

Biochimica et Biophysica Acta 1314 (1996) 120-124

Short sequence-paper

Isolation and characterization of a human heart cDNA encoding a new member of the small heat shock protein family — HSPL27¹

Wai Yip Lam, Stephen Kwok Wing Tsui, Patrick Tik Wan Law, Sharon Chui Wah Luk, Kwok Pui Fung, Cheuk Yu Lee, Mary Miu Yee Waye *

Department of Biochemistry, The Chinese University of Hong Kong, Shatin N.T., Hong Kong

Received 11 June 1996; revised 6 August 1996; accepted 14 August 1996

Abstract

A novel cDNA clone was isolated from a human adult heart cDNA library. This cDNA clone is similar to the small heat shock protein (smhsp) in both DNA and amino acid sequences, especially in the conserved region. Sequence analysis has shown that the putative novel smhsp, named 27 kDa heat-shock-protein-like protein (HSPL27) is a protein of 241 amino acids with a deduced molecular mass of 26.7 kDa and a deduced pI of 8.0. We have expressed the HSPL27 in *E. coli* and the expressed protein was found to be present in the soluble fraction of the bacterial cell lysate. Chromosomal mapping data shows that the HSPL27 gene is located at human chromosome 5q11.2.

Keywords: Small-heat-shock-protein; Heart cDNA; Chromosome 5; (Human)

The molecular weight of heat shock or stress proteins range from 10000 to 110000 Da. These proteins are produced at extremely high levels in the stressed cell and show a remarkably high degree of structural conservation. Recent findings suggested that increased expression of these proteins also occurs when cells are exposed to a number of deleterious agents or treatment, such as heavy metals, amino acid analogues or other kinds of stress [1,2]. Of the six or seven major stress proteins, more attention has been paid to the higher molecular weight stress proteins [3] than the smaller ones in mammalian cells. To date, only a single DNA sequence of human 27 kDa heat shock protein (hsp27) has been reported [4,5]. Three additional members of the human smhsp family have also been identified. They are the alpha A- and alpha B-crystallins [6], and a protein called p20 [7]. We describe here the isolation of a full length cDNA encoding a novel fifth member of human smhsp family called 27 kDa heat-shock-protein-like protein (HSPL27). The cloning, sequencing, expression and chromosomal mapping of this cDNA will also be presented.

Abbreviations: a.a., amino acid; CIAP, chicken inhibitor of actin polymerization; hsp27, 27 kDa heat shock protein; HSPL27, 27 kDa heat-shock-protein-like protein; hsp, heat shock protein; IPTG, isopropylthio- β -D-galactoside; NCBI, National Center of Biotechnology Information; PCR, polymerase chain reaction; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; smhsp, small heat shock proteins

^{*} Corresponding author. Fax: +852 26035123; e-mail: marywaye@cuhk.edu.hk.

¹ The nucleotide sequence data reported in this paper have been submitted to the EMBL/GenBank Databases under the accession number U15590.

^{0167-4889/96/\$15.00} Copyright © 1996 Elsevier Science B.V. All rights reserved. *Pll* S0167-4889(96)00121-8

. .

Partial sequencing of cDNA clones (in lambda gt11 vector) isolated from human adult heart were performed as described previously [8-10]. The partial sequences were compared against the EMBL/ GenBank Data Libraries using the BLAST electronic mail server [11]. Among the various cDNA clones that we have sequenced, a clone which is similar to hsp27 was identified. Excluding the vector sequences and poly-A sequence, the cDNA obtained is 904 base pairs in length. An open reading frame (ORF) of 723 base pairs was found encoding a protein of 241 amino acid residues (Fig. 1). By aligning the DNA

						5		1 CAT	GCA	GCA	12 TCA	GCA	. тст	23 TA1	AGI	AG1	TG#	32 A AC	
1	ATG Met	TCG Ser	41 CCA Pro	TCC Ser	AGG Arg	50 CCG Pro	CCC Pro	ATC Ile	59 ACA Thr	TCC Ser	ACA Thr	68 AAC Asn	TCT Ser	GTG Val	77 GTC Val	AGC Ser	TTA Leu	86 AAG Lys	18
19	GCT Ala	GAC Asp	95 GTC Val	TCA Ser	AAG Lys	104 CCC Pro	AGA Arg	TTT Phe	113 CGG Arg	сст с1у	GAG Glu	122 CTG Leu	GAG Glu	AGG Arg	131 ATG Met	AAG Lys	CCA Pro	140 AAG Lys	36
37	TCG Ser	ATG Met	149 TGG Trp	ATG Met	ATG Met	158 TGG Trp	CCT Pro	TCT Ser	167 GCG Ala	TCC Ser	AAA Lys	176 AGG Arg	ATA Ile	TTC Phe	185 CCA Pro	TTG Leu	TGT Cys	194 CTG Leu	54
55	AGG Arg	AGG Arg	203 GGG Gly	AAT Asn	AGA Arg	212 GGA Gly	GAG Glu	GAA Glu	221 GAG Glu	GCA Ala	GTA Val	230 GGC Gly	AAC Asn	TGC Cys	239 AGG Arg	GGC Gly	TCG Ser	248 CCA Pro	72
73	CTG Leu	ACT Thr	257 GAA Glu	GGC Gly	AGT Ser	266 GGA Gly	AGG Arg	TTG Leu	275 GCA Ala	GAA Glu	GGA Gly	284 GGC Gly	TGT Cys	TCA Ser	293 AGG Arg	CTG Leu	TTT Phe	302 TTG Leu	90
91	CCT Pro	TCA Ser	311 CTA Leu	TGG Trp	CAA Gln	320 AAT Asn	CAT His	TTT Phe	329 GAG Glu	GCA Ala	CCT Pro	338 CAT His	AGA Arg	GAT Asp	347 TCC Ser	AGT Ser	GCG Ala	356 TTA Leu	108
109	CCA Pro	GGA Gly	365 AGA Arg	GTT Val	GAA Glu	374 GCT Ala	CGA Arg	GGT Gly	383 CTA Leu	GAA Glu	GAC Asp	392 TGC Cys	AGG Arg	CTG Leu	401 GAT Asp	CAT His	GCT Ala	410 TAT Tyr	126
127	ATG Met	CAC His	419 ТGC Суз	CTG Leu	GCC Ala	428 AAC Asn	CAT His	CGT Arg	437 GGA Gly	ССТ Рго	GAG Glu	446 GAA Glu	AAC Asn	CAG Gln	455 GGC Gly	AGC Ser	GCA Ala	464 GTC Val	144
145	TCC Ser	TCC Ser	473 AGT Ser	GGA Gly	CTA Leu	482 AGC Ser	GGC Gly	AGA Arg	491 GAC Asp	GCC Ala	ACC Thr	500 CCG Pro	AGA Arg	AGG Arg	509 CAA Gln	ATC Ile	CCA Pro	518 CTT Leu	162
163	TCA Ser	GAT Asp	527 CCT Pro	GTG Val	GAC Asp	536 GTG Val	GTC Val	CAG Gln	545 TTC Phe	CTC Leu	CCT Pro	554 GAA Glu	GAC Asp	ATC Ile	563 ATC Ile	ATT Ile	CAG Gln	572 ACC Thr	180
181	TTC Phe	GAA Glu	581 GGC Gly	TGG Trp	CTA Leu	590 CTG Leu	ATA Ile	AAA Lys	599 GCA Ala	CAA Gln	CAC His	608 GGA Gly	ACC Thr	AGA Arg	617 ATG Met	GAT Asp	GAG Glu	626 CAC His	198
199	сст с1у	TTT Phe	635 ATC Ile	TCA Ser	AGA Arg	644 AGC Ser	TTC Phe	ACC Thr	653 CGA Arg	CAG Gln	TAC Tyr	662 AAA Lys	CTA Leu	CCA Pro	671 GAT Asp	GGC Gly	GTG Val	680 GAA Glu	216
217	ATC Ile	AAA Lys	689 GAT Asp	TTG Leu	TCT Ser	698 GCA Ala	GTC Val	CTC Leu	707 TGT Cys	CAT His	GAT Asp	716 GGA Gly	ATT Ile	TTG Leu	725 GTG Val	GTG Val	GAA Glu	734 GTA Val	234
235	AAG Lys	GAT Asp	743 CCA Pro	GTT Val	GGG Gly	752 ACT Thr	AAG Lys	TGA ***	761 CAT	CGT	ATC	770 GGT	тсс	TGT	779 TCA	GAT	GAC	788 ATG	241
	GGG	AAG	797 ATG	ATG	GTT	806 CAT	CCA	CTG	815 GTA	CTA	ста	824 GAA	TGT	TTG	833 TAT	TAC	CCA	842 CAT	
	TTG	ала	851 TGC	CTT	GCT	860 ATG	AAT	TTT	869 TAT	gaa	GAA	878 TAA	AAA	TAT	887 ATA	CAC	AGT	896 TAA	
	Ала	ААА	905 AAA	ААА	ААА	АА	3'												

Fig. 1. The complete DNA and amino acid sequence of human HSPL27. Translational start codon at 33 bp and stop codon at 756 bp. Polyadenylation signal is at 874 bp. Serine-106 is a possible phosphorylation site and the amino acid sequence shows a carboxyl-terminal lysine.

HSPL27	150	SGRDATPRRQIPLSDPVDVVQFLPEDIIIQ ::	179
HSP27	83	SGVSEIRHTADRWRVSLDVNHFAPDELTVK	112
CIAP	80	SGISEIRQSADSWKVTLDVNHFAPEELVVK	109
HSPL27	180	TFEGWLLIKAQHGTRMDEHGFISRSFTRQY	209
HSP27	113	TKDGVVEITGKHEERQDEHGYISRCFTRKY	142
CIAP	110	TKDNIVEITGKHEEKQDEHGFISRCFTRKY	139
HSPL27	210	KLPDGVEIKDLSAVLCHDGILVVEVKDPV	238
HSP27	143	TLPPGVDPTQVSSSLSPEGILIVEAPMPK	172
CIAP	140	TLPPGVEATAVRSSLSPDGMLTVEAPLPK	168

Fig. 2. The amino acid sequence alignment of the conserved domain of HSPL27 (HSPL27) with that of the human hsp27 (HSP27) and the chicken inhibitor of actin polymerization (CIAP). The alignment was performed using PROSIS from Hitachi. Amino acids that are identical between the two sequences are marked by ':' while those that are similar were marked by '.'. Those amino acids that are different between the two sequences are left blank.

sequences of the ORF of human hsp27 and HSPL27, we found them to be 50.7% similar (data not shown). When the amino acid sequences of human hsp27 and HSPL27 were aligned, an overall identity of 37.1% and a similarity of 80.4% was shown; while a 44.1% identity and 86.8% similarity within the conserved region (from 167 to 234 amino acid residues with respect to the amino acid sequence of HSPL27) of this family were found (Fig. 2). Since it has been stated that smhsp are the least conserved family [4,5], we do not expect a very high degree of DNA or amino acid sequence similarity, especially in the N-terminals, between human HSPL27 and smhsp of other species, such as drosophila, and mouse. Besides matching with hsp27 from various species, the putative protein sequence of human HSPL27 also matches significantly with that of an inhibitor of actin polymerization in chicken (CIAP) [12], with 56.9% identity in DNA sequences and 39.1% identity, 80.1% similarity in amino acid sequences (Fig. 2). In addition, recent reports have suggested that hsp may mediate protection of ischaemic cells from necrosis by preventing abnormal actin aggregation [13,14]. We speculate that HSPL27 isolated from the heart may have a function in stabilization of cytoskeleton, especially actin [15], in myocytes.

Another indirect evidence in support of the hy-

pothesis that our HSPL27 belongs to the smhsp family is that a type of amine-donor called carboxylterminal lysine is present in HSPL27 (residue 241). Recently, it has been shown that such carboxyl-terminal lysine residues are found in B-crystallin and mouse hsp25 and they serve as amine-donor substrates in the transglutaminase-mediated cross-linking reaction of proteins [16]. Although the significance of substrate capacity for transglutaminase is unclear, it has been proposed that transglutaminase activity is implicated in controlled cell death [17], tumor progression [18], and receptor-mediated endocytosis [19]. These are processes which involve changes in intracellular organization. The fact that smhsp are also implicated in cytomorphological changes may provide a clue for the interactions between these proteins and transglutaminase [16]. As reported previously, the function of human heat shock 27 kDa protein (hsp27) may be regulated by phosphorylation [15,20]. Thus, we searched for possible phosphorylation sites of our amino acid sequence which was quite serine rich (10%, 24 out of 241 amino acid residues). Several possible sites were found after analyzing the amino acid sequence by using the computer software MacDNASIS. The most probable site of phosphorylation by protein kinase C or protein kinase A was found to be at ser-106 as it possesses the conserved

Fig. 3. FISH mapping. Panels A and C showing the FISH signals on chromosomes; panels B and D showing the same mitotic figures stained with DAPI to identify chromosome 5.

kinase recognition amino acid sequence 'Arg-X-X-Ser' [20,21].

In order to express the protein in E. coli, the human HSPL27 was cloned into an expression vector pAED4. The recombinant plasmid pAED4-HSPL27 was transformed into the E. coli BL21(DE3)pLysS strain. The recombinant protein was expressed according to the protocol previously described [22]. Electrophoresis of crude bacterial extracts was carried out and the recombinant protein showed an apparent mol. wt. of 26.7 kDa (data not shown). For solubility analysis, the bacterial cells were lysed by freeze-thawing twice. After centrifugation, suspension was divided into a water soluble fraction and a pellet. Both fractions were resuspended SDS/PAGE-sample buffer and then electrophoresed. We found that the recombinant human HSPL27 protein is present in the soluble bacterial cell fraction (data not shown).

The chromosomal mapping of the HSPL27 gene was done by the SeeDNA Biotechology Inc. (Ontario, Canada). The pAED4-HSPL27 plasmid was biotinylated with dATP. The procedure for FISH detection was performed essentially as described previously [23,24]. Based on the results from 10 photos, the HSPL27 gene is located at human chromosome 5q11.2 (Fig. 3). Previous report has shown that the locations for hsp27 gene and its two pseudogenes are at chromosomes 3, 9 and X [25]. Hence, the hsp27 gene and the HSPL27 gene are located at different chromosomes. According to the database of NCBI, dihydrofolate reductase gene [26], gp130 transducer chain gene [27], 5-hydroxytryptamine-1A receptor gene [28], corticotropin releasing hormone-binding protein gene [29] and genes for the NK cell granule serine proteases [30] are also located in this region. Moreover, Klippel-Feil syndrome [31] and Schizophrenia disorder-1 [32] have been mapped to this region.

This work was supported by a grant from Research Grants Council (CUHK 16/93M) and a postdoctoral fellowship to S.K.W. Tsui from the Chinese University of Hong Kong. We would like to thank Dr. Don Doering and Dr. Paul Matsudaira for providing us the pAED4 expression vector. We also thank Dr. H.H.Q. Heng from the SeeDNA Biotechnology Inc. for mapping the HCRP2 by FISH. The helpful advice of Dr. C.C. Liew is greatly appreciated.

References

- Parsell, D.A., and Lindquist, S. (1993) Annu. Rev. Genet. 27, 437–496.
- [2] Welch, W.J. and Suhan, J.P. (1986) J. Cell Biol. 103, 2035–2052.
- [3] Linquist, S. and Craig, E.A. (1988) Annu. Rev. Genet. 22, 631–677.
- [4] Hickey, E., Brandon, S.E., Potter, R., Stein, G., Stein, J. and Weber, L.A. (1986) Nucleic Acids Res. 14, 4127–4145.
- [5] Hickey, E., Brandon, S.E., Sadis, S., Smale, G. and Weber, L.A. (1986) Gene 43, 147–154.
- [6] Quax-Jeuken, Y., Quax, W., van Rens, G., Khan, P.M. and Bloemendal, H. (1985) Proc. Natl. Acad. Sci. USA 82, 5819–5823.
- [7] Kato, K., Goto, S., Inaguma, Y., Hasegawa, K., Morishita, R. and Asano, T. (1994) J. Biol. Chem. 269, 15302–15309.
- [8] Liew, C.C. (1993) J. Mol. Cell. Cardiol. 25, 891-894.
- [9] Liew, C.C., Hwang, D.M., Fung, Y.W., Laurenssen, C., Cukerman, E., Tsui, S. and Lee, C.Y. (1994) Proc. Natl. Acad. Sci. USA 91, 10645–10649.
- [10] Tsui, S.K.W., Waye, M.M.Y. and Lee, C.Y. (1995) BioTechniques 19, 577–578.
- [11] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) J. Mol. Biol. 215, 403–410.
- [12] Miron, T.K., Vancompernolle, K., Vandekerckhove, J., Wilchek, M. and Geiger, B. (1991) J. Cell Biol. 114, 255-261.
- [13] Ganote, C. and Armstrong, S. (1993) Cardiovasc. Res. 27, 1387–1403.
- [14] Kabakov, A.E. and Gabai, V.L. (1994) Trend. Cell Biol. 4, 193–196.
- [15] Lavoie, J.N., Hickey, E., Weber, L.A. and Landry, J. (1993)
 J. Biol. Chem. 268, 24210–24214.
- [16] Merck, K.B. and Groenen, P.J.T.A., Voorter, C.E.M., de Haard Hoekman, W.A., Horwitz, J., Bloemendal, H. and de Jong, W.W. (1993) J. Biol. Chem. 268, 1046–1052.
- [17] Fesus, L., Thomazy, V. and Falus, A. (1987) FEBS Lett. 224, 104–108.
- [18] Knight, C.R.L., Rees, R.C. and Griffin, M. (1991) Biochim. Biophy. Acta. 1096, 312–318.
- [19] Davies, P.J.A., Davies, D.R., Levitzki, A., Maxfield, F.R., Milhaud, P., Willingham, M.C. and Pastan, I.H. (1980) Nature 283, 162–166.
- [20] Gaestel, M., Schroder, W., Benndorf, R., Lippmann, C., Buchner, K., Hucho, F., Erdmann, V.A. and Bielka, H. (1991) J. Biol. Chem. 266, 14721–14724.
- [21] Landry, J., Lambert, H., Zhou, M., Lovoie, J.N., Hickey, E., Weber, L.A. and Anderon, W. (1992) J. Biol. Chem. 267, 794–803.
- [22] Studier, F.W., Rosenberg, A.H., Dunn, J.J. and Dubendorff, J.W. (1990) Method enzymol. 185, 60–89.
- [23] Heng, H.H.Q., Squire, J. and Tsui, L.C. (1992) Proc. Natl. Acad. Sci. USA 89, 9509–9513.
- [24] Heng, H.H.Q. and Tsui, L.C. (1993) Chromosoma 103, 325–332.

- [25] McGuire, S.E., Fuqua, S.A., Naylor, S.L., Helin-Davis, D.A. and McGuire, W.L. (1989) Somat. Cell Mol. Genet. 15, 167–171.
- [26] Funanage, V.L., Myoda, T.T., Moses, P.A. and Cowell, H.R. (1984) Mol. Cell. Biol. 4, 2010–2016.
- [27] Rodriguez, C., Grosgeorge, J., Nguyen, V.C., Gaudray, P. and Theillet, C. (1995) Cytogenet. Cell Genet. 70, 64–67.
- [28] Kobilka, B.K., Frielle, T., Collins, S., Yang-Feng, T., Kobilka, T.S., Francke, U., Lefkowitz, R.J. and Caron, M.G. (1987) Nature 329, 75–79.
- [29] Vamvakopoulos, N.C., Sioutopoulou, T.O., Durkin, S.A., Nierman, W.C., Wasmuth, J.J. and McPherson, J.D. (1995) Genomics 25, 325–327.
- [30] Baker, E., Sayers, T.J., Sutherland, G.R. and Smyth, M.J. (1994) Immunogenetics 40, 235–237
- [31] Fukushima, Y., Ohashi, H., Wakui, K., Nishimoto, H., Sato, M. and Aihara, T. (1995) Am. J. Med. Genet. 57, 447–449.
- [32] Bassett, A.S., McGillivray, B.C., Jones, B.D. and Pantzar, J.T. (1988) Lancet I, 799–801.