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Abstract

In this short paper the core of the direct method for proving stability of functional equatio
described in a clear way and in a quite general form.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In the last years a great number of papers dealing with the Hyers–Ulam stabi
functional equations have been published. Almost all of them treat functional equatio
in several variables and in order to prove stability they perform certain manipula
The core of these manipulations (sometimes calleddirect method) is always the same an
essentially goes back to a result of mine published in 1980 [3] (see also [6,8]). This
always recognized (or the authors are not aware of this result) and so hundreds o
have been written repeating essentially the same procedure.

The manipulations come down to the following: there is (in an appropriate framew
a functional equation

E1(F ) = E2(F )
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in the unknown functionF and appear several variables (note thatF is a one-place func
tion); moreover we have a functionf satisfying the related inequality

d
(
E1(f ),E2(f )

)
� ∆,

where∆ is a certain function depending (or not) on the variables involved (d is a distance)
After a certain number of manipulations in the inequality, only one variable remain

we get something of this form

d
(
H

{
f

[
G(x)

]}
, f (x)

)
� δ(x).

It is exactly at this moment that a standard procedure can be applied to get a solutioF of
the functional equation (in one variable!)

H
{
F

[
G(x)

]} = F(x)

which isnear the functionf . The aim of this short paper is simply to enucleate in a c
way and in a quite general form the procedure of construction ofF , in order to have a
standard tool ready to be used.

To conclude the stability result it is then necessary to show that the function obtai
indeed a solution of the original equationE1(F ) = E2(F ) and this part strongly depend
on the form of the functional equation involved, on the setS and on the spaceX. Various
results and rich bibliographies about stability can be found in [2,4,7].

2. Main result

Let (X,d) be a complete metric space,S a set,G :S → S andH : X → X be two given
functions. From now on we assume thatf :S → X is a function satisfying the following
inequality:

d
(
H

{
f

[
G(x)

]}
, f (x)

)
� δ(x) (1)

for all x ∈ S and for some functionδ :S → R
+.

Lemma 1. Assume that the functionH satisfies the following inequality:

d
(
H(u),H(v)

)
� φ

(
d(u, v)

)
, u, v ∈ X, (2)

for a certain non-decreasing functionφ :R+ → R
+. Then, for each integern, we have

d
(
Hn+1{f [

Gn+1(x)
]}

,Hn
{
f

[
Gn(x)

]})
� φn

(
δ
[
Gn(x)

])
, x ∈ S, (3)

whereHi , Gi andφi denote thei-th iterate ofH , G andφ, respectively.

Proof. Setting in (1)G(x) instead ofx we get

d
(
H

{
f

[
G2(x)

]}
, f

[
G(x)

])
� δ

[
G(x)

]
.

Then by (2) we obtain

d
(
H 2{f [

G2(x)
]}

,H
{
f

[
G(x)

]})
� φ

(
d
(
H

{
f

[
G2(x)

]}
, f

[
G(x)

]))
� φ

(
δ
[
G(x)

])
,

sinceφ is non-decreasing. The lemma follows by induction.�
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Now, we take the sequence of functions

Qn(x) := Hn
{
f

[
Gn(x)

]}
, x ∈ S,

and consider the problem of its convergence. Since the metric spaceX is complete, this is
equivalent to find conditions assuring that{Qn(x)} is a Cauchy sequence for everyx in S.

Lemma 2. In the hypotheses of Lemma1, if the series

∞∑
i=0

φi
(
δ
[
Gi(x)

])
is convergent for everyx ∈ S then{Qn(x)} is a Cauchy sequence. Defined

F(x) = lim
n→+∞ Qn(x),

we have

d
(
F(x), f (x)

)
�

∞∑
i=0

φi
(
δ
[
Gi(x)

])
. (4)

Proof. Let m > n; then

d
(
Qn(x),Qm(x)

)
�

m−1∑
i=n

d
(
Qi+1(x),Qi(x)

)
�

m−1∑
i=n

φi
(
δ
[
Gi(x)

])
,

thus the first part of the lemma follows immediately.
Using (3) we get

d
(
Qn(x), f (x)

) = d
(
Hn

{
f

[
Gn(x)

]}
, f (x)

)
�

n∑
i=1

d
(
Hi

{
f

[
Gi(x)

]}
,H i−1{f [

Gi−1(x)
]})

�
n∑

i=1

φi−1(δ[Gi−1(x)
])

.

Taking the limit asn goes to infinity we obtain (4). �
Lemma 3. Assume the hypotheses of Lemmas1 and 2. If the functionH is continuous,
then the functionF is a solution of the functional equation

H
{
F

[
G(x)

]} = F(x), x ∈ S. (5)

Moreover, ifφ is subadditive, thenF is the only function satisfying Eq.(5) and inequal-
ity (4).

Proof. By the continuity ofH we have the following chain of equalities:
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H
{
F

[
G(x)

]} = H
{

lim
n→+∞Qn

[
G(x)

]} = lim
n→+∞ H

{
Qn

[
G(x)

]}
= lim

n→+∞ Hn+1{f [
Gn+1(x)

]} = F(x).

Suppose that a function̂F satisfies (4) and (5) andφ is subadditive. Thus

d
(
F̂ (x),Qn(x)

) = d
(
Hn

{
F̂

[
Gn(x)

]}
,Hn

{
f

[
Gn(x)

]})
� φn

(
d
(
F̂

[
Gn(x)

]
, f

[
Gn(x)

]))
� φn

( ∞∑
i=0

φi
(
δ
[
Gn+i (x)

]))

�
∞∑
i=0

φn+i
(
δ
[
Gn+i (x)

])
.

Taking the limit asn goes to infinity, since the last term goes to zero we obtain

lim
n→+∞ d

(
F̂ (x),Qn(x)

) = d
(
F̂ (x),F (x)

) = 0. �
We may now summarize the previous results in the following theorem.

Theorem 1. Assume thatf :S → X is a function satisfying the inequality

d
(
H

{
f

[
G(x)

]}
, f (x)

)
� δ(x).

If the functionH :X → X is continuous and satisfies the inequality

d
(
H(u),H(v)

)
� φ

(
d(u, v)

)
, u, v ∈ X,

for a certain non-decreasing subadditive functionφ :R+ → R
+ and the series

∞∑
i=0

φi
(
δ
[
Gi(x)

])
is convergent for everyx ∈ S, then there exists a unique functionF :S → X solution of the
functional equation

H
{
F

[
G(x)

]} = F(x), x ∈ S,

and satisfying the following inequality:

d
(
F(x), f (x)

)
�

∞∑
i=0

φi
(
δ
[
Gi(x)

])
.

The functionF is given by

F(x) = lim
n→+∞ Hn

{
f

[
Gn(x)

]}
.

In the case the functionsG andH are invertible, we immediately obtain the following
result.
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Theorem 2. Assume thatf :S → X is a function satisfying the inequality

d
(
H

{
f

[
G(x)

]}
, f (x)

)
� δ(x)

and suppose that the functionsG and H are invertible. If the functionH−1 :X → X is
continuous and satisfies the inequality

d
(
H−1(u),H−1(v)

)
� ψ

(
d(u, v)

)
, u, v ∈ X,

for a certain non-decreasing subadditive functionψ :R+ → R
+ and the series

∞∑
i=1

ψi
(
δ
[
G−i (x)

])
is convergent for everyx ∈ S, then there exists a unique functionF :S → X solution of the
functional equation

H
{
F

[
G(x)

]} = F(x), x ∈ S,

and satisfying the following inequality:

d
(
F(x), f (x)

)
�

∞∑
i=1

ψi
(
δ
[
G−i (x)

])
.

The functionF is given by

F(x) = lim
n→+∞ H−n

{
f

[
G−n(x)

]}
.

Appendix A

Following a valuable suggestion of the referee (I thank him/her for the contribution), i
this section I would like tooutline a procedure analogous to the one presented abov
in the spirit of paper [5] of R. Ger. For the sake of simplicity this presentation is not ca
out in a more general setting as in the previous section.

Again, we consider the functional equation

H
{
F

[
G(x)

]} = F(x) (A.1)

and we assume thatF is a real function andH :R → R (thus,X = R). If F is a solution
of (A.1), on the set where it is different from zero, Eq. (A.1) is equivalent to

H {F [G(x)]}
F(x)

= 1.

Hence, for a given functionf :S → R\ {0} we can “measure” how far we are from solvin
(A.1) by the quantity∣∣∣∣H {f [G(x)]}

f (x)
− 1

∣∣∣∣.
We have the following stability theorem.
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ons

me

ion:
Theorem A.1. Assume thatf :S → R \ {0} is a function satisfying the inequality∣∣∣∣H {f [G(x)]}
f (x)

− 1

∣∣∣∣ � δ(x) < 1. (A.2)

Suppose that the following hypotheses are satisfied:

(i) the functionH :R → R is continuous and there are two non-decreasing functi
φ1, φ2 :R+ → R

+ with φ1(1) = φ2(1) = 1, such that

φ1

(
u

v

)
� H(u)

H(v)
� φ2

(
u

v

)
(A.3)

for u ∈ R, v ∈ R \ {0} andu/v > 0;
(ii) the series

∞∑
i=0

max
{− log

[
φi

1

(
1− δ

[
Gi(x)

])]
, log

[
φi

2

(
1+ δ

[
Gi(x)

])]}
is convergent for everyx ∈ S and let us denote byΛ(x) its sum.

Then there exists a functionF :S → R solution of (A.1) such that

exp
(−Λ(x)

)
� F(x)

f (x)
� expΛ(x).

Proof. Sinceδ(x) < 1, H {f [G(x)]} andf (x) have the same sign and we may assu
without loss of generality that are both positive. We can write (A.2) as

1− δ(x) � H {f [G(x)]}
f (x)

� 1+ δ(x).

From the above and relation (A.3), we can easily get by induction the following relat

φn
1

(
1− δ

[
Gn(x)

])
� Hn+1{f [Gn+1(x)]}

Hn{f [Gn(x)]} � φn
2

(
1+ δ

[
Gn(x)

])
. (A.4)

Consider the sequenceQn(x) := Hn{f [Gn(x)]} and letPn(x) = logQn(x). If m > n,
from (A.4) we obtain that

∣∣Pm(x) − Pn(x)
∣∣ �

m−1∑
i=n

max
{− log

[
φi

1

(
1− δ

[
Gi(x)

])]
, log

[
φi

2

(
1+ δ

[
Gi(x)

])]}
.

Since we have assumed that the series
∞∑
i=0

max
{− log

[
φi

1

(
1− δ

[
Gi(x)

])]
, log

[
φi

2

(
1+ δ

[
Gi(x)

])]}
is convergent, we conclude that{Pn(x)} is a Cauchy sequence for everyx and so it con-
verges to a functiong(x). But Qn(x) = expPn(x), hence

lim Qn(x) = expg(x) =: F(x).

n→∞
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–30.
95)

ress in

(1978)

61.
From the continuity ofH we can conclude that

H
{
F

[
G(x)

]} = H
{

lim
n→∞ Qn

[
G(x)

]} = lim
n→∞ H

{
Qn

[
G(x)

]}
= lim

n→∞ Hn+1{f [
Gn+1(x)

]} = F(x),

thusF is a solution of the functional equation (A.1).
From

Qn(x)

f (x)
=

n∏
i=1

Hi{f [Gi(x)]}
Hi−1{f [Gi−1(x)]}

we obtain the inequality

exp
(−Λ(x)

)
� F(x)

f (x)
� expΛ(x). �

Note that for proving the uniqueness of the obtained solution it is necessary to add
conditions to the functionsφ1 andφ2.

As a conclusion, I would like to note that we can consider more general function
equations as

H
{
F

[
G(x)

]
, x

} = F(x)

and produce analogous stability theorems (see, for instance, [1,9]).
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