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integral solutions of the equation f(x)=g¢ where x lies in the ball of radius T
centered at the origin. We are interested in the asymptotic behavior of N(7, f, q)
as T — oo. We deduce from the results of our joint paper with Z. Rudnick that
MT, f,q)~cEg (T, f,q) as T— oo, where Ey (T, f, q) is the Hardy-Littlewood
expectation (the product of local densities) and 0 < ¢ <2. We give examples of f and
¢ such that ¢ takes the values 0, 1, 2.  © 2001 Academic Press
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0. INTRODUCTION

Let f be a nondegenerate indefinite integral-matrix quadratic form of n
variables:

n
flxp, e x,)= Y ayxx;, a; €Z, a;=a;.
i j=1

Let geZ, g+#0. Let W=Q". Consider the affine quadric X in W defined
by the equation

f(xq, e X,) =4¢.

We wish to count the representations of ¢ by the quadratic form f, that is
the integer points of X.
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Since f is indefinite, the set X(Z) can be infinite. We fix a Euclidean
norm |-| on R”. Consider the counting function

NT,X)=#{xeX(Z): |x|<T}

where TeR, T>0. We are interested in the asymptotic behavior of
NT, X) as T— 0.

When n >4, the counting function N(7, X) can be approximated by the
product of local densities. For a prime p set

. X(Z/p*Z
()= Jim L

For almost all p it suffices to take k=1:

_ #X(F,)

n—1

p

Up(X)

P

Set S(X) =11, u,(X); this product converges absolutely (for n>4) and is
called the singular series. Set

n. < _
(T, X) = lim Vol{xeR": [x| < T, |f(x)—q| <&/2} |

>0 &

which is called the singular integral. For n>4 the following asymptotic
formula holds:

N(T, X)~S(X)u (T, X) as T— oo.

This follows from results of [2, 6.4] (which are based on analytical results
of [6,7,8]). For certain non-Euclidean norms the similar result was earlier
proved by the Hardy-Littlewood circle method, cf. [5] in the case n>=5
and [9] in the more difficult case n=4.

We are interested here in the case n =3, a ternary quadratic form. This
case is beyond the range of the Hardy—Littlewood circle method. Set D =
det(a;). We assume that —gD is not a square. Then the product S(X) =
[Tu,(X) conditionally converges (see Sect.1 below), but in general
N(T, X) is not asymptotically S(X) u (7, X). From results of [2] it
follows that

NT, X)~cxS(X) u (T, X) as T—- w

with 0 <cy <2, see details in Section 1.5 below. We wish to know what
values can ¢, take.
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A case when ¢, =0 was already known to Siegel, see also [2, 6.4.1].
Consider the quadratic form

fl(xla x2a X3) = —9X%+2X1X2+7x§+2x§,

and take ¢ =1. Let X be defined by f;(x)=¢. Then f; does not represent
1 over Z, so N(T, X)=0 for all T. On the other hand, f; represents 1 over
R and over Z, for all p, and S(X) (T, X) > o0 as T— 0. Thus cx=0
(see details in Sect. 2).

We show that ¢y can take the value 2. Recall that two integral quadratic
forms f, f” are in the same genus if they are equivalent over R and over Z,
for every prime p, cf. e.g. [3].

THEOREM 0.1. Let f be an indefinite integral-matrix ternary quadratic
form, qeZ, q#0, and let X be the affine quadric defined by the equation
f(x)=gq. Assume that f represents q over 1. and that there exists a quadratic
form f' in the genus of f such that ' does not represent q over Z. Then
Cxy=2:

N(T, X)~2&8(X) u (T, X) as T— oo.

Theorem 0.1 will be proved in Section 3.

ExampLE 0.1.1. Let f5(x;, X5, X3) = —x3 +64x3+2x3, ¢=1. Then f,
represents 1 (f5(1,0, 1)=1) and the quadratic form f; considered above is
in the genus of f, (cf. [4, 15.6]). The form f; does not represent 1. Take
|x| = (x2 4 64x3 +2x2)"2. By Theorem 0.1 cy=2 for the variety X: f5(x)
= 1. Analytic and numeric calculations give 2&(X) u(T, X) ~0.7947. On
the other hand, numeric calculations give for 7'=10,000 the value
N(T, X)/T =0.8024.

We also show that ¢, can take the value 1.

THEOREM 0.2. Let f be an indefinite integral-matrix ternary quadratic
form, qeZ, q#0, and let X be the affine quadric defined by the equation
f(x)=gq. Assume that X(R) is two-sheeted (has two connected components).
Then cy=1:

N(T, X)~S(X)u (T, X) as T— oo.

Theorem 0.2 will be proved in Section 4.



284 MIKHAIL BOROVOI

ExampLE 0.2.1. Let f, and |x| be as in Example 0.1.1, g = — 1, X: f5(x)
=g¢g. Then X(R) has two connected components, and by Theorem 0.2
¢xy=1. Analytic and numeric calculations give S(X) u. (T, X)~ 0.7065T.
On the other hand, numeric calculations give for 7=10, 000 the value
N(T, X)/T=0.7048.

Question 0.3. Can cy take values other than 0, 1, 2?

The plan of the paper is the following. In Section 1 we describe results
of [2] in the case of 2-dimensional affine quadrics. In Section 2 we treat
in detail the example of ¢,=0. In Section 3 we prove Theorem 0.1. In
Section 4 we prove Theorem 0.2.

1. RESULTS OF [2] IN THE CASE OF TERNARY
QUADRATIC FORMS

Let f be an indefinite ternary integral-matrix quadratic form

3
S(x1, x5, X3) = Z A XiXj, aijeZ, Ay =dj; -
i j=1

Let geZ, q#0. Let D =det(a;). We assume that —¢D is not a square.

Let W= Q3 and let X denote the affine variety in W defined by the equa-
tion f(x)=gq, where x = (x,, X,, X3). We assume that X has a Q-point x°.
Set G =Spin(W, f), the spinor group of f. Then G acts on W on the left,
and X is an orbit (a homogeneous space) of G.

1.1. Rational Points in Adelic Orbits

Let A denote the ad¢le ring of Q. The group G(A) acts on X(A); let O,
be an orbit. We would like to know whether ¢/, has a Q-rational point.

Let W’ denote the orthogonal complement of x° in W, and let /' denote
the restriction of f to W'. Let H be the stabilizer of x° in G, then
H=Spin(W’, f'). Since dim W’ =2, the group H is a one-dimensional
torus.

We have det /"= D/q, so up to multiplication by a square det ' =¢D.
It follows that up to multiplication by a scalar, ' is equivalent to the
quadratic form u?+¢gDv% Set K=Q(/ —¢D), then K is a quadratic
extension of Q, because —¢D is not a square. The torus H is anisotropic
over Q (because —gD is not a square), and H splits over K. Let X (Hk)
denote the cocharacter group of Hg, X, (Hg)=Hom(G,, x, Hg); then
X, (Hg) ~Z. The non-neutral element of Gal(K/Q) acts on X, (Hgk) by
multiplication by —1.
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Let @, be an orbit of G(A) in X(A), O, =[] ¢, where O, is an orbit of
G(Q,) in X(Q,), v runs over the places of Q, and Q, denotes the completion
of Q at v. We define local invariants v(0,) = + 1. If ¢, = G(Q,) - x°, then we
set v,(0,) = +1, if not, we set v,(0,) = —1. Then v,(0,) = +1 for almost all
v. We define v(0,)=]]v,(0,) where 0, =]]C,. Note that the local
invariants v,(¢,) depend on the choice of the rational point x° e X(Q); one
can prove, however, that their product v(¢, ) does not depend on x°.

Let xe X(A). We set v(x) =v(G(A) - x). Then v(x) takes values +1; it is
a locally constant function on X(A), because the orbits of G(A) are open
in X(A).

For xe X(A) define d(x)=v(x)+ 1. In other words, if v(x)= —1 then
o(x)=0, and if v(x)=+1 then 6(x)=2. Then 0 is a locally constant
function on X(A).

THEOREM 1.1.  An orbit O, of G(A) in X(A) has a Q-rational point if and
only if v(Oy)= +1.

Below we will deduce Theorem 1.1 from [ 2, Theorem 3.6].

1.2. Proof of Theorem 1.1

For a torus T over a field k& of characteristic 0 we define a finite abelian
group C(T) as follows

C( T) = (X*( Tk_) Gal(E/k))tors

where k is a fixed algebraic closure of k, X (T} )Gal(i/ky denotes the group
of coinvariants, and (-),,,s denotes the torsion subgroup. If k£ is a number
field and k, is the completion of k at a place v, then we define C(T) =
(T} ). There is a canonical map i, : C,(T) — C(T) induced by an inclusion
Gal(k,/k,) — Gal(k/k). These definitions were given for connected reduc-
tive groups (not only for tori) by Kottwitz [ 10]; see also [2, 3.4]. Kottwitz
writes A(T) instead of C(T).
We compute C(H) for our one-dimensional torus H over Q. Clearly

C(H) = (X*(HK)Gal(K/Q))tors = Z/ZZ-

We have C(H)=1if K& Q, splits, and C(H)~Z/2Z if KR Q, is a field.
The map i, is injective for any v.

We now define the local invariants x,(C,) as in [ 2], where 0, is an orbit
of G(Q,) in X(Q,). The set of orbits of G(Q,) in X(Q,) is in canonical
bijection with ker [ HY(Q,, H) - H'(Q,, G)], cf. [13, I-5.4, Corollary 1 of
Proposition 36]. Hence @), defines a cohomology class &, e H(Q,, H). The
local Tate—Nakayama duality for tori defines a canonical homomorphism
B, H(Q,, H)— C,(H), see Kottwitz [ 10, Theorem 1.2]. (Kottwitz defines



286 MIKHAIL BOROVOI

the map f, in a more general setting, when H is any connected reductive
group over a number field.) The homomorphism f, is an isomorphism for
any v. We set x,(0,) = B,(&,). Note that if ¢,=G(Q,)-x° then ¢, =0 and
k,(0,)=0; if O, #G(Q,) - x° then &, #0 and «,(¢,) = 1.

We define the Kottwitz invariant x(¢, ) of an orbit ¢, =[] O, of G(A)
in X(A) by x(0,)=>,i,(x,(0,)). We identify C(H) with Z/2Z, and C,(H)
with a subgroup of Z/2Z. With this identifications x(0, ) =3 k,(0,).

We prefer the multiplicative rather than additive notation. Instead of
Z/27 we consider the group { +1, —1}, and set

W(G) = (= D)%, y(0) = (= 1),

Here v, (0,) and v(0,) take the values +1. We have v(0,)=T1]v,(0,).
Since x,(¢,) =0 if and only if ¢, = G(Q,) - x°, we see that v,(¢,) = +1 if and
only if ¢, = G(Q,) - x°. Hence our v,(¢,) and v(¢, ) coincide with v,(@,) and
v({,), resp., introduced in Section 1.1.

By Theorem 3.6 of [2] an adelic orbit ¢/, contains Q-rational points if
and only if x(0,)=0. With our multiplicative notation (@, )=0 if and
only if v(0y )= +1. Thus ¢, contains Q-points if and only if v(0, )= +1.
We have deduced Theorem 1.1 from [2, Theorem 3.6]. |

1.3. Tamagawa Measure

We define a gauge form on X, ie. a regular differential form w e A%(X)
without zeroes. Recall that X is defined by the equation f(x)=g¢. Choose
a differential form u of degree 2 on W such that u A df =dx, A dx, A dx,
where x;, x,, x5 are the coordinates in W= Q?>. Let w = u|y, the restriction
of  to X. Then w is a gauge form on X, cf. [2, 1.3], and it does not depend
on the choice of u. The gauge form w is G-invariant, because there exists
a G-invariant gauge form on X, cf. [2, 1.4], and a gauge form on X is
unique up to a scalar multiple, cf. [ 2, Corollary 1.5.4].

For any place v of Q one associates with w a local measure m, on X(Q,),
cf. [14, 2.2]. We show how to define a Tamagawa measure on X(A),
following [2, 1.6.2].

We have by [2, 1.8.17], u,(X)=m,(X(Z,)), where p,(X) is defined in the
Introduction. By [ 14, Theorem 2.2.5], for almost all p we have m,(X(Z,))
= #X(F,).

We compute # X(F,). The group SO(f)(F,) acts on X(F,) with
stabilizer SO(f")(F,), where SO(f")(F,) is defined for almost all p. This
action is transitive by Witt’s theorem. Thus we obtain that # X(F,)=
#SO(/)(F,)/#SO(f")(F,). By [1, TII-6],

#SO(f)(F,)=p(p>—1),  #SO(f)F,)=p—x(p),
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where y(p)= —1 if f"modp does not represent 0, and y(p)=+1 if
f' mod p represents 0. We have y(p) = (%‘ﬂ)). We obtain for p f gD

2 X(F 1—1/p?
#X(FP)Z%’ ,up(X)z# (2p)— - /p .
p—x(p) P 1—x(p)/p

For p | ¢D set x(p) =0. We define
L(s, )=1=x(p)p=)~"  Lis, 1) =TT Ly(s, ),
P

where s is a complex variable. We set

Then the product [T, (4, ' u,) converges absolutely, hence the family (4,)
is a family of convergence factors in the sense of [ 14, 2.3]. We define, as
in [2, 1.6.2], the measures

me=r—'[1(4, " m,), m=m,my,
p

then m, is a measure on X(A,) (where A, is the ring of finite adeles) and
m is a measure on X(A). We call m the Tamagawa measure on X(A).
1.4. Counting Integer Points

For T>0 set X(R)"={xeX(R): |x|<T}.

THEOREM 1.2.

N(T, X) ~ L«R)r g 00
In other words,
N(T, X) ~2m({xe X(R)"x X(Z) : v(x) = +1}). (1)

Theorem 1.2 follows from [ 2, Theorem 5.3] (cf. [2, 6.4] and [ 2, Definition
2.37).
For comparison note that

m(X(R)"x X(Z)) = m ,(X(R)") mo(X(Z)) = po(T, X) S(X),  (2)

cf. [2, 1.8].
The following lemma will be used in the proof of Theorem 0.1.
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LEMMA 1.3. Assume that there exists y € X(R x Z) such that v(y)= +1.
Then the set X(Z) is infinite.

Proof. Since v is a locally constant function on X(A), there exists a

nonempty open subset % € X(Z) and an orbit %,, of G(R) in X(R) such
that v(x)=+1 for all xe%, xU. Set UL ={xeU, :|x|<T}, then
mo(UT)— oo as T— oo. We have

5(x) dm>f 8(x) dm =2m (UT) mA(y) .

L{(R)TxX(Z) al <,

Since 2m («T) my(Us) —» o0 as T — oo, we see that
f o(x) dm — oo as T— oo,
XR)'x X(Z)

and by Theorem 1.2 N(T, X) — co. Hence X(Z) is infinite.

1.5. The Constant ¢y

Here we prove the following result:

ProrosiTION 1.4.
NT, X)~cxS(X)u (T, X) as T— o

with some constant ¢y, 0 < c,y<2.

Proof. 1If X(R) has two connected components, then by Theorem 0.2
(which we will prove in Section 4 below), N(T, X) ~ S(X) u (T, X), so the
proposition holds with ¢y =1.

If X(R) has one connected component, then X(R) consists of one
G(R)-orbit and v (X(R))= +1. For an orbit O;=]] O, of G(A,) in X(A/)
we set v.(O) =11, v,(C,). We regard v, as a locally constant function on
X(A,) taking the values + 1. Define X(Z), ={x,e X(Z): v (x)=+1}.
We have

| _3(x) dm=2m ,(X(R)") my(X(Z) ).
X(R)Tx X(Z)

Set cxy=2m/(X(Z),)/m/X(Z)), then 0<cy<2 and

[ _0(x) dim = cxem ,(X(R)T) my(X(Z)) = cxpto(T, X) S(X).
XR)'x X(Z)
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Using Theorem 1.2, we see that

NT, X)~cxito (T, X) S(X) as T - oo.

2. AN EXAMPLE OF c¢4x=0
Let
filxy, X5, x3) = —9x2+2x X, + Tx2+2x2, g=1.

This example was mentioned in [2, 6.4.1]. Here we provide a detailed

exposition.

Consider the variety X defined by the equation fi(x)=¢. We have
fil—3,3.1) =1. 1t follows that f; represents 1 over R and over Z, for
p>2.

We have f;(4,1,1)= —127=1 (mod 27). We prove that f; represents 1
over Z,. Define a polynomial of one variable F(Y)=fi(4, 1, Y)—1,
FeZ,[Y]. Then F(1)= =27 |F(1)|,=27"7, F'(Y)=4Y, |F'(1)?,=2"4
|F(1)|,<|F'(1)?|,. By Hensel’s lemma (cf. [11, 1I-§2, Proposition2]) F
has a root in Z,. Thus f; represents 1 over Z,.

Now we prove that f; does not represent 1 over Z. I know the following
elementary proof from D. Zagier.

We prove the assertion by contradiction. Assume on the contrary that

—9x%+2xx, + Tx3+2x2=1 for some x,, x,, x5 € Z.
We may write this equation as follows:
2x3—1=(x;—x,)% + 8(x; — X,)(x; + X5).
The left hand side is odd, hence x, — x, is odd and therefore x, + x, is odd.
We have (x; —x,)>=1 (mod 8). Hence the right hand side is congruent to
1 (mod 8). We see that x5 is odd, hence 2x3—1=1 (mod 16). But

8(x1—x)(x; +x,)=8 (mod 16).

It follows that
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Therefore x; — x, must have a prime factor p = + 3 (mod 8). Hence 2x3 — 1
has a prime factor p= +3 (mod 8). On the other hand, if p |(2x3—1),
then

2x3=1 (mod p)

and 2 is a square modulo p, ( 1%)= 1. By the quadratic reciprocity law
p= +1 (mod 8). Contradiction. We have proved that f; does not represent
1 over Z, hence N(T, X) =0 for all T.

On the other hand,
S(X) oo T, X) =m(X(Z)) m(X(R)7).

Since X(Z) is a nonempty open subset in X(A)), mf(X(Z))>O. Now
m(X(R)T)— oo as T— oo. Hence S(X)u (T, X)— oo as T— oo, and
thus ¢, =0.

3. PROOF OF THEOREM 0.1

LemMA 3.1.  Let k be a field of characteristic different from 2, and let V
be a finite-dimensional vector space over k. Let f be a non-degenerate
quadratic form on V. Let ue GL(V)(k), f" =u*f. Then the map yr>uy:V
— V takes the orbits of Spin(f)(k) in V to the orbits of Spin( f)(k).

Proof. Let xeV, f(x) #0. The reflection (symmetry) r,=r,,: V- Vis
defined by

X, yev,

where B is the symmetric bilinear form on ¥V associated with f. Every
s€SO(f)(k) can be written as

S=F, T (3)

Xl xl
cf. [12, Theorem 43:3]. The spinor norm 6(s) of s is defined by
O(s)=f(x1)---f(x;))  (mod k*?)ek*/k*?

and it does not depend on the choice of the representation given by (3),
cf. [ 12, §55]. Let ©(f) denote the image of Spin( f)(k) in SO( f)(k). Then
se€ SO(f)(k) is contained in O(f) if and only if 8(s) =1, cf. [ 13, I1I-3.2] or
[3, Chap. 10, Theorem 3.3].
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Now let u, /" be as above. Then r,, ux=urﬁxu’1, f'(ux) = f(x), and so
O (usu=")=0,(s). We conclude that u@(f)u~"'=6O(f") and that the map
y > uy takes the orbits of @(f) in V to the orbits of O(f'). ||

Let f, /" be integral-matrix quadratic forms on Z" and assume that f” is
in the genus of /. Then there exists ue GL,(RxZ) such that f'(x)=
fu=x) for xeA” Let geZ, g#0. Let X denote the affine quadric
f(x)=gq, and X’ denote the quadric f'(x)=gq.

Lemma 3.2, The map x> ux: A" - A” takes X(R x Z)t0 X' (RxZ) and
takes orbits of Spin( f)(A) in X(A) to orbits of Spin(f')(A) in X'(A).

Proof. Let A denote the matrix of f, and A’ denote the matrix of /. We
have

(Y Au=t=4', A=u'Au.

The variety X is defined by the equation x’Ax=g¢, and X’ is defined by
x'A'x=¢q. One can easily check that the map x> ux takes X(RxZ) to
X' (RxZ) and X(A) to X'(A).

In order to prove that the map x+— ux: X(A) - X’(A) takes the orbits
of Spin( f)(A) to the orbits of Spin( f')(A), it suffices to prove that the map
x—u,x: X(Q,) = X'(Q,) takes the orbits of Spin(f)(Q,) to the orbits of
Spin( f")(Q,) for every v, where u, is the v-component of u. This last
assertion follows from Lemma 3.1. |

ProrosITION 3.3. Let f' and q be as in Theorem 0.1, in particular f’
represents q over 1., for any v (we set 7., =R), but not over Z. Let X' be
the quadric defined by f'(x)=quv. Then X'(RxZ) is contained in one orbit

of Spin(f")(A).

Proof. Set G'=Spin(f’). We prove that X'(Z,) is contained in one
orbit of G'(Q,) for every v by contradiction. Assume on the contrary that
for some v the set X'(Z,) has nontrivial intersection with two orbits of
G'(Q,). Then v, takes both values +1 and —1 on X'(Z,). It follows that
v takes both values +1 and —1 on X'(R x Z). Hence by Lemma 1.3 X" has
infinitely many Z-points. This contradicts to the assumption that ' does
not represent ¢ over Z. ||

Proof of Theorem 0.1. Let ue GL4(R x Z) be such that f'(x) = f(u""x).
Let X, X’ be as above, in particular X’ has no Z-points. By Proposition 3.3
X'(R x Z) is contained in one orbit of Spin( /”)(A). It follows from Lemma
32 that X(RxZ) is contained in one orbit of Spin(f)(A). Since f
represents ¢ over Z, this orbit has Q-rational points, and v equals +1 on
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X(R xZ). Thus 6 equals 2 on X(RxZ), and by Formulas (1) and (2) of
Section 1.4 N(T, X) ~2C(X) u (T, X). 1

4. PROOF OF THEOREM 0.2

We prove Theorem 0.2. We define an involution 7., of X(R) by 7(x) =
—x, xe X(R) <R3, Since f(x)= f(—x), T, is well defined, i.e takes X(R)
to itself. Since | — x| = |x|, ., takes X(R)7 to itself. We define an involution
7 of X(A) by defining 7 as 7., on X(R) and as 1 on X(Q,) for all prime p.
Then 7 respects the Tamagawa measure m on X(A).

By assumption X(R) has two connected components. These are the two
orbits of Spin(f)(R). The involution 7., of X(R) interchanges these two
orbits. Thus we have

Voo (Too(X o)) = —Voo(X o) for all x. € X(R) (4)
v(t(x))= —v(x) for all xeX(A). (5)

Let X(R); and X(R), be the two connected components of X(R). Set
X(R)T=X(R); nX(R)",  X(R)7=X(R), nX(R)”

Then 7 interchanges X(R)7 x X(Z) and X(R)? x X(Z). From Formula (5)
in this section we have

j v(x) dm= —J v(x) dm,
X(R)] x X(Z) X(R)] x X(Z)
hence
j v(x) dm=0.
X(R)T'x X(Z)
Since d(x) =v(x)+ 1, we obtain
j 3(x) dm = dm=m(X(R)" x X(Z)),
X(R)Tx X(Z) XR)T x X(Z)

and m(X(R)" x X(Z)) = S(X) u (T, X). By Theorem 1.2

N(T, X) ~j 3(x) dm.

XR)Tx X(Z)

Thus N(T, X) ~S(X) (T, X) as T— o0, i.e. cxy=1. |
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