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Let f be an indefinite ternary integral quadratic form and let q be a nonzero
integer such that &q det( f ) is not a square. Let N(T, f, q) denote the number of
integral solutions of the equation f (x)=q where x lies in the ball of radius T
centered at the origin. We are interested in the asymptotic behavior of N(T, f, q)
as T � �. We deduce from the results of our joint paper with Z. Rudnick that
N(T, f, q)tcEHL(T, f, q) as T � �, where EHL(T, f, q) is the Hardy�Littlewood
expectation (the product of local densities) and 0�c�2. We give examples of f and
q such that c takes the values 0, 1, 2. � 2001 Academic Press
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0. INTRODUCTION

Let f be a nondegenerate indefinite integral-matrix quadratic form of n
variables:

f (x1 , ..., xn)= :
n

i, j=1

aij xi xj , a ij # Z, a ij=aji .

Let q # Z, q{0. Let W=Qn. Consider the affine quadric X in W defined
by the equation

f (x1 , ..., xn)=q.

We wish to count the representations of q by the quadratic form f, that is
the integer points of X.
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Since f is indefinite, the set X(Z) can be infinite. We fix a Euclidean
norm | } | on Rn. Consider the counting function

N(T, X )=*[x # X(Z) : |x|�T ]

where T # R, T>0. We are interested in the asymptotic behavior of
N(T, X) as T � �.

When n�4, the counting function N(T, X ) can be approximated by the
product of local densities. For a prime p set

+p(X )= lim
k � �

*X(Z�pkZ)
( pk)n&1 .

For almost all p it suffices to take k=1:

+p(X )=
*X(Fp)

pn&1 .

Set S(X )=>p +p(X ); this product converges absolutely (for n�4) and is
called the singular series. Set

+�(T, X)= lim
= � 0

Vol[x # Rn : |x|�T, | f (x)&q|<=�2]
=

,

which is called the singular integral. For n�4 the following asymptotic
formula holds:

N(T, X)tS(X ) +�(T, X) as T � �.

This follows from results of [2, 6.4] (which are based on analytical results
of [6, 7, 8]). For certain non-Euclidean norms the similar result was earlier
proved by the Hardy�Littlewood circle method, cf. [5] in the case n�5
and [9] in the more difficult case n=4.

We are interested here in the case n=3, a ternary quadratic form. This
case is beyond the range of the Hardy�Littlewood circle method. Set D=
det(aij). We assume that &qD is not a square. Then the product S(X )=
> +p(X ) conditionally converges (see Sect. 1 below), but in general
N(T, X) is not asymptotically S(X ) +�(T, X). From results of [2] it
follows that

N(T, X )tcX S(X ) +�(T, X ) as T � �

with 0�cX�2, see details in Section 1.5 below. We wish to know what
values can cX take.
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A case when cX=0 was already known to Siegel, see also [2, 6.4.1].
Consider the quadratic form

f1(x1 , x2 , x3)=&9x2
1+2x1 x2+7x2

2+2x2
3 ,

and take q=1. Let X be defined by f1(x)=q. Then f1 does not represent
1 over Z, so N(T, X )=0 for all T. On the other hand, f1 represents 1 over
R and over Zp for all p, and S(X) +�(T, X ) � � as T � �. Thus cX=0
(see details in Sect. 2).

We show that cX can take the value 2. Recall that two integral quadratic
forms f, f $ are in the same genus if they are equivalent over R and over Zp

for every prime p, cf. e.g. [3].

Theorem 0.1. Let f be an indefinite integral-matrix ternary quadratic
form, q # Z, q{0, and let X be the affine quadric defined by the equation
f (x)=q. Assume that f represents q over Z and that there exists a quadratic
form f $ in the genus of f such that f $ does not represent q over Z. Then
cX=2:

N(T, X )t2S(X ) +�(T, X) as T � �.

Theorem 0.1 will be proved in Section 3.

Example 0.1.1. Let f2(x1 , x2 , x3)=&x2
1+64x2

2+2x2
3 , q=1. Then f2

represents 1 ( f2(1, 0, 1)=1) and the quadratic form f1 considered above is
in the genus of f2 (cf. [4, 15.6]). The form f1 does not represent 1. Take
|x|=(x2

1+64x2
2+2x2

3)1�2. By Theorem 0.1 cX=2 for the variety X: f2(x)
=1. Analytic and numeric calculations give 2S(X ) +�(T, X )t0.794T. On
the other hand, numeric calculations give for T=10,000 the value
N(T, X)�T=0.8024.

We also show that cX can take the value 1.

Theorem 0.2. Let f be an indefinite integral-matrix ternary quadratic
form, q # Z, q{0, and let X be the affine quadric defined by the equation
f (x)=q. Assume that X(R) is two-sheeted (has two connected components).
Then cX=1:

N(T, X)tS(X ) +�(T, X) as T � �.

Theorem 0.2 will be proved in Section 4.
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Example 0.2.1. Let f2 and |x| be as in Example 0.1.1, q=&1, X: f2(x)
=q. Then X(R) has two connected components, and by Theorem 0.2
cX=1. Analytic and numeric calculations give S(X ) +�(T, X )t0.7065T.
On the other hand, numeric calculations give for T=10, 000 the value
N(T, X)�T=0.7048.

Question 0.3. Can cX take values other than 0, 1, 2?

The plan of the paper is the following. In Section 1 we describe results
of [2] in the case of 2-dimensional affine quadrics. In Section 2 we treat
in detail the example of cX=0. In Section 3 we prove Theorem 0.1. In
Section 4 we prove Theorem 0.2.

1. RESULTS OF [2] IN THE CASE OF TERNARY
QUADRATIC FORMS

Let f be an indefinite ternary integral-matrix quadratic form

f (x1 , x2 , x3)= :
3

i, j=1

a ij xi xj , aij # Z, a ij=aji .

Let q # Z, q{0. Let D=det(aij). We assume that &qD is not a square.
Let W=Q3 and let X denote the affine variety in W defined by the equa-

tion f (x)=q, where x=(x1 , x2 , x3). We assume that X has a Q-point x0.
Set G=Spin(W, f ), the spinor group of f. Then G acts on W on the left,
and X is an orbit (a homogeneous space) of G.

1.1. Rational Points in Adelic Orbits

Let A denote the ade� le ring of Q. The group G(A) acts on X(A); let OA

be an orbit. We would like to know whether OA has a Q-rational point.
Let W$ denote the orthogonal complement of x0 in W, and let f $ denote

the restriction of f to W$. Let H be the stabilizer of x0 in G, then
H=Spin(W$, f $). Since dim W$=2, the group H is a one-dimensional
torus.

We have det f $=D�q, so up to multiplication by a square det f $=qD.
It follows that up to multiplication by a scalar, f $ is equivalent to the
quadratic form u2+qDv2. Set K=Q(- &qD), then K is a quadratic
extension of Q, because &qD is not a square. The torus H is anisotropic
over Q (because &qD is not a square), and H splits over K. Let X

*
(HK)

denote the cocharacter group of HK , X
*

(HK)=Hom(Gm, K , HK); then
X

*
(HK)&Z. The non-neutral element of Gal(K�Q) acts on X

*
(HK) by

multiplication by &1.
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Let OA be an orbit of G(A) in X(A), OA => Ov where Ov is an orbit of
G(Qv) in X(Qv), v runs over the places of Q, and Qv denotes the completion
of Q at v. We define local invariants &v(Ov)=\1. If Ov=G(Qv) } x0, then we
set &v(Ov)=+1, if not, we set &v(Ov)=&1. Then &v(Ov)=+1 for almost all
v. We define &(OA )=>&v(Ov) where OA => Ov . Note that the local
invariants &v(Ov) depend on the choice of the rational point x0 # X(Q); one
can prove, however, that their product &(OA ) does not depend on x0.

Let x # X(A). We set &(x)=&(G(A) } x). Then &(x) takes values \1; it is
a locally constant function on X(A), because the orbits of G(A) are open
in X(A).

For x # X(A) define $(x)=&(x)+1. In other words, if &(x)=&1 then
$(x)=0, and if &(x)=+1 then $(x)=2. Then $ is a locally constant
function on X(A).

Theorem 1.1. An orbit OA of G(A) in X(A) has a Q-rational point if and
only if &(OA )=+1.

Below we will deduce Theorem 1.1 from [2, Theorem 3.6].

1.2. Proof of Theorem 1.1

For a torus T over a field k of characteristic 0 we define a finite abelian
group C(T ) as follows

C(T )=(X
*

(Tk� )Gal(k� �k))tors

where k� is a fixed algebraic closure of k, X
*

(Tk� )Gal(k� �k) denotes the group
of coinvariants, and ( } )tors denotes the torsion subgroup. If k is a number
field and kv is the completion of k at a place v, then we define Cv(T )=
C(Tkv

). There is a canonical map iv : Cv(T) � C(T ) induced by an inclusion
Gal(k� v �kv) � Gal(k� �k). These definitions were given for connected reduc-
tive groups (not only for tori) by Kottwitz [10]; see also [2, 3.4]. Kottwitz
writes A(T ) instead of C(T ).

We compute C(H ) for our one-dimensional torus H over Q. Clearly

C(H )=(X
*

(HK)Gal(K�Q))tors=Z�2Z.

We have Cv(H )=1 if K�Qv splits, and Cv(H )&Z�2Z if K�Qv is a field.
The map iv is injective for any v.

We now define the local invariants }v(Ov) as in [2], where Ov is an orbit
of G(Qv) in X(Qv). The set of orbits of G(Qv) in X(Qv) is in canonical
bijection with ker [H1(Qv , H ) � H1(Qv , G )], cf. [13, I-5.4, Corollary 1 of
Proposition 36]. Hence Ov defines a cohomology class !v # H 1(Qv , H ). The
local Tate�Nakayama duality for tori defines a canonical homomorphism
;v : H1(Qv , H ) � Cv(H ), see Kottwitz [10, Theorem 1.2]. (Kottwitz defines
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the map ;v in a more general setting, when H is any connected reductive
group over a number field.) The homomorphism ;v is an isomorphism for
any v. We set }v(Ov)=;v(!v). Note that if Ov=G(Qv) } x0, then !v=0 and
}v(Ov)=0; if Ov {G(Qv) } x0, then !v {0 and }v(Ov)=1.

We define the Kottwitz invariant }(OA ) of an orbit OA => Ov of G(A)
in X(A) by }(OA )=�v iv(}v(Ov)). We identify C(H ) with Z�2Z, and Cv(H )
with a subgroup of Z�2Z. With this identifications }(OA )=� }v(Ov).

We prefer the multiplicative rather than additive notation. Instead of
Z�2Z we consider the group [+1, &1], and set

&v(Ov)=(&1)}v(Ov), &(OA )=(&1)}(OA).

Here &v(Ov) and &(OA ) take the values \1. We have &(OA )=> &v(Ov).
Since }v(Ov)=0 if and only if Ov=G(Qv) } x0, we see that &v(Ov)=+1 if and
only if Ov=G(Qv) } x0. Hence our &v(Ov) and &(OA ) coincide with &v(Ov) and
&(OA ), resp., introduced in Section 1.1.

By Theorem 3.6 of [2] an adelic orbit OA contains Q-rational points if
and only if }(OA )=0. With our multiplicative notation }(OA )=0 if and
only if &(OA )=+1. Thus OA contains Q-points if and only if &(OA )=+1.
We have deduced Theorem 1.1 from [2, Theorem 3.6]. K

1.3. Tamagawa Measure

We define a gauge form on X, i.e. a regular differential form | # 42(X )
without zeroes. Recall that X is defined by the equation f (x)=q. Choose
a differential form + of degree 2 on W such that + 7 df =dx1 7 dx2 7 dx3 ,
where x1 , x2 , x3 are the coordinates in W=Q3. Let |=+ |X , the restriction
of + to X. Then | is a gauge form on X, cf. [2, 1.3], and it does not depend
on the choice of +. The gauge form | is G-invariant, because there exists
a G-invariant gauge form on X, cf. [2, 1.4], and a gauge form on X is
unique up to a scalar multiple, cf. [2, Corollary 1.5.4].

For any place v of Q one associates with | a local measure mv on X(Qv),
cf. [14, 2.2]. We show how to define a Tamagawa measure on X(A),
following [2, 1.6.2].

We have by [2, 1.8.1], +p(X )=mp(X(Zp)), where +p(X ) is defined in the
Introduction. By [14, Theorem 2.2.5], for almost all p we have mp(X(Zp))
=*X(Fp).

We compute *X(Fp). The group SO( f )(Fp) acts on X(Fp) with
stabilizer SO( f $)(Fp), where SO( f $)(Fp) is defined for almost all p. This
action is transitive by Witt's theorem. Thus we obtain that *X(Fp)=
*SO( f )(Fp)�*SO( f $)(Fp). By [1, III-6],

*SO( f )(Fp)= p( p2&1), *SO( f $)(Fp)= p&/( p),
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where /( p)=&1 if f $ mod p does not represent 0, and /( p)=+1 if
f $ mod p represents 0. We have /( p)=( &qD

p ). We obtain for p |% qD

*X(Fp)=
p( p2&1)
p&/( p)

, +p(X )=
*X(Fp)

p2 =
1&1�p2

1&/( p)�p
.

For p | qD set /( p)=0. We define

Lp(s, /)=(1&/( p) p&s)&1, L(s, /)=`
p

Lp(s, /),

where s is a complex variable. We set

*p=Lp(1, /)&1=1&
/( p)

p
, r=L(1, /)&1.

Then the product >p (*&1
p +p) converges absolutely, hence the family (*p)

is a family of convergence factors in the sense of [14, 2.3]. We define, as
in [2, 1.6.2], the measures

mf=r&1 `
p

(*&1
p mp), m=m�mf ,

then mf is a measure on X(Af) (where Af is the ring of finite ade� les) and
m is a measure on X(A). We call m the Tamagawa measure on X(A).

1.4. Counting Integer Points

For T>0 set X(R)T=[x # X(R) : |x|�T ].

Theorem 1.2.

N(T, X)t|
X(R)T_X(Z� )

$(x) dm.

In other words,

N(T, X )t2m([x # X(R)T_X(Z� ) : &(x)=+1]). (1)

Theorem 1.2 follows from [2, Theorem 5.3] (cf. [2, 6.4] and [2, Definition
2.3]).

For comparison note that

m(X(R)T_X(Z� ))=m�(X(R)T) mf (X(Z� ))=+�(T, X ) S(X ), (2)

cf. [2, 1.8].
The following lemma will be used in the proof of Theorem 0.1.
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Lemma 1.3. Assume that there exists y # X(R_Z� ) such that &( y)=+1.
Then the set X(Z) is infinite.

Proof. Since & is a locally constant function on X(A), there exists a
nonempty open subset Uf # X(Z� ) and an orbit U� of G(R) in X(R) such
that &(x)=+1 for all x # U� _Uf . Set UT

�=[x # U� : |x|�T ], then
m�(UT

�) � � as T � �. We have

|
X(R)T_X(Z� )

$(x) dm�|
U

T
�_Uf

$(x) dm=2m�(UT
�) mf (Uf) .

Since 2m�(UT
�) mf (Uf) � � as T � �, we see that

|
X(R)T_X(Z� )

$(x) dm � � as T � �,

and by Theorem 1.2 N(T, X ) � �. Hence X(Z) is infinite.

1.5. The Constant cX

Here we prove the following result:

Proposition 1.4.

N(T, X )tcX S(X ) +�(T, X ) as T � �

with some constant cX , 0�cX�2.

Proof. If X(R) has two connected components, then by Theorem 0.2
(which we will prove in Section 4 below), N(T, X )tS(X ) +�(T, X ), so the
proposition holds with cX=1.

If X(R) has one connected component, then X(R) consists of one
G(R)-orbit and &�(X(R))=+1. For an orbit Of=> Op of G(Af) in X(Af)
we set &f (Of)=>p &p(Op). We regard &f as a locally constant function on
X(Af) taking the values \1. Define X(Z� )+=[xf # X(Z� ) : &f (xf)=+1].
We have

|
X(R)T_X(Z� )

$(x) dm=2m�(X(R)T) mf (X(Z� )+).

Set cX=2mf (X(Z� )+)�mf (X(Z� )), then 0�cX�2 and

|
X(R)T_X(Z� )

$(x) dm=cX m�(X(R)T) mf (X(Z� ))=cX +�(T, X ) S(X).
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Using Theorem 1.2, we see that

N(T, X )tcX +�(T, X ) S(X ) as T � �.

2. AN EXAMPLE OF cX=0

Let

f1(x1 , x2 , x3)=&9x2
1+2x1 x2+7x2

2+2x2
3 , q=1.

This example was mentioned in [2, 6.4.1]. Here we provide a detailed
exposition.

Consider the variety X defined by the equation f1(x)=q. We have
f1(&1

2 , 1
2 , 1) =1. It follows that f1 represents 1 over R and over Zp for

p>2.
We have f1(4, 1, 1)=&127#1 (mod 27). We prove that f1 represents 1

over Z2 . Define a polynomial of one variable F(Y )= f1(4, 1, Y)&1,
F # Z2[Y ]. Then F(1)=&27, |F(1)|2=2&7, F $(Y )=4Y, |F $(1)2| 2=2&4,
|F(1)|2<|F $(1)2|2 . By Hensel's lemma (cf. [11, II-92, Proposition 2]) F
has a root in Z2 . Thus f1 represents 1 over Z2 .

Now we prove that f1 does not represent 1 over Z. I know the following
elementary proof from D. Zagier.

We prove the assertion by contradiction. Assume on the contrary that

&9x2
1+2x1 x2+7x2

2+2x2
3=1 for some x1 , x2 , x3 # Z.

We may write this equation as follows:

2x2
3&1=(x1&x2)2+8(x1&x2)(x1+x2).

The left hand side is odd, hence x1&x2 is odd and therefore x1+x2 is odd.
We have (x1&x2)2#1 (mod 8). Hence the right hand side is congruent to
1 (mod 8). We see that x3 is odd, hence 2x2

3&1#1 (mod 16). But

8(x1&x2)(x1+x2)#8 (mod 16).

It follows that

(x1&x2)2#9 (mod 16)

x1&x2#\3 (mod 8).

289TERNARY QUADRATIC FORMS



Therefore x1&x2 must have a prime factor p#\3 (mod 8). Hence 2x2
3&1

has a prime factor p#\3 (mod 8). On the other hand, if p | (2x2
3&1),

then

2x2
3#1 (mod p)

and 2 is a square modulo p, ( 2
p)=1. By the quadratic reciprocity law

p#\1 (mod 8). Contradiction. We have proved that f1 does not represent
1 over Z, hence N(T, X)=0 for all T.

On the other hand,

S(X ) +�(T, X )=mf (X(Z� )) m�(X(R)T).

Since X(Z� ) is a nonempty open subset in X(Af), mf (X(Z� ))>0. Now
m�(X(R)T) � � as T � �. Hence S(X) +�(T, X ) � � as T � �, and
thus cX=0.

3. PROOF OF THEOREM 0.1

Lemma 3.1. Let k be a field of characteristic different from 2, and let V
be a finite-dimensional vector space over k. Let f be a non-degenerate
quadratic form on V. Let u # GL(V)(k), f $=u*f. Then the map y [ uy : V
� V takes the orbits of Spin( f )(k) in V to the orbits of Spin( f $)(k).

Proof. Let x # V, f (x){0. The reflection (symmetry) rx=rf, x : V � V is
defined by

rx( y)= y&
2B(x, y)

f (x)
x, y # V,

where B is the symmetric bilinear form on V associated with f. Every
s # SO( f )(k) can be written as

s=rx1
} } } rxl

(3)

cf. [12, Theorem 43:3]. The spinor norm %(s) of s is defined by

%(s)= f (x1) } } } f (xl) (mod k*2) # k*�k*2

and it does not depend on the choice of the representation given by (3),
cf. [12, 955]. Let 3( f ) denote the image of Spin( f )(k) in SO( f )(k). Then
s # SO( f )(k) is contained in 3( f ) if and only if %(s)=1, cf. [13, III-3.2] or
[3, Chap. 10, Theorem 3.3].
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Now let u, f $ be as above. Then rf $, ux=urf, xu&1, f $(ux)= f (x), and so
%f $(usu&1)=%f (s). We conclude that u3( f ) u&1=3( f $) and that the map
y [ uy takes the orbits of 3( f ) in V to the orbits of 3( f $). K

Let f, f $ be integral-matrix quadratic forms on Zn and assume that f $ is
in the genus of f. Then there exists u # GLn(R_Z� ) such that f $(x)=
f (u&1x) for x # An. Let q # Z, q{0. Let X denote the affine quadric
f (x)=q, and X$ denote the quadric f $(x)=q.

Lemma 3.2. The map x [ ux : An � An takes X(R_Z� ) to X$(R_Z� ) and
takes orbits of Spin( f )(A) in X(A) to orbits of Spin( f $)(A) in X$(A).

Proof. Let A denote the matrix of f, and A$ denote the matrix of f $. We
have

(u&1)t Au&1=A$, A=utA$u.

The variety X is defined by the equation xtAx=q, and X$ is defined by
xtA$x=q. One can easily check that the map x [ ux takes X(R_Z� ) to
X$(R_Z� ) and X(A) to X$(A).

In order to prove that the map x [ ux : X(A) � X$(A) takes the orbits
of Spin( f )(A) to the orbits of Spin( f $)(A), it suffices to prove that the map
x [ uvx : X(Qv) � X$(Qv) takes the orbits of Spin( f )(Qv) to the orbits of
Spin( f $)(Qv) for every v, where uv is the v-component of u. This last
assertion follows from Lemma 3.1. K

Proposition 3.3. Let f $ and q be as in Theorem 0.1, in particular f $
represents q over Zv for any v (we set Z�=R), but not over Z. Let X$ be
the quadric defined by f $(x)=qv. Then X$(R_Z� ) is contained in one orbit
of Spin( f $)(A).

Proof. Set G$=Spin( f $). We prove that X$(Zv) is contained in one
orbit of G$(Qv) for every v by contradiction. Assume on the contrary that
for some v the set X$(Zv) has nontrivial intersection with two orbits of
G$(Qv). Then &v takes both values +1 and &1 on X$(Zv). It follows that
& takes both values +1 and &1 on X$(R_Z� ). Hence by Lemma 1.3 X$ has
infinitely many Z-points. This contradicts to the assumption that f $ does
not represent q over Z. K

Proof of Theorem 0.1. Let u # GL3(R_Z� ) be such that f $(x)= f (u&1x).
Let X, X$ be as above, in particular X$ has no Z-points. By Proposition 3.3
X$(R_Z� ) is contained in one orbit of Spin( f $)(A). It follows from Lemma
3.2 that X(R_Z� ) is contained in one orbit of Spin( f )(A). Since f
represents q over Z, this orbit has Q-rational points, and & equals +1 on
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X(R_Z� ). Thus $ equals 2 on X(R_Z� ), and by Formulas (1) and (2) of
Section 1.4 N(T, X )t2S(X ) +�(T, X ). K

4. PROOF OF THEOREM 0.2

We prove Theorem 0.2. We define an involution {� of X(R) by {�(x)=
&x, x # X(R)/R3. Since f (x)= f (&x), {� is well defined, i.e takes X(R)
to itself. Since |&x|=|x|, {� takes X(R)T to itself. We define an involution
{ of X(A) by defining { as {� on X(R) and as 1 on X(Qp) for all prime p.
Then { respects the Tamagawa measure m on X(A).

By assumption X(R) has two connected components. These are the two
orbits of Spin( f )(R). The involution {� of X(R) interchanges these two
orbits. Thus we have

&�({�(x�))=&&�(x�) for all x� # X(R) (4)

&({(x))=&&(x) for all x # X(A). (5)

Let X(R)1 and X(R)2 be the two connected components of X(R). Set

X(R)T
1 =X(R)1 & X(R)T, X(R)T

2 =X(R)2 & X(R)T

Then { interchanges X(R)T
1_X(Z� ) and X(R)T

2_X(Z� ). From Formula (5)
in this section we have

|
X(R)

1
T_X(Z� )

&(x) dm=&|
X(R)

2
T_X(Z� )

&(x) dm,

hence

|
X(R)T_X(Z� )

&(x) dm=0.

Since $(x)=&(x)+1, we obtain

|
X(R)T_X(Z� )

$(x) dm=|
X(R)T_X(Z� )

dm=m(X(R)T_X(Z� )),

and m(X(R)T_X(Z� ))=S(X) +�(T, X ). By Theorem 1.2

N(T, X)t|
X(R)T_X(Z� )

$(x) dm.

Thus N(T, X)tS(X ) +�(T, X ) as T � �, i.e. cX=1. K
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