
(∑p

i=qcixi

)
which is obviously equal to cp(x1∧· · ·∧xp−1∧xp). Since cp �= 0,

we have cp(x1 ∧· · ·∧xp−1 ∧xp) ∈ (int(Kj)∪ int(−Kj)). So the inclusion
∑p

i=qcixi ∈ T̃(K1, . . . , Kp) ⊆
int(T(K1, . . . , Kp)) is correct.

In the case when cp = 0 and
∑p−1

i=q c
2
i �= 0, we construct a converging sequence{∑p−1

i=q cixi +
1

n
xp

}∞

n=1
∈ int(T(K1, . . . , Kp)).
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The fact, that
∑p

i=qcixi doesnotbelong toT(K1, . . . , Kq−1) follows fromthe inclusion
∑p

i=qcixi ∈ X′
q.

As it is shown above, X′
q has zero intersection with the set T(Kq−1). �

Nowwe can state some necessary conditions for strict total positivity of a totally positive structure

{K1, . . . , Kn}.
Corollary 23. Let a totally positive structure {K1, . . . , Kn} on the spaceR

n be strictly totally positive. Then

the intersection int(Kj) ∩ �j
R

n is nonzero for every j (j = 2, . . . , n).

Proof. If the structure {K1, . . . , Kn} is strictly totally positive, then there exists at least one operator A

which is GSTP with respect to the structure {K1, . . . , Kn}. Theorem 22 implies that the eigenvector ϕj

corresponding to the maximal eigenvalue of ∧jA, belongs to int(Kj). On the other hand, ϕj is a simple

j-vector, since it can be represented in the form of the exterior product x1 ∧ · · · ∧ xj , where x1, . . . , xj
are the eigenvectors of the operator A. �

Note, that we can find a proper cone Kj which belongs to ∧j
R

n\ � R
n for every j = 2, . . . , n − 2.

Indeed, the set�R
n is closed in the space∧j

R
n, so its complement∧j

R
n\�j

R
n is open. Since∧j

R
n\�

R
n is nonempty, we can find an elementϕ ∈

(
∧j

R
n\ � R

n
)
. Since it is open, there exists a value r > 0

such that B(ϕ, r) ⊂ (∧j
R

n\ � R
n) and the closed ball B

(
ϕ,

r

2

)
⊂ B(ϕ, r) ⊂ (∧j

R
n\ � R

n). Thus

we can construct a proper cone Kj

(
B

(
ϕ,

r

2

))
as it is shown in Example 3 (see Section 3).

Corollary 24. Let the totally positive structure {K1, . . . , Kn} on R
n be strictly totally positive. Then the

set int(T(K1, . . . , Kj)) is nonempty for every j (j = 2, . . . , n).

Proof. The proof obviously follows from Theorem 22. �

Remark 2. It is not difficult to see, that the spectrum of a GTP operator is not necessarily real, and not

every GTP operator can be approximated by GSTP operators.

Analogically, it is not difficult to generalize Theorem 22 to the case of k-GSTP operators (k =
2, . . . , n) and GSSR operators.

Now we can state the following property of GSSR operators.

Theorem 25. Let a linear operator A : R
n → R

n be GSSR with respect to a totally positive structure

{K1, . . . , Kn}. Then the interior of the set T(Kj) is nonempty and the following inclusions hold for every

j = 1, . . . , n:

A(T(Kj)) ⊆ int(T(Kj)).

Proof. It follows from the proof of Theorem22 that a GSSR operator A has n nonzero real simple eigen-

values λ1, . . . , λn with the corresponding n linearly independent eigenvectors x1, . . . , xn. Moreover,

we have the inclusion xj ∈ int(T(Kj)) for the jth eigenvector xj . Thus the interior of the set T(Kj)
contains at least one element for every j = 1, . . . , n.

Let x1 be an arbitrary vector from T(Kj). Let us prove that Ax1 ∈ int(T(Kj)). Since T(Kj) ⊆ T̂(Kj),
we can find the elements x2, . . . , xj ∈ R

n such that x1 ∧ x2 ∧ · · · ∧ xj ∈ (Kj ∪ (−Kj))\{0}. Examine

the elements Ax2, . . . , Axj . Since the operator ∧jA is positive with respect to the cone Kj , we have

the inclusion Ax1 ∧ Ax2 ∧ · · · ∧ Axj = (∧jA)(x1 ∧ x2 ∧ · · · ∧ xj) ∈ (int(Kj) ∪ int(−Kj))\{0}. So
Ax1 ∈ T̃(Kj) = int(T(Kj)). �
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12. Classical theory of total positivity

Let us examine the space R
n with the standard basis e1, . . . , en and its jth (j = 2, . . . , n) exterior

powers∧j
R

n with the canonical basiswhich consists of the exterior products of the form {ei1∧· · ·∧eij}
where 1 � i1 < · · · < ij � n. As it is mentioned above, we denote the cone spanned by basic vectors

by R
n+ and the cone spanned by the jth exterior basic vectors by ∧j

R
n+. S−(x) denotes the number of

sign changes in the sequence (x1, . . . , xn) of the coordinateswith zero terms discarded. S+(x) denotes
the maximum number of sign changes in the sequence (x1, . . . , xn) where zero terms are arbitrarily

assigned values ±1.

The following lemmadescribes the link between the sign changes of vectors inR
n and their exterior

products (see [1, p. 198, Lemma 5.1]).

Lemma 26. Let x1, . . . , xj ∈ R
n. In order for

S+
⎛⎝ j∑

i=1

cixi

⎞⎠ � j − 1

for each c1, . . . , cj ∈ R and
∑p

i=qc
2
i �= 0 it is necessary and sufficient that x1 ∧ · · ·∧ xj ∈ (int(∧j

R
n+)∪

int(− ∧j
R

n+)).

Examine the set

M(j) = {x ∈ R
n; S−(x) � j − 1}.

The set M(j) is closed, solid and uniform (see, for example [11,20]). The following equality for its

interior is valid:

int(M(j)) = {x ∈ R
n; S+(x) � j − 1}.

Proposition 27. The following equalities hold for every j = 2, . . . , n:

M(j) = T(∧j
R

n+) = T(Rn+, . . . , ∧j
R

n+);
int(Mj) = T̃(∧j

R
n+) = T̃(Rn+, . . . , ∧j

R
n+).

Proof. The proof obviously follows from Lemma 26. �

Let us recall the following definitions. A matrix A of a linear operator A : R
n → R

n is called totally

positive (TP) if it is nonnegative and its jth compound matrices A(j) are also nonnegative for every j

(j = 2, . . . , n).
A matrix A of a linear operator A : R

n → R
n is called strictly totally positive (STP) if it is positive

and its jth compound matrices A(j) are also positive for every j (j = 2, . . . , n).
A matrix A of a linear operator A : R

n → R
n is called sign-regular (SR), if there exist numbers

ε1, . . . , εn each equal to±1 such that thematrices εjA
(j) are nonnegative for every j (j = 1, 2, . . . , n).

A matrix A of a linear operator A : R
n → R

n is called strictly sign-regular (SSR) if there exist

such numbers ε1, . . . , εn each equal to ±1 such that the matrices εjA
(j) are positive for every j (j =

1, 2, . . . , n).
Now Theorem 25 turns into the following statement (see, for example [15]).

Theorem 28. Let the matrix A of a linear operator A : R
n → R

n be SSR. Then the following inequality

holds for each nonzero vector x ∈ R
n:

S+(Ax) � S−(x).
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Theorem 22 turns into the classical Gantmacher–Krein theorem (Theorem 2).

13. Totally J-sign-symmetric matrices

Since it is easy to see if a matrix is diagonally similar to a nonnegative one, let us reformulate the

given above definitions and theorems in terms of compound matrices. In this case the conditions of

generalized total positivity become easily verified.

Let us give the following definitions.

A matrix A of a linear operator A : R
n → R

n is called totally J-sign-symmetric (TJS), if it is J-sign-

symmetric, and its jth compound matrices A(j) are also J-sign-symmetric for every j (j = 2, . . . , n).
A matrix A of a linear operator A : R

n → R
n is called strictly totally J-sign-symmetric (STJS), if it

is strictly J-sign-symmetric, and its jth compound matrices A(j) are also strictly J-sign-symmetric for

every j (j = 2, . . . , n).
It is easy to see, that the class of TP matrices belongs to the class of TJS matrices, and the class of

STP matrices belongs to the class of STJS matrices.

Note that it is also not difficult to reformulate the definitions of generalized sign-regularity and

generalized strict sign-regularity in terms of compound matrices and to introduce the classes of k-

totally J-sign-symmetric and strictly k-totally J-sign-symmetric matrices for every k = 2, . . . , n.
Now we examine basic properties of TJS and STJS matrices.

Proposition 29. Let the matrix A of a linear operator A : R
n → R

n be TJS (STJS). Then AT (the transpose

of A), as well as every principal submatrix of A and AT is TJS (respectively STJS).

Proof. AsM denotes an arbitrary subset of [n], A(M) is the principal submatrix which consists of the

rows and columns with the numbers from M. Let us consider A(M) as the matrix of the restriction

A|L(M) of A to the subspace L(M) spanned by the basic vectors with the numbers from M. Since A is

JS, the operator A leaves invariant some basic cone K ⊂ R
n. It is not difficult to see, that A|L(M) leaves

invariant the set K(M) = prL(M)K i.e the projection of K on the subspace L(M). According to Property

1 of basic cones (see Section 3), the set K(M) is a basic cone in the space L(M). So we conclude that

the submatrix A(M) is JS.

Applying the same reasoning to the lth compoundmatrix (A(M))(l) (here l = 2, . . . , Card(M)), we

obtain that (A(M))(l) is also JS. The case of STJS matrices is considered analogically. The fact, that AT ,

as well as every principal submatrix of AT is TJS (STJS) follows from Proposition 14. �

Remark 3. If A is a TP (STP) matrix then every submatrix of A and AT is obviously TP (respectively,

STP). However, if A is a TJS (STJS) matrix then the analogous of this statement is true only for principal

submatrices. It is easy to see, that an arbitrary submatrix of a TJS matrix A may not be JS.

Since the projection of an arbitrary proper cone on a basic subspace may not be a proper cone in

this subspace, Proposition 29 may not be correct for an arbitrary GTP (GSTP) operator.

Example. Let a linear operator A : R
3 → R

3 be a rotation operator with the angle θ around the axis

defined by e3. It has the following matrix representation:

A =

⎛⎜⎜⎜⎝
cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

⎞⎟⎟⎟⎠ .

It is not difficult to see, that the rotation operator A leaves invariant the ice-cream cone K1 defined

in the following way:

K1 =
{
x = (x1, x2, x3) ∈ R

3;
√

(x1)2 + (x2)2} � x3
}

.
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Examine the secondexterior power∧2Aof theoperatorA. It is representedby the second compound

matrix A(2) in the basis e1 ∧ e2, e1 ∧ e3, e2 ∧ e3.

A(2) =

⎛⎜⎜⎜⎝
1 0 0

0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)

⎞⎟⎟⎟⎠ .

It is obvious, that ∧2A is a rotation in ∧2
R

3 with the same angle θ around the axis defined by

e1 ∧ e2. So it leaves invariant the ice-cream cone K2 defined in the following way:

K2 =
{
ϕ = (ϕ1, ϕ2, ϕ3) ∈ ∧2

R
3;

√
(ϕ2)2 + (ϕ3)2} � ϕ1

}
.

The matrix of the third exterior power ∧3A consists of only one element det A = 1. So ∧3A leaves

invariant the cone K3 which is the positive real axis.

Thus the operator A is GTP with respect to the structure {K1, K2, K3}.
But the principal submatrix A(1, 2) which is the matrix of the restriction of A on a basic sub-

space L(1, 2) spanned by the vectors e1, e2 is not GTP. It is not K-nonnegative. Indeed, examine the

eigenvalues of

A(1, 2) =
⎛⎝cos(θ) − sin(θ)

sin(θ) cos(θ)

⎞⎠ .

In the case of 0 < θ < π they are λ1 = cos(θ) + i sin(θ), λ2 = cos(θ) − i sin(θ) and both are

complex.

The reasoning of the proof of Proposition 29 is not valid in this case, since the projection of the

ice-cream cone K1 on L(1, 2) coincides with the whole L(1, 2).

Proposition 30. Let the matrix A of a linear operator A : R
n → R

n be TJS (STJS). Let P be an arbitrary

permutation of [n] and P be the corresponding permutation matrix. Then the matrix PAP−1 obtained from

the initial matrix by re-numerating of both the rows and columns in order P is TJS (respectively, STJS). In

particular, the matrix obtained from A by reversing the order of both its rows and columns is TJS (STJS) of

the same structure.

Proof. The proof is obvious since any similarity transformation with the permutation matrix is just

re-numbering of the basic vectors. �

Theorem 31. Let the matrix A of a linear operator A : R
n → R

n be STJS. Then all the eigenvalues of the

operator A are positive and simple:

ρ(A) = λ1 > λ2 > · · · > λn > 0.

Corollary 32. All principal minors of a STJS matrix A are positive.

Proof. The positivity of every real eigenvalue of A as well as of every real eigenvalue of each principal

submatrix of A implies the positivity of all principal minors of A (see [4, p. 385, Theorem 3.3]). �

14. Conclusions

Many important properties of GTP andGSTP operators like the criteria of generalized total positivity

and generalized strict total positivity, the factorization of GTP and GSTP operators, determinantal

inequalities, the interlacing properties of the eigenvalues as well as many important examples of GTP

operators are not considered in this paper. The application of the obtained theory tomulti-dimensional
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boundary-value problems is also not mentioned. However, the author hopes that it would be possible

to state GSTP properties of the corresponding Green’s functions for certain classes of such problems.

This would imply the positivity of the spectra of the corresponding differential operators.
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