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In this paper, by using the fractional power of operators and some fixed point theorems,
we discuss a class of fractional neutral evolution equations with nonlocal conditions and
obtain various criteria on the existence and uniqueness of mild solutions. In the end, we
give an example to illustrate the applications of the abstract results.
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1. Introduction

Fractional differential equations have recently been proved to be valuable tools in the modeling of many phenomena in
various fields of science and engineering. Indeed, we can find numerous applications in viscoelasticity, electrochemistry,
control, porous media, electromagnetic, etc. (see [1–6]). There has been a significant development in fractional differential
equations in recent years, see the monographs of Kilbas et al. [7], Miller and Ross [8], Podlubny [9], Lakshmikantham
et al. [10], and the papers [11–27] and the references therein.
In this paper, we assume that E is a Banach space with the norm | · |. Let J ⊂ R. Denote C(J, E) to be the Banach space of

continuous functions from J into E with the norm ‖x‖ = supt∈J |x(t)|, where x ∈ C(J, E).
Let r > 0 and C = C([−r, 0], E) be the space of continuous functions from [−r, 0] into E. For any element z ∈ C, define

the norm ‖z‖∗ = supϑ∈[−r,0] |z(ϑ)|.
Consider the nonlocal Cauchy problem of the following form{cDq[x(t)− h(t, xt)] + Ax(t) = f (t, xt) t ∈ (0, a],

x0(ϑ)+ (g(xt1 , . . . , xtn))(ϑ) = ϕ(ϑ), ϑ ∈ [−r, 0], (1)

where cDq is the Caputo fractional derivative of order 0 < q < 1, 0 < t1 < · · · < tn ≤ a, a > 0,−A is the infinitesimal
generator of an analytic semigroup {T (t)}t≥0 of operators on E, f , h: [0,∞)× C → E and g : Cn → C are given functions
satisfying some assumptions, ϕ ∈ C and define xt by xt(ϑ) = x(t + ϑ), for ϑ ∈ [−r, 0].
A strong motivation for investigating the nonlocal Cauchy problem (1) comes from physics. For example, fractional

diffusion equations are abstract partial differential equations that involve fractional derivatives in space and time. They are
useful to model anomalous diffusion, where a plume of particles spreads in a different manner than the classical diffusion
equation predicts. The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the
first-order time derivative with a fractional derivative of order α ∈ (0, 1), namely

∂αt u(z, t) = Au(z, t), t ≥ 0, z ∈ R.

We can take A = ∂β1z , for β1 ∈ (0, 1], or A = ∂z + ∂
β2
z for β2 ∈ (1, 2], where ∂αt , ∂

β1
z , ∂

β2
z are the fractional derivatives of

order α, β1, β2 respectively. We refer the interested reader to [11,22,24,25] and the references therein for more details.
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The nonlocal condition can be applied in physics with a better effect than the classical initial condition x0(ϑ) =
ϕ(ϑ), ϑ ∈ [−r, 0]. For example, g(xt1 , . . . , xtn) can be written as

(g(xt1 , . . . , xtn))(ϑ) =
m∑
i=1

cixti(ϑ),

where ci(i = 1, 2, . . . , n) are given constants and 0 < t1 < · · · < tn ≤ a. Nonlocal conditions were initiated by
Byszewski [28] when he proved the existence and uniqueness of mild and classical solutions of nonlocal Cauchy problems.
As remarked by Byszewski and Lakshmikantham [29], the nonlocal condition can be more useful than the standard initial
condition to describe some physical phenomena.
In [15], El-Sayed discussed fractional order diffusion-wave equations. Recently, Meerschaert et al. [22] studied a

stochastic solution of space-time fractional diffusion equations. Eidelman and Kochubei [12] investigated the Cauchy
problem for fractional diffusion equations. El-Borai [13,14] studied a fundamental solution of fractional evolution equations
in a Banach space. Baeumer et al. [11] gave the existence of solutions of inhomogeneous fractional diffusion equations
with a forcing function. Jardat, Al-Omrai and Momani [18] considered the existence and uniqueness of mild solution for
the semilinear initial Value problem of non-integer order. Muslim [23] investigated the existence and approximation of
solutions to fractional evolution equation in a Banach space. In addition, regarding works on the existence and uniqueness
of different types of solutions to integer-order evolution equations, we refer to [30,28,29,31] and the references therein.
In the next section, we will introduce some useful preliminaries. In Section 3, we establish criteria on the existence and

uniqueness of mild solutions for nonlocal Cauchy problem (1) by considering a integral equation which is given in terms of
probability density and semigroup. The methods of the functional analysis concerning an analytic semigroup of operators
and some fixed point theorems are applied effectively. In Section 4, we also give an example to illustrate the applications of
the abstract results.

2. Preliminaries

In this section, we introduce preliminary facts which are used throughout this paper.
Throughout this paper, let −A be the infinitesimal generator of an analytic semigroup {T (t)}t≥0 of uniformly bounded

linear operators on E. Let 0 ∈ ρ(A), where ρ(A) is the resolvent set of A. Then for 0 < η ≤ 1, it is possible to define
the fractional power Aη as a closed linear operator on its domain D(Aη). For analytic semigroup {T (t)}t≥0, the following
properties will be used.
(i) There is aM ≥ 1 such that

M := sup
t∈[0,+∞)

|T (t)| <∞, (2)

(ii) for any η ∈ (0, 1], there exists a positive constant Cη such that

|AηT (t)| ≤
Cη
tη
, 0 < t ≤ a. (3)

For more details about the above preliminaries, we refer to [30].
We need some basic definitions and properties of the fractional calculus theory which are used further in this paper.

Definition 2.1 ([9]). The fractional integral of order α with the lower limit 0 for a function f is defined as

Iα f (t) =
1

0(α)

∫ t

0

f (s)
(t − s)1−α

ds, t > 0, α > 0,

provided the right-hand side is pointwise defined on [0,∞), where 0 is the gamma function.

Definition 2.2 ([9]). The Caputo derivative of order α with the lower limit 0 for a function f can be written as

cDα f (t) =
1

0(n− α)

∫ t

0

f (n)(s)
(t − s)α+1−n

ds = In−α f (n)(t), t > 0, 0 ≤ n− 1 < α < n.

If f is an abstract function with values in E, then integrals which appear in Definitions 2.1 and 2.2 are taken in Bochner’s
sense.
Assume that J ⊂ R, and 1 ≤ p ≤ ∞. For measurable functionsm : J → R, define the norm

‖m‖LpJ =


(∫
J
|m(t)|pdt

) 1
p

, 1 ≤ p <∞,

inf
µ(J̄)=0
{ sup
t∈J−J̄
|m(t)|}, p = ∞,

where µ(J̄) is the Lebesgue measure on J̄ . Let Lp(J, R) be the Banach space of all Lebesgue measurable functions m : J → R
with ‖m‖LpJ <∞.
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Lemma 2.1 (Hölder Inequality). Assume that σ , p ≥ 1, and 1
σ
+
1
p = 1. If l ∈ L

σ (J, R),m ∈ Lp(J, R), then for 1 ≤ p ≤ ∞,
lm ∈ L1(J, R) and

‖lm‖L1J ≤ ‖l‖Lσ J‖m‖LpJ .

Lemma 2.2 (Bochner’s Theorem). A measurable function Q : [0, a] → E is Bochner integrable if |Q | is Lebesgue integrable.

Lemma 2.3 (Krasnoselskii’s Fixed Point Theorem). Let E be a Banach space, let B be a bounded closed and convex subset of E and
let F1, F2 bemaps of B into E such that F1x+F2y ∈ B for every pair x, y ∈ B. If F1 is a contraction and F2 is completely continuous,
then the equation F1x+ F2x = x has a solution on B.

Lemmas 2.1–2.3 are classical, which can be found in many books.

3. Existence and uniqueness of mild solutions

According to Definitions 2.1 and 2.2, it is suitable to rewrite the nonlocal Cauchy problem (1) in the equivalent integral
equation

x(t) = ϕ(0)− (g(xt1 , . . . , xtn))(0)− h(0, x0)+ h(t, xt)

+
1

0(q)

∫ t

0
(t − s)q−1[−Ax(s)+ f (s, xs)]ds, t ∈ [0, a],

x0(ϑ)+ (g(xt1 , . . . , xtn))(ϑ) = ϕ(ϑ), ϑ ∈ [−r, 0],

(4)

provided that the integral in (4) exists.
Before giving the definition of mild solution of (1), we first prove the following lemma.

Lemma 3.1. If (4) holds, then we have

x(t) =
∫
∞

0
φq(θ)T (tqθ)[ϕ(0)− (g(xt1 , . . . , xtn))(0)− h(0, x0)]dθ + h(t, xt)

+ q
∫ t

0

∫
∞

0
θ(t − s)q−1φq(θ)AT ((t − s)qθ)h(s, xs)dθds

+ q
∫ t

0

∫
∞

0
θ(t − s)q−1φq(θ)T ((t − s)qθ)f (s, xs)dθds, t ∈ [0, a],

x0(ϑ)+ (g(xt1 , . . . , xtn))(ϑ) = ϕ(ϑ), ϑ ∈ [−r, 0],

(5)

where φq is a probability density function defined on (0,∞), that is

φq(θ) ≥ 0, θ ∈ (0,∞) and
∫
∞

0
φq(θ)dθ = 1.

Proof. Let λ > 0. Applying Laplace transforms

ν(λ) =

∫
∞

0
e−λsx(s)ds, χ(λ) =

∫
∞

0
e−λsh(s, xs)ds,

and

ω(λ) =

∫
∞

0
e−λsf (s, xs)ds

to (4), we have

ν(λ) =
1
λ
[ϕ(0)− (g(xt1 , . . . , xtn))(0)− h(0, x0)] + χ(λ)−

1
λq
Aν(λ)+

1
λq
ω(λ)

= λq−1(λqI + A)−1[ϕ(0)− (g(xt1 , . . . , xtn))(0)− h(0, x0)]

+λq(λqI + A)−1χ(λ)+ (λqI + A)−1ω(λ)

= λq−1
∫
∞

0
e−λ

qsT (s)[ϕ(0)− (g(xt1 , . . . , xtn))(0)− h(0, x0)]ds

+λq
∫
∞

0
e−λ

qsT (s)χ(λ)ds+
∫
∞

0
e−λ

qsT (s)ω(λ)ds, (6)

where I is the identity operator defined on E.



1066 Y. Zhou, F. Jiao / Computers and Mathematics with Applications 59 (2010) 1063–1077

Consider the one-sided stable probability density [21]

ψq(θ) =
1
π

∞∑
n=1

(−1)n−1θ−qn−1
0(nq+ 1)
n!

sin(nπq), θ ∈ (0,∞),

whose Laplace transform is given by∫
∞

0
e−λθψq(θ)dθ = e−λ

q
, where q ∈ (0, 1). (7)

Using (7), we get

λq−1
∫
∞

0
e−λ

qsT (s)[ϕ(0)− (g(xt1 , . . . , xtn))(0)− h(0, x0)]ds

=

∫
∞

0
q(λt)q−1e−(λt)

q
T (tq)[ϕ(0)− (g(xt1 , . . . , xtn))(0)− h(0, x0)]dt

=

∫
∞

0
−
1
λ

d
dt
[e−(λt)

q
]T (tq)[ϕ(0)− (g(xt1 , . . . , xtn))(0)− h(0, x0)]dt

=

∫
∞

0

∫
∞

0
θψq(θ)e−λtθT (tq)[ϕ(0)− (g(xt1 , . . . , xtn))(0)− h(0, x0)]dθdt

=

∫
∞

0
e−λt

[∫
∞

0
ψq(θ)T

(
tq

θ q

)
[ϕ(0)− (g(xt1 , . . . , xtn))(0)− h(0, x0)]dθ

]
dt, (8)∫

∞

0
e−λ

qsT (s)ω(λ)ds =
∫
∞

0

∫
∞

0
qtq−1e−(λt)

q
T (tq)e−λsf (s, xs)dsdt

=

∫
∞

0

∫
∞

0

∫
∞

0
qψq(θ)e−(λtθ)T (tq)e−λstq−1f (s, xs)dθdsdt

=

∫
∞

0

∫
∞

0

∫
∞

0
qψq(θ)e−λ(t+s)T

(
tq

θ q

)
tq−1

θ q
f (s, xs)dθdsdt

=

∫
∞

0
e−λt

[
q
∫ t

0

∫
∞

0
ψq(θ)T

(
(t − s)q

θ q

)
f (s, xs)

(t − s)q

θ q
dθds

]
dt, (9)

and

λq
∫
∞

0
e−λ

qsT (s)χ(λ)ds =
∫
∞

0

∫
∞

0
qλqtq−1e−(λt)

q
T (tq)e−λsh(s, xs)dsdt

=

∫
∞

0

[∫
∞

0
−T (tq)e−λsh(s, xs)ds

]
de−(λt)

q

=

(
e−(λt)

q
∫
∞

0
−T (tq)e−λsh(s, xs)ds

)∣∣∣∣∞
t=0

+

∫
∞

0

∫
∞

0
qtq−1e−(λt)

q
AT (tq)e−λsh(s, xs)dsdt

=

∫
∞

0
e−λt

[
h(t, xt)+ q

∫ t

0

∫
∞

0
ψq(θ)AT

(
(t − s)q

θ q

)
h(s, xs)

(t − s)q

θ q
dθds

]
dt. (10)

According to (6) and (8)–(10), we have

ν(λ) =

∫
∞

0
e−λt

[∫
∞

0
ψq(θ)T

(
tq

θ q

)
[ϕ(0)− (g(xt1 , . . . , xtn))(0)− h(0, x0)]dθ

+ h(t, xt)+ q
∫ t

0

∫
∞

0
ψq(θ)AT

(
(t − s)q

θ q

)
h(s, xs)

(t − s)q

θ q
dθds

+ q
∫ t

0

∫
∞

0
ψq(θ)T

(
(t − s)q

θ q

)
f (s, xs)

(t − s)q

θ q
dθds

]
dt.

Now we can invert the last Laplace transform to get

x(t) =
∫
∞

0
ψq(θ)T

(
tq

θ q

)
[ϕ(0)− (g(xt1 , . . . , xtn))(0)− h(0, x0)]dθ + h(t, xt)
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+ q
∫ t

0

∫
∞

0
ψq(θ)AT

(
(t − s)q

θ q

)
h(s, xs)

(t − s)q

θ q
dθds

+ q
∫ t

0

∫
∞

0
ψq(θ)T

(
(t − s)q

θ q

)
f (s, xs)

(t − s)q

θ q
dθds

=

∫
∞

0
φq(θ)T (tqθ)[ϕ(0)− (g(xt1 , . . . , xtn))(0)− h(0, x0)]dθ + h(t, xt)

+ q
∫ t

0

∫
∞

0
θ(t − s)q−1φq(θ)AT ((t − s)qθ)h(s, xs)dθds

+ q
∫ t

0

∫
∞

0
θ(t − s)q−1φq(θ)T ((t − s)qθ)f (s, xs)dθds,

where φq(θ) = 1
q θ
−1−1/qψq(θ

−1/q) is the probability density function defined on (0,∞). This completes the proof. �

For any x ∈ E, Define operators {Sq(t)}t≥0 and {Tq(t)}t≥0 by

Sq(t)x =
∫
∞

0
φq(θ)T (tqθ)xdθ and Tq(t)x = q

∫
∞

0
θφq(θ)T (tqθ)xdθ.

Due to Lemma 3.1, we give the following definition of the mild solution of (1).

Definition 3.1. By themild solution of the nonlocal Cauchy problem (1), wemean that the function x ∈ C([−r, a], E)which
satisfies

x(t) = Sq(t)[ϕ(0)− (g(xt1 , . . . , xtn))(0)− h(0, x0)] + h(t, xt)+
∫ t

0
(t − s)q−1ATq(t − s)h(s, xs)ds

+

∫ t

0
(t − s)q−1Tq(t − s)f (s, xs)ds, t ∈ [0, a],

x0(ϑ)+ (g(xt1 , . . . , xtn))(ϑ) = ϕ(ϑ), ϑ ∈ [−r, 0].

Before stating and proving the main results, we introduce the following hypotheses.
(H1) T (t) is a compact operator for every t > 0,
(H2) for almost all t ∈ [0, a], the function f (t, ·) : C → E is continuous and for each z ∈ C, the function f (·, z) : [0, a] → E

is strongly measurable,
(H3) there exists a constant q1 ∈ [0, q) and m ∈ L

1
q1 ([0, a], R+) such that |f (t, z)| ≤ m(t) for all z ∈ C and almost all

t ∈ [0, a],
(H4) there exists a constant L > 0 such that ‖g(xt1 , . . . , xtn)− g(yt1 , . . . , ytn)‖∗ ≤ L‖x− y‖, for x, y ∈ C([−r, a], E),
(H5) h : [0, a]×C → E is continuous function and there exists a constantβ ∈ (0, 1) andH,H1 > 0 such that h ∈ D(Aβ) and

for any z, y ∈ C, t ∈ [0, a], the function Aβh(·, z) is strongly measurable and Aβh(t, ·) satisfies the Lipschitz condition

|Aβh(t, z)− Aβh(t, y)| ≤ H‖z − y‖∗ (11)

and the inequality

|Aβh(t, z)| ≤ H1(‖z‖∗ + 1). (12)

Remark 3.1. The condition (H3) can be replaced by the condition

(H3)′ there exists a constant q1 ∈ [0, q) and mk ∈ L
1
q1 ([0, a], R+) such that |f (t, z)| ≤ mk(t) for all z ∈ C, ‖z‖∗ ≤ k and

almost all t ∈ [0, a], where k is any positive constant.
Since (H3)′ would not be an essential generalization, we only consider (H3) throughout the following text.
We prove the following lemmas relative to operators {Sq(t)}t≥0 and {Tq(t)}t≥0 before we proceed further.

Lemma 3.2. For any fixed t ≥ 0, Sq(t) and Tq(t) are linear and bounded operators.
Proof. For any fixed t ≥ 0, since T (t) is linear operator, it is easy to see that Sq(t) and Tq(t) are also linear operators. For
ξ ∈ [0, 1], according to [21], direct calculation gives that∫

∞

0

1
θ ξ
ψq(θ)dθ =

0(1+ ξ

q )

0(1+ ξ)
.

Then we have∫
∞

0
θ ξφq(θ)dθ =

∫
∞

0

1
θ qξ

ψq(θ)dθ =
0(1+ ξ)
0(1+ qξ)

. (13)
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In the case ξ = 1, we have∫
∞

0
θφq(θ)dθ =

∫
∞

0

1
θ q
ψq(θ)dθ =

1
0(1+ q)

.

For any x ∈ E, according to (2) and (13), we have

|Sq(t)x| =
∣∣∣∣∫ ∞
0
φq(θ)T (tqθ)xdθ

∣∣∣∣ ≤ M|x|
and

|Tq(t)x| =
∣∣∣∣q ∫ ∞

0
θφq(θ)T (tqθ)xdθ

∣∣∣∣ ≤ qM
0(1+ q)

|x|.

This completes the proof. �

Lemma 3.3. Operators {Sq(t)}t≥0 and {Tq(t)}t≥0 are strongly continuous, which means that for ∀x ∈ E and 0 ≤ t ′ < t ′′ ≤ a,
we have

|Sq(t ′′)x− Sq(t ′)x| → 0 and |Tq(t ′′)x− Tq(t ′)x| → 0 as t ′ → t ′′.

Proof. For any x ∈ E and 0 ≤ t ′ < t ′′ ≤ a, we get that

|Tq(t ′′)x− Tq(t ′)x| =
∣∣∣∣q ∫ ∞

0
θφq(θ)[T ((t ′′)qθ)− T ((t ′)qθ)]xdθ

∣∣∣∣
≤ qM

∫
∞

0
θφq(θ)|[T ((t ′′)qθ − (t ′)qθ)− I]x|dθ.

According to the strongly continuity of {T (t)}t≥0 and (13), we know that |Tq(t ′′)x − Tq(t ′)x| tends to zero as t ′′ − t ′ → 0,
whichmeans that {Tq(t)}t≥0 is strongly continuous. Using a similarmethod,we can also obtain that {Sq(t)}t≥0 is also strongly
continuous, and this completes the proof. �

Lemma 3.4. If the assumption (H1) is satisfied, then Sq(t) and Tq(t) are also compact operators for every t > 0.

Proof. For each positive constant k, set Yk = {x ∈ E : |x| ≤ k}. Then Yk is clearly a bounded subset in E.
We only need prove that for any positive constant k and t > 0, the sets

V1(t) =
{∫

∞

0
φq(θ)T (tqθ)xdθ, x ∈ Yk

}
and V2(t) =

{
q
∫
∞

0
θφq(θ)T (tqθ)xdθ, x ∈ Yk

}
are relatively compact in E.
Let t > 0 be fixed. For ∀ δ > 0, define the subset in E by

Vδ(t) =
{∫

∞

δ

φq(θ)T (tqθ)xdθ, x ∈ Yk

}
.

Then for any x ∈ Yk, we have∫
∞

δ

φq(θ)T (tqθ)xdθ = T (tqδ)
∫
∞

δ

φq(θ)T (tqθ − tqδ)xdθ.

From the compactness of T (tqδ)(tqδ > 0), we obtain that the set Vδ(t) is relatively compact in E for ∀ δ > 0. Moreover, for
every x ∈ Yk, we have∣∣∣∣∫ ∞

0
φq(θ)T (tqθ)xdθ −

∫
∞

δ

φq(θ)T (tqθ)xdθ
∣∣∣∣ = ∣∣∣∣∫ δ

0
φq(θ)T (tqθ)xdθ

∣∣∣∣ ≤ Mk ∫ δ

0
φq(θ)dθ.

Therefore, there are relatively compact sets arbitrarily close to the set V1(t), t > 0. Hence the set V1(t), t > 0 is also
relatively compact in E. Similarly, we can conclude that the set V2(t), t > 0 is relatively compact in E. The proof is
complete. �

Lemma 3.5. For any x ∈ E, β ∈ (0, 1) and η ∈ (0, 1], we have

ATq(t)x = A1−βTq(t)Aβx, 0 ≤ t ≤ a,

and

|AηTq(t)| ≤
qCη
tqη

0(2− η)
0(1+ q(1− η))

, 0 < t ≤ a.
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Proof. For any x ∈ E, β ∈ (0, 1) and η ∈ (0, 1], we have

ATq(t)x = q
∫
∞

0
θφq(θ)AT (tqθ)xdθ

= q
∫
∞

0
θφq(θ)A1−βT (tqθ)Aβxdθ

= A1−βTq(t)Aβx.

By (3) and (13), we get

|AηTq(t)x| =
∣∣∣∣q ∫ ∞

0
θφq(θ)AηT (tqθ)xdθ

∣∣∣∣ ≤ ∫ ∞
0
θφq(θ)

Cη
(tqθ)η

|x|dθ

=
qCη|x|
tqη

∫
∞

0
θ1−ηφq(θ)dθ

=
qCη
tqη

0(2− η)
0(1+ q(1− η))

|x|, 0 < t ≤ a.

The proof is complete. �

For each positive constant k, let Bk = {x ∈ C([−r, a], E) : ‖x‖ ≤ k}. Then Bk is clearly a bounded closed and convex
subset in C([−r, a], E).
The following existence results for the nonlocal Cauchy problem (1) is based on Krasnoselskii’s fixed point theorem.

Theorem 3.1. If (H1)–(H5) are satisfied, then the nonlocal Cauchy problem (1) has a mild solution provided that

(i) ML+ (M + 1)|A−β |H1 +
0(1+β)C1−βH1
β0(1+qβ) aqβ < 1,

(ii) ML+ (M + 1)|A−β |H + 0(1+β)C1−βH
β0(1+qβ) aqβ < 1.

Proof. Define the function υ ∈ C([−r, a], E) such that |υ(t)| ≡ 0, t ∈ [−r, a]. For any positive constant k and x ∈ Bk, in
view of (12), Lemma 3.2 and the condition (H4), for t ∈ [0, a], it follows that

|Sq(t)[ϕ(0)− (g(xt1 , . . . , xtn))(0)− h(0, x0)]| ≤ M(|ϕ(0)| + L‖x− υ‖ + |g(υt1 , . . . , υtn)(0)| + |A
−βAβh(0, x0)|)

≤ M[‖ϕ‖∗ + Lk+ ‖g(υt1 , . . . , υtn)‖∗ + |A
−β
|H1(k+ 1)]. (14)

For any positive constant k and x ∈ Bk, since xt is continuous in t , according to (H2), f (t, xt) is a measurable function on

[0, a]. Direct calculation gives that (t − s)q−1 ∈ L
1

1−q1 [0, t] for t ∈ [0, a] and q1 ∈ [0, q). Let

b =
q− 1
1− q1

∈ (−1, 0), M1 = ‖m‖
L
1
q1 [0,a].

By using Lemma 2.1 (Hölder inequality) and (H3), for t ∈ [0, a], we obtain∫ t

0
|(t − s)q−1f (s, xs)|ds ≤

(∫ t

0
(t − s)

q−1
1−q1 ds

)1−q1
‖m‖

L
1
q1 [0,t]

≤
M1

(1+ b)1−q1
a(1+b)(1−q1). (15)

In view of Lemma 3.2 and (15), we get∫ t

0
|(t − s)q−1Tq(t − s)f (s, xs)|ds ≤

qM
0(1+ q)

∫ t

0
|(t − s)q−1f (s, xs)|ds,

≤
qM1M

0(1+ q)(1+ b)1−q1
a(1+b)(1−q1), for t ∈ [0, a]. (16)

Thus, |(t−s)q−1Tq(t−s)f (s, xs)| is Lebesgue integrablewith respect to s ∈ [0, t] for all t ∈ [0, a]. From Lemma 2.2 (Bochner’s
theorem), it follows that (t − s)q−1Tq(t − s)f (s, xs) is Bochner integrable with respect to s ∈ [0, t] for all t ∈ [0, a].
Since h ∈ D(Aβ), the function Aβh(·, z) is strongly measurable for any z ∈ C, t ∈ [0, a], and Aβh(t, ·) satisfies the

Lipschitz condition, then Aβh(s, xs) is strongly measurable on [0, a]. In addition, in view of the fact that {T (t)}t≥0 is an
analytic semigroup, then for t ∈ (0, a] and θ ∈ (0,∞), the operator function s → (t − s)q−1AT ((t − s)qθ) is continuous
in the uniform operator topology in [0, t) and thus (t − s)q−1ATq(t − s)h(s, xs) is continuous in [0, t). Applying (12) and
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Lemma 3.5, for any x ∈ Bk, t ∈ [0, a], the following relation holds∫ t

0
|(t − s)q−1ATq(t − s)h(s, xs)|ds =

∫ t

0
|(t − s)q−1A1−βTq(t − s)Aβh(s, xs)|ds

≤

∫ t

0
(t − s)q−1

q0(1+ β)C1−β
0(1+ qβ)(t − s)q(1−β)

H1(k+ 1)ds

=
q0(1+ β)
0(1+ qβ)

C1−βH1(k+ 1)
∫ t

0
(t − s)qβ−1ds

=
0(1+ β)
β0(1+ qβ)

C1−βH1(k+ 1)aqβ . (17)

Thus, |(t − s)q−1ATq(t − s)h(s, xs)| is Lebesgue integrable with respect to s ∈ [0, t] for all t ∈ [0, a]. From Lemma 2.2
(Bochner’s theorem), it follows that (t−s)q−1ATq(t−s)h(s, xs) is Bochner integrablewith respect to s ∈ [0, t] for all t ∈ [0, a].
For each positive k, define two operators F1 and F2 on Bk as follows(F1x)(t) = Sq(t)[ϕ(0)− (g(xt1 , . . . , xtn))(0)− h(0, x0)] + h(t, xt)+

∫ t

0
(t − s)q−1ATq(t − s)h(s, xs)ds t ∈ [0, a],

(F1x)(ϑ) = ϕ(ϑ)− (g(xt1 , . . . , xtn))(ϑ), ϑ ∈ [−r, 0],

and (F2x)(t) =
∫ t

0
(t − s)q−1Tq(t − s)f (s, xs)ds, t ∈ [0, a],

(F2x)(ϑ) = 0, ϑ ∈ [−r, 0],

where x ∈ Bk.
Obviously, x is a mild solution of (1) if and only if the operator equation x = F1x+F2x has a solution x ∈ Bk. Therefore, the

existence of amild solution of (1) is equivalent to determining a positive constant k0, such that F1+F2 has a fixed point on Bk0 .
In fact, in view of (i) of Theorem 3.1, by choosing k0 such that

k0 = M[‖ϕ‖∗ + Lk0 + ‖g(υt1 , . . . , υtn)‖∗ + |A
−β
|H1(k0 + 1)] + |A−β |H1(k0 + 1)

+
qM1M

0(1+ q)(1+ b)1−q1
a(1+b)(1−q1) +

0(1+ β)C1−βH1(k0 + 1)
β0(1+ qβ)

aqβ , (18)

we can prove that F1 + F2 has a fixed point on Bk0 . Our proof will be divided into three steps.
Step I. F1x+ F2y ∈ Bk0 whenever x, y ∈ Bk0 .
For any fixed x ∈ Bk0 and 0 ≤ t

′ < t ′′ ≤ a, we get that

|(F2x)(t ′′)− (F2x)(t ′)| =

∣∣∣∣∣
∫ t ′′

0
(t ′′ − s)q−1Tq(t ′′ − s)f (s, xs)ds−

∫ t ′

0
(t ′ − s)q−1Tq(t ′ − s)f (s, xs)ds

∣∣∣∣∣
≤

∣∣∣∣∣
∫ t ′′

t ′
(t ′′ − s)q−1Tq(t ′′ − s)f (s, xs)ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t ′

0
(t ′′ − s)q−1Tq(t ′′ − s)f (s, xs)ds−

∫ t ′

0
(t ′ − s)q−1Tq(t ′′ − s)f (s, xs)ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t ′

0
(t ′ − s)q−1Tq(t ′′ − s)f (s, xs)ds−

∫ t ′

0
(t ′ − s)q−1Tq(t ′ − s)f (s, xs)ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ t ′′

t ′
(t ′′ − s)q−1Tq(t ′′ − s)f (s, xs)ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t ′

0
[(t ′′ − s)q−1 − (t ′ − s)q−1]Tq(t ′′ − s)f (s, xs)ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t ′

0
(t ′ − s)q−1[Tq(t ′′ − s)− Tq(t ′ − s)]f (s, xs)ds

∣∣∣∣∣
= I1 + I2 + I3,
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where

I1 =

∣∣∣∣∣
∫ t ′′

t ′
(t ′′ − s)q−1Tq(t ′′ − s)f (s, xs)ds

∣∣∣∣∣ ,
I2 =

∣∣∣∣∣
∫ t ′

0
[(t ′′ − s)q−1 − (t ′ − s)q−1]Tq(t ′′ − s)f (s, xs)ds

∣∣∣∣∣ ,
I3 =

∣∣∣∣∣
∫ t ′

0
(t ′ − s)q−1[Tq(t ′′ − s)− Tq(t ′ − s)]f (s, xs)ds

∣∣∣∣∣ .
Therefore, for every x ∈ Bk0 , (F1x)(t) is continuous in t ∈ [−r, a]. Using the similar argument and (12), we can conclude
that for every y ∈ Bk0 , (F2y)(t) is also continuous in t ∈ [−r, a].
For every pair x, y ∈ Bk0 and t ∈ [0, a], by using similar methods as we did in (14)–(17) and noting that (18), we have

|(F1x)(t)+ (F2y)(t)| ≤ |Sq(t)[ϕ(0)− (g(xt1 , . . . , xtn))(0)− h(0, x0)]| + |h(t, xt)|

+

∣∣∣∣∫ t

0
(t − s)q−1ATq(t − s)h(s, xs)ds

∣∣∣∣+ ∣∣∣∣∫ t

0
(t − s)q−1Tq(t − s)f (s, xs)ds

∣∣∣∣
≤ M[‖ϕ‖∗ + Lk0 + ‖g(υt1 , . . . , υtn)‖∗ + |A

−β
|H1(k0 + 1)] + |A−β |H1(k0 + 1)

+
qM1M

0(1+ q)(1+ b)1−q1
a(1+b)(1−q1) +

0(1+ β)C1−βH1(k0 + 1)
β0(1+ qβ)

aqβ

= k0. (19)

Noting thatM ≥ 1, we have

|(F1x)(ϑ)+ (F2y)(ϑ)| ≤ M[‖ϕ‖∗ + Lk0 + ‖g(υt1 , . . . , υtn)‖∗] ≤ k0 ϑ ∈ [−r, 0].

Hence, ‖F1x+ F2y‖ ≤ k0 for every pair x, y ∈ Bk0 .
Step II. F1 is a contraction on Bk0 .
For any x, y ∈ Bk0 and t ∈ [0, a], according to (11), (H4), Lemmas 3.2 and 3.5, we have

|(F1x)(t)− (F1y)(t)| ≤ |Sq(t)[(g(xt1 , . . . , xtn))(0)− (g(yt1 , . . . , ytn))(0)]|
+ |Sq(t)[h(0, x0)− h(0, y0)]| + |h(t, xt)− h(t, yt)|

+

∫ t

0
(t − s)q−1|A1−βTq(t − s)[Aβh(s, xs)− Aβh(s, ys)]|ds

≤ ML‖x− y‖ + (M + 1)|A−β |H‖x− y‖ +
0(1+ β)C1−βH
β0(1+ qβ)

aqβ‖x− y‖,

=

(
ML+ (M + 1)|A−β |H +

0(1+ β)C1−βH
β0(1+ qβ)

aqβ
)
‖x− y‖.

Noting thatM ≥ 1, we have

|(F1x)(ϑ)− (F1y)(ϑ)| ≤ ML‖x− y‖, ϑ ∈ [−r, 0],

which implies that ‖F1x− F1y‖ ≤
(
ML+ (M + 1)|A−β |H + 0(1+β)C1−βH

β0(1+qβ) aqβ
)
‖x− y‖. According to (ii) of Theorem 3.1, we

get that F1 is a contraction.
Step III. F2 is a completely continuous operator.
First, wewill prove that F2 is continuous on Bk0 . Let {x

n
} ⊆ Bk0 with x

n
→ x on Bk0 . Then by (H2) and the fact that x

n
t → xt

for t ∈ [0, a], we have

ff (s, xns )→ f (s, xs), a.e. t ∈ [0, a] as n→∞.

Noting that |f (s, xns )− f (s, xs)| ≤ 2m(s), by the dominated convergence theorem, we have

|(F2xn)(t)− (F2x)(t)| =
∣∣∣∣∫ t

0
(t − s)q−1Tq(t − s)[f (s, xns )− f (s, xs)]ds

∣∣∣∣
≤

qM
0(1+ q)

∫ t

0
(t − s)q−1|f (s, xns )− f (s, xs)|ds→ 0, as n→∞,

which implies that F2 is continuous.
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Next, we will show that {F2x, x ∈ Bk0} is relatively compact. It suffices to show that the family of functions {F2x, x ∈ Bk0}
is uniformly bounded and equicontinuous, and for any t ∈ [0, a], {(F2x)(t), x ∈ Bk0} is relatively compact in E.
For any x ∈ Bk0 , we have ‖F2x‖ ≤ k0, which means that {F2x, x ∈ Bk0} is uniformly bounded. In the following, we will

show that {F2x, x ∈ Bk0} is a family of equicontinuous functions.
For any x ∈ Bk0 and 0 ≤ t

′ < t ′′ ≤ a, we get that |(F2x)(t ′′)− (F2x)(t ′)| ≤ I1 + I2 + I3, where I1, I2 and I3 are defined as
in Step I. By using the analogous argument performed in (15) and (16), we can conclude that

I1 ≤
qM1M(t ′′ − t ′)(1+b)(1−q1)

0(1+ q)(1+ b)1−q1
,

I2 ≤
qM

0(1+ q)

(∫ t ′

0
((t ′ − s)q−1 − (t ′′ − s)q−1)

1
1−q1 ds

)1−q1
‖m‖

L
1
q1 [0,t ′]

≤
qM1M
0(1+ q)

(∫ t ′

0
((t ′ − s)b − (t ′′ − s)b)ds

)1−q1
=

qM1M
0(1+ q)(1+ b)1−q1

(
(t ′)1+b − (t ′′)1+b + (t ′′ − t ′)1+b

)1−q1
≤

qM1M
0(1+ q)(1+ b)1−q1

(t ′′ − t ′)(1+b)(1−q1).

For t ′ = 0, 0 < t ′′ ≤ a, it is easy to see that I3 = 0. For t ′ > 0 and ε > 0 small enough, we have

I3 ≤
∫ t ′−ε

0
(t ′ − s)q−1|Tq(t ′′ − s)− Tq(t ′ − s)‖f (s, xs)|ds+

∫ t ′

t ′−ε
(t ′ − s)q−1|Tq(t ′′ − s)− Tq(t ′ − s)‖f (s, xs)|ds

≤
M1((t ′)1+b − ε1+b)(1−q1)

(1+ b)1−q1
sup

s∈[0,t ′−ε]
|Tq(t ′′ − s)− Tq(t ′ − s)| +

2qM1M
0(1+ q)(1+ b)1−q1

ε(1+b)(1−q1).

Since (H1) and Lemma 3.4 imply that the continuity of Tq(t)(t > 0) in t in the uniform operator topology, it is easy
to see that I3 tends to zero independently of x ∈ Bk0 as t

′′
− t ′ → 0, ε → 0. Thus, |(F2x)(t ′) − (F2x)(t ′′)| tends to zero

independently of x ∈ Bk0 as t
′′
− t ′ → 0, which means that {F2x, x ∈ Bk0} is equicontinuous.

It remains to prove that for any t ∈ [−r, a], V (t) = {(F2x)(t), x ∈ Bk0} is relatively compact in E.
Obviously, for t ∈ [−r, 0], V (t) is relatively compact in E. Let 0 < t ≤ a be fixed. For ∀ ε ∈ (0, t) and ∀ δ > 0, define an

operator Fε,δ on Bk0 by the formula

(Fε,δx)(t) = q
∫ t−ε

0

∫
∞

δ

θ(t − s)q−1φq(θ)T ((t − s)qθ)f (s, xs)dθds

= q
∫ t−ε

0

∫
∞

δ

θ(t − s)q−1φq(θ)[T (εqδ)T ((t − s)qθ − εqδ)]f (s, xs)dθds,

= T (εqδ)q
∫ t−ε

0

∫
∞

δ

θ(t − s)q−1φq(θ)T ((t − s)qθ − εqδ)f (s, xs)dθds,

where x ∈ Bk0 . Then from the compactness of T (ε
qδ)(εqδ > 0), we obtain that the set Vε,δ(t) = {(Fε,δx)(t), x ∈ Bk0} is

relatively compact in E for ∀ ε ∈ (0, t) and ∀ δ > 0. Moreover, for every x ∈ Bk0 , we have

|(F2x)(t)− (Fε,δx)(t)| = q
∣∣∣∣∫ t

0

∫ δ

0
θ(t − s)q−1φq(θ)T ((t − s)qθ)f (s, xs)dθds

+

∫ t

0

∫
∞

δ

θ(t − s)q−1φq(θ)T ((t − s)qθ)f (s, xs)dθds

−

∫ t−ε

0

∫
∞

δ

θ(t − s)q−1φq(θ)T ((t − s)qθ)f (s, xs)dθds
∣∣∣∣

≤ q
∣∣∣∣∫ t

0

∫ δ

0
θ(t − s)q−1φq(θ)T ((t − s)qθ)f (s, xs)dθds

∣∣∣∣
+ q

∣∣∣∣∫ t

t−ε

∫
∞

δ

θ(t − s)q−1φq(θ)T ((t − s)qθ)f (s, xs)dθds
∣∣∣∣

≤ qM
(∫ t

0
(t − s)

q−1
1−q1 ds

)1−q1
‖m‖

L
1
q1 [0,t]

∫ δ

0
θφq(θ)dθ
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+ qM
(∫ t

t−ε
(t − s)

q−1
1−q1 ds

)1−q1
‖m‖

L
1
q1 [t−ε,t]

∫
∞

0
θφq(θ)dθ

≤
qM1Ma(1+b)(1−q1)

(1+ b)1−q1

∫ δ

0
θφq(θ)dθ +

qM1M
0(1+ q)(1+ b)1−q1

ε(1+b)(1−q1).

Therefore, there are relatively compact sets arbitrarily close to the set V (t), t > 0. Hence the set V (t), t > 0 is also
relatively compact in E.
Therefore, {F2x, x ∈ Bk0} is relatively compact by Ascoli–Arzela Theorem. Thus, the continuity of F2 and relative com-

pactness of {F2x, x ∈ Bk0} imply that F2 is a completely continuous operator. Hence, Krasnoselskii’s fixed point theorem
shows that F1 + F2 has a fixed point on Bk0 . Therefore, the nonlocal Cauchy problem (1) has a mild solution. The proof is
complete. �

In the following, we give an existence result in the case where (H4) is not satisfied. We need the following assumption.
(H4)′ g is completely continuous, and there exist positive constants L1, L1′ such that ‖g(xt1 , . . . , xtn)‖∗ ≤ L1‖x‖ + L1

′ for all
x ∈ C([−r, a], E).

Theorem 3.2. If assumptions (H1)–(H3), (H4)′ and (H5) are satisfied, then the nonlocal Cauchy problem (1) has a mild solution
provided that

(i) ML1 + (M + 1)|A−β |H1 +
0(1+β)C1−βH1
β0(1+qβ) aqβ < 1,

(ii) (M + 1)|A−β |H + 0(1+β)C1−βH
β0(1+qβ) aqβ < 1.

Proof. For any positive constant k and x ∈ Bk, according to (12), (H4)′ and Lemma 3.2, it follows that

|Sq(t)[ϕ(0)− (g(xt1 , . . . , xtn))(0)− h(0, x0)]| ≤ M[‖ϕ‖∗ + L1k+ L1
′
+ |A−β |H1(k+ 1)]. (20)

Therefore, the function Sq(t)[ϕ(0)− (g(xt1 , . . . , xtn))(0)− h(0, x0)] exists. According to (15)–(17), for x ∈ Bk, the functions
(t − s)q−1Tq(t − s)f (s, xs) and (t − s)q−1ATq(t − s)h(s, xs) are Bochner integrable with respect to s ∈ [0, t] for all t ∈ [0, a].
For each positive k, define two operators G1 and G2 on Bk as follows(G1x)(t) = h(t, xt)− Sq(t)h(0, x0)+

∫ t

0
(t − s)q−1ATq(t − s)h(s, xs)ds t ∈ [0, a],

(G1x)(ϑ) = 0, ϑ ∈ [−r, 0],

and (G2x)(t) = Sq(t)[ϕ(0)− (g(xt1 , . . . , xtn))(0)] +
∫ t

0
(t − s)q−1Tq(t − s)f (s, xs)ds, t ∈ [0, a],

(G2x)(ϑ) = ϕ(ϑ)− (g(xt1 , . . . , xtn))(ϑ), ϑ ∈ [−r, 0]

where x ∈ Bk. In view of (i) of Theorem 3.2, we can choose k1 such that

k1 = M[‖ϕ‖∗ + L1k1 + L′1 + |A
−β
|H1(k1 + 1)] + |A−β |H1(k1 + 1)

+
qM1M

0(1+ q)(1+ b)1−q1
a(1+b)(1−q1) +

0(1+ β)C1−βH1(k1 + 1)
β0(1+ qβ)

aqβ . (21)

In the following, we will prove that F has a fixed point on Bk1 . Our proof will be divided into three steps.
Step I. G1x+ G2y ∈ Bk1 whenever x, y ∈ Bk1 .
Obviously, for every pair x, y ∈ Bk1 , (G1x)(t) and (G2y)(t) are continuous in t ∈ [−r, a]. For every pair x, y ∈ Bk1 and

t ∈ [0, a], by using (20) and (21) and similar methods as we did in (15)–(17), we have

|(G1x)(t)+ (G2y)(t)| ≤ |Sq(t)[ϕ(0)− (g(xt1 , . . . , xtn))(0)− h(0, x0)]| + |h(t, xt)|

+

∣∣∣∣∫ t

0
(t − s)q−1ATq(t − s)h(s, xs)ds

∣∣∣∣+ ∣∣∣∣∫ t

0
(t − s)q−1Tq(t − s)f (s, xs)ds

∣∣∣∣
≤ M[‖ϕ‖∗ + L1k1 + L′1 + |A

−β
|H1(k1 + 1)] + |A−β |H1(k1 + 1)

+
qM1M

0(1+ q)(1+ b)1−q1
a(1+b)(1−q1) +

0(1+ β)C1−βH1(k1 + 1)
β0(1+ qβ)

aqβ

= k1. (22)

Noting thatM ≥ 1, we have

|(G1x)(ϑ)+ (G2y)(ϑ)| ≤ M[‖ϕ‖∗ + L1k1 + L′1] ≤ k1 ϑ ∈ [−r, 0].

Hence, ‖G1x+ G2y‖ ≤ k1 for every pair x, y ∈ Bk1 .
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Step II. G1 is a contraction on Bk1 .
For any x, y ∈ Bk1 and t ∈ [0, a], according to (11), we have

|(G1x)(t)− (G1y)(t)| ≤ |Sq(t)[h(0, x0)− h(0, y0)]| + |h(t, xt)− h(t, yt)|

+

∫ t

0
(t − s)q−1|A1−βTq(t − s)[Aβh(s, xs)− Aβh(t, ys)]|ds

≤ (M + 1)|A−β |H‖x− y‖ +
0(1+ β)C1−βH
β0(1+ qβ)

aqβ‖x− y‖,

≤

(
(M + 1)|A−β |H +

0(1+ β)C1−βH
β0(1+ qβ)

aqβ
)
‖x− y‖,

which implies

‖G1x− G1y‖ ≤
(
(M + 1)|A−β |H +

0(1+ β)C1−βH
β0(1+ qβ)

aqβ
)
‖x− y‖.

According to (ii) of Theorem 3.2, we get that G1 is a contraction.
Step III. G2 is a completely continuous operator.
First, we will show that {G2x, x ∈ Bk1} is equicontinuous. For any x ∈ Bk1 and 0 ≤ t

′ < t ′′ ≤ a, we get that

|(G2x)(t ′′)− (G2x)(t ′)| ≤ |[Sq(t ′′)− Sq(t ′)][ϕ(0)− (g(xt1 , . . . , xtn))(0)]| + I1 + I2 + I3,

where I1, I2 and I3 are defined as in the proof of Theorem 3.1. According to the strongly continuity of {Sq(t)}t≥0 and (H4)′,
we know that |(Gx)(t ′)− (Gx)(t ′′)| tends to zero independently of x ∈ Bk1 as t

′′
− t ′ → 0, which means that {Gx, x ∈ Bk1}

is equicontinuous.
It remains to prove that for t ∈ [−r, a], the set {(G2x)(t), x ∈ Bk1} is relatively compact in E. Obviously, for t ∈ [−r, 0],

the set {(G2x)(t), x ∈ Bk1} is relatively compact in E by (H4)
′. According to the argument of Theorem 3.1, we only need

prove that for any t ∈ (0, a], the set V ′(t) = {Sq(t)[ϕ(0)− (g(xt1 , . . . , xtn))(0)], x ∈ Bk1} is relatively compact in E. In fact,
the set V ′(t), t > 0 is also relatively compact in E according to (H1) and Lemma 3.4. Moreover, {G2x, x ∈ Bk1} is uniformly
bounded by (22). Therefore, {G2x, x ∈ Bk1} is relatively compact by Ascoli–Arzela Theorem.
Using a similar argument as that we did in the proof of Theorem 3.1, we know that G2 is continuous on Bk1 by (H2) and

(H4)′. Thus, G2 is a completely continuous operator. Hence, Krasnoselskii’s fixed point theorem shows that G1 + G2 has a
fixed point on Bk1 , which means that the nonlocal Cauchy problem (1) has a mild solution. The proof is complete. �

The following existence and uniqueness result for the nonlocal Cauchy problem (1) is based on the Banach contraction
principle. We will need the following assumptions.
(H6) f (t, xt) is strongly measurable for any x ∈ C([−r, a], Bk) and almost all t ∈ [0, a],

(H7) there exists a constant q2 ∈ [0, q) and ρ ∈ L
1
q2 ([0, a], R+) such that for any x, y ∈ C([−r, a], Bk), we have

|f (t, xt)− f (t, yt)| ≤ ρ(t)‖x− y‖, t ∈ [0, a],where k is a positive constant.

Theorem 3.3. Assume that (H3)–(H7) are satisfied. If (i) of Theorem 3.1 holds, then the nonlocal Cauchy problem (1) has a
unique mild solution provided that

ML+ (M + 1)|A−β |H +
0(1+ β)C1−βHaqβ

β0(1+ qβ)
+

qM2Ma(1+b
′)(1−q2)

0(1+ q)(1+ b′)1−q2
< 1, (23)

where b′ = q−1
1−q2
∈ (−1, 0), M2 = ‖ρ‖

L
1
q2 [0,a].

Proof. It is easy to see that Sq(t)[ϕ(0)−(g(xt1 , . . . , xtn))(0)−h(0, x0)] exists, (t−s)
q−1ATq(t−s)h(s, xs) and (t−s)q−1Tq(t−

s)f (s, xs) are Bochner integrable with respect to s ∈ [0, t] for all t ∈ [0, a]. For x ∈ Bk, define the operator F on Bk by
(Fx)(t) = Sq(t)[ϕ(0)− (g(xt1 , . . . , xtn))(0)− h(0, x0)] + h(t, xt)

∫ t

0
(t − s)q−1ATq(t − s)h(s, xs)ds

+

∫ t

0
(t − s)q−1Tq(t − s)f (s, xs)ds, t ∈ [0, a],

(Fx)(ϑ) = −(g(xt1 , . . . , xtn))(ϑ)+ ϕ(ϑ), ϑ ∈ [−r, 0].

Obviously, it is sufficient to prove that F has a unique fixed point on Bk0 , where k0 is defined as in (18).
According to (19), we know that F is an operator from Bk0 into itself. For any x, y ∈ Bk0 and t ∈ [0, a], according to (H4),

(H5) and (H7), we have
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|(Fx)(t)− (Fy)(t)| ≤ |Sq(t)[(g(xt1 , . . . , xtn))(0)− (g(yt1 , . . . , ytn))(0)]|
+ |Sq(t)[h(0, x0)− h(0, y0)]| + |h(t, xt)− h(t, yt)|

+

∫ t

0
(t − s)q−1|A1−βTq(t − s)[Aβh(s, xs)− Aβh(s, ys)]|ds

+

∫ t

0
(t − s)q−1|Tq(t − s)[f (s, xs)− f (s, ys)]|ds

≤ ML‖x− y‖ + (M + 1)|A−β |H‖x− y‖ +
0(1+ β)C1−βH
β0(1+ qβ)

aqβ‖x− y‖

+
qM

0(1+ q)

∫ t

0
(t − s)q−1ρ(s)‖x− y‖ds

≤ ML‖x− y‖ + (M + 1)|A−β |H‖x− y‖ +
0(1+ β)C1−βH
β0(1+ qβ)

aqβ‖x− y‖

+
qM

0(1+ q)

(∫ t

0
(t − s)

q−1
1−q2 ds

)1−q2
‖ρ‖

L
1
q2 [0,t]
‖x− y‖

≤

(
ML+ (M + 1)|A−β |H +

0(1+ β)C1−βHaqβ

β0(1+ qβ)
+

qM2Ma(1+b
′)(1−q2)

0(1+ q)(1+ b′)1−q2

)
‖x− y‖,

which means that F is a contraction according to (23). By applying the Banach contraction principle, we know that F has a
unique fixed point on Bk0 . The proof is complete. �

Theorem 3.4. Assume that assumptions (H1), (H3), (H4)′ and (H5)–(H7) are satisfied. If (i)of Theorem 3.2 holds, then the
nonlocal Cauchy problem (1) has a mild solution provided that

(M + 1)|A−β |H +
0(1+ β)C1−βHaqβ

β0(1+ qβ)
+

qM2Ma(1+b
′)(1−q2)

0(1+ q)(1+ b′)1−q2
< 1.

Proof. In fact, for each positive k, define two operators U1 and U2 on Bk as follows
(U1x)(t) = −Sq(t)h(0, x0)+ h(t, xt)+

∫ t

0
(t − s)q−1ATq(t − s)h(s, xs)ds

+

∫ t

0
(t − s)q−1Tq(t − s)f (s, xs)ds, t ∈ [0, a],

(U1x)(ϑ) = 0, ϑ ∈ [−r, 0],

and {
(U2x)(t) = Sq(t)[ϕ(0)− (g(xt1 , . . . , xtn))(0)], t ∈ [0, a],
(U2x)(ϑ) = ϕ(ϑ)− (g(xt1 , . . . , xtn))(ϑ), ϑ ∈ [−r, 0].

According to the arguments above, we can easily get that U1x + U2y ∈ Bk1 whenever x, y ∈ Bk1 , where k1 is defined as in
(21). Furthermore, we can obtain that U1 is a contraction on Bk1 according to (H3) and (H5)–(H7) and U2 is a completely
continuous operator according to (H1) and (H4)′. Hence, Krasnoselskii’s fixed point theorem shows that U1 + U2 has a fixed
point on Bk1 , which means that the nonlocal Cauchy problem (1) has a mild solution and this completes the proof. �

4. An example

Let E = L2([0, π], R). Consider the following fractional partial differential equations.
∂
q
t

(
u(t, z)−

∫ π

0
U(z, y)ut(ϑ, y)dy

)
= ∂2z u(t, z)+ ∂zG(t, ut(ϑ, z)) t ∈ (0, a],

u(t, 0) = u(t, π) = 0, t ∈ [0, a],

u(ϑ, z)+
n∑
i=0

∫ π

0
k(z, y)uti(ϑ, y)dy = (ϕ(ϑ))(z), ϑ ∈ [−r, 0],

(24)

where ∂qt is a Caputo fractional partial derivative of order 0 < q < 1, a > 0, z ∈ [0, π], G is a given function, n is a positive
integer, 0 < t0 < t1 < · · · < tn < a, ϕ ∈ C([−r, 0], E), that is ϕ(ϑ) ∈ E = L2([0, π], R), k(z, y) ∈ L2([0, π] × [0, π], R)
and ut(ϑ, z) = u(t + ϑ, z), t ∈ [0, a], ϑ ∈ [−r, 0].
We define an operator A by Av = −v′′ with the domain
D(A) = {v(·) ∈ E : v, v′ absolutly continuous, v′′ ∈ E, v(0) = v(π) = 0}.
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Then −A generates a strongly continuous semigroup {T (t)}t≥0 which is compact, analytic and self-adjoint. Furthermore,
−A has a discrete spectrum, the eigenvalues are −n2, n ∈ N , with corresponding normalized eigenvectors un(z) =
(2/π)1/2 sin(nz). We also use the following properties.

(i′) For each v ∈ E, T (t)v =
∑
∞

n=1 e
−n2t
〈v, un〉un. In particular, T (·) is a uniformly stable semigroup and ‖T (t)‖L2[0,π ] ≤

e−t .
(ii′) for each v ∈ E, A−

1
2 v =

∑
∞

n=1 1/n〈v, un〉un. In particular, ‖A
−
1
2 ‖L2[0,π ] = 1,

(iii′) the operator A
1
2 is given by

A
1
2 v =

∞∑
n=1

n〈v, un〉un

on the space D(A
1
2 ) = {v(·) ∈ E,

∑
∞

n=1 n〈v, un〉un ∈ E}.

Clearly (2), (3) and (H1) are satisfied.
The system (24) can be reformulated as the following nonlocal Cauchy problem in E{cDq(xt − h(t, xt))+ Ax(t) = f (t, xt) t ∈ (0, a],

x0(ϑ)+ (g(xt1 , . . . , xtn))(ϑ) = ϕ(ϑ) ϑ ∈ [−r, 0],

where xt = ut(ϑ, ·), that is (x(t+ϑ))(z) = u(t+ϑ, z), t ∈ [0, a], z ∈ [0, π], ϑ ∈ [−r, 0]. The function h : [0, a]×C → E
is given by

(h(t, xt))(z) =
∫ π

0
U(z, y)ut(ϑ, y)dy.

Let (Uhv)(z) =
∫ π
0 U(z, y)v(y)dy, for v ∈ E = L

2([0, π], R), z ∈ [0, π].
The function f : [0, a] × C → E is given by
(f (t, xt))(z) = ∂zG(t, ut(ϑ, z)),

and the function g : Cn → C is given by

(g(xt1 , . . . , xtn))(ϑ) =
n∑
i=0

Kgxti(ϑ),

where (Kgv)(z) =
∫ π
0 k(z, y)v(y)dy, for v ∈ E = L

2([0, π], R), z ∈ [0, π].
We can take q = 1/2 and f (t, xt) = 1

t1/3
sin xt , then (H2), (H3), (H6) and (H7) are satisfied. Furthermore, assume that

L = L1 = (n+1)[
∫ π
0

∫ π
0 k

2(z, y)dydz]1/2. Then (H4) and (H4)′ are satisfied (noting thatKg : E → E is completely continuous).
In fact, for v1, v2 ∈ E, we have

‖Kgv1 − Kgv2‖L2[0,π ] =

(∫ π

0

(∫ π

0
k(z, y)(v1(y)− v2(y))dy

)2
dz

)1/2

≤

(∫ π

0

(∫ π

0
k2(z, y)dy

∫ π

0
[v1(y)− v2(y)]2dy

)
dz
)1/2

=

(∫ π

0

∫ π

0
k2(z, y)dydz

)1/2
‖v1 − v2‖L2[0,π ].

Moreover, we assume that the following conditions hold.
(a) The function U(z, y), z, y ∈ [0, π] is measurable and∫ π

0

∫ π

0
U2(z, y)dydz <∞,

(b) the function ∂zU(z, y) is measurable, U(0, y) = U(π, y) = 0, and let

H =
(∫ π

0

∫ π

0
(∂zU(z, y))2 dydz

) 1
2

<∞.

From (a) it is clear that Uh is a bounded linear operator on E. Furthermore, Uh(v) ∈ D(A
1
2 ), and ‖A

1
2Uh‖L2[0,π ] < ∞. In

fact, from the definition of Uh and (b) it follows that

〈Uh(v), un〉 =
∫ π

0
un(z)

(∫ π

0
U(z, y)v(y)dy

)
dz

=
1
n

(
2
π

) 1
2

〈U(v), cos(nz)〉,
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where U is defined by

(U(v))(z) =
∫ π

0
∂zU(z, y)v(y)dy.

From (b) we know thatU : E → E is a bounded linear operator with ‖U‖L2[0,π ] ≤ H . Hencewe canwrite ‖A
1
2Uh(v)‖L2[0,π ] =

‖U(v)‖L2[0,π ], which implies that (12) holds. Obviously, (11) holds according to (b).
Hence, According to Theorem 3.1/ 3.2, system (24) has a mild solution provided that (i) and (ii) of Theorem 3.1/ 3.2

hold. From Theorem 3.3, system (24) admits a unique mild solution provided that (i) of Theorem 3.1 and (23) hold. From
Theorem 3.4, system (24) has a mild solution provided that the inequalities in Theorem 3.4 hold.
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