On Representations of Integers by Indefinite Ternary Quadratic Forms

Mikhail Borovoi ${ }^{1}$
Raymond and Beverly Sackler School of Mathematical Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
E-mail: borovoi@math.tau.ac.il
Communicated by J. S. Hsia

Received March 28, 2000; published online July 23, 2001

CORE

 expectation (the product of local densities) and $0 \leqslant c \leqslant 2$. We give examples of f and q such that c takes the values $0,1,2$. © 2001 Academic PressKey Words: ternary quadratic forms.

0. INTRODUCTION

Let f be a nondegenerate indefinite integral-matrix quadratic form of n variables:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}, \quad a_{i j} \in \mathbf{Z}, \quad a_{i j}=a_{j i} .
$$

Let $q \in \mathbf{Z}, q \neq 0$. Let $W=\mathbf{Q}^{n}$. Consider the affine quadric X in W defined by the equation

$$
f\left(x_{1}, \ldots, x_{n}\right)=q .
$$

We wish to count the representations of q by the quadratic form f, that is the integer points of X.
${ }^{1}$ Partially supported by the Hermann Minkowski Center for Geometry.

Since f is indefinite, the set $X(\mathbf{Z})$ can be infinite. We fix a Euclidean norm $|\cdot|$ on \mathbf{R}^{n}. Consider the counting function

$$
N(T, X)=\#\{x \in X(\mathbf{Z}):|x| \leqslant T\}
$$

where $T \in \mathbf{R}, T>0$. We are interested in the asymptotic behavior of $N(T, X)$ as $T \rightarrow \infty$.

When $n \geqslant 4$, the counting function $N(T, X)$ can be approximated by the product of local densities. For a prime p set

$$
\mu_{p}(X)=\lim _{k \rightarrow \infty} \frac{\# X\left(\mathbf{Z} / p^{k} \mathbf{Z}\right)}{\left(p^{k}\right)^{n-1}}
$$

For almost all p it suffices to take $k=1$:

$$
\mu_{p}(X)=\frac{\# X\left(\mathbf{F}_{p}\right)}{p^{n-1}} .
$$

Set $\mathcal{G}(X)=\prod_{p} \mu_{p}(X)$; this product converges absolutely (for $n \geqslant 4$) and is called the singular series. Set

$$
\mu_{\infty}(T, X)=\lim _{\varepsilon \rightarrow 0} \frac{\operatorname{Vol}\left\{x \in \mathbf{R}^{n}:|x| \leqslant T,|f(x)-q|<\varepsilon / 2\right\}}{\varepsilon},
$$

which is called the singular integral. For $n \geqslant 4$ the following asymptotic formula holds:

$$
N(T, X) \sim \Theta(X) \mu_{\infty}(T, X) \quad \text { as } \quad T \rightarrow \infty
$$

This follows from results of $[2,6.4]$ (which are based on analytical results of $[6,7,8]$). For certain non-Euclidean norms the similar result was earlier proved by the Hardy-Littlewood circle method, cf. [5] in the case $n \geqslant 5$ and [9] in the more difficult case $n=4$.

We are interested here in the case $n=3$, a ternary quadratic form. This case is beyond the range of the Hardy-Littlewood circle method. Set $D=$ $\operatorname{det}\left(a_{i j}\right)$. We assume that $-q D$ is not a square. Then the product $\mathfrak{S}(X)=$ $\Pi \mu_{p}(X)$ conditionally converges (see Sect. 1 below), but in general $N(T, X)$ is not asymptotically $\left.\mathbb{S}_{(} X\right) \mu_{\infty}(T, X)$. From results of [2] it follows that

$$
N(T, X) \sim c_{X} \circlearrowleft(X) \mu_{\infty}(T, X) \quad \text { as } \quad T \rightarrow \infty
$$

with $0 \leqslant c_{X} \leqslant 2$, see details in Section 1.5 below. We wish to know what values can c_{X} take.

A case when $c_{X}=0$ was already known to Siegel, see also [2, 6.4.1]. Consider the quadratic form

$$
f_{1}\left(x_{1}, x_{2}, x_{3}\right)=-9 x_{1}^{2}+2 x_{1} x_{2}+7 x_{2}^{2}+2 x_{3}^{2},
$$

and take $q=1$. Let X be defined by $f_{1}(x)=q$. Then f_{1} does not represent 1 over \mathbf{Z}, so $N(T, X)=0$ for all T. On the other hand, f_{1} represents 1 over \mathbf{R} and over \mathbf{Z}_{p} for all p, and $\Theta(X) \mu_{\infty}(T, X) \rightarrow \infty$ as $T \rightarrow \infty$. Thus $c_{X}=0$ (see details in Sect. 2).

We show that c_{X} can take the value 2 . Recall that two integral quadratic forms f, f^{\prime} are in the same genus if they are equivalent over \mathbf{R} and over \mathbf{Z}_{p} for every prime p, cf. e.g. [3].

Theorem 0.1. Let f be an indefinite integral-matrix ternary quadratic form, $q \in \mathbf{Z}, q \neq 0$, and let X be the affine quadric defined by the equation $f(x)=q$. Assume that f represents q over \mathbf{Z} and that there exists a quadratic form f^{\prime} in the genus of f such that f^{\prime} does not represent q over \mathbf{Z}. Then $c_{X}=2$:

$$
N(T, X) \sim 2 \mathbb{G}(X) \mu_{\infty}(T, X) \quad \text { as } \quad T \rightarrow \infty
$$

Theorem 0.1 will be proved in Section 3.

Example 0.1.1. Let $f_{2}\left(x_{1}, x_{2}, x_{3}\right)=-x_{1}^{2}+64 x_{2}^{2}+2 x_{3}^{2}, q=1$. Then f_{2} represents $1\left(f_{2}(1,0,1)=1\right)$ and the quadratic form f_{1} considered above is in the genus of f_{2} (cf. $[4,15.6]$). The form f_{1} does not represent 1 . Take $|x|=\left(x_{1}^{2}+64 x_{2}^{2}+2 x_{3}^{2}\right)^{1 / 2}$. By Theorem $0.1 \quad c_{X}=2$ for the variety $X: f_{2}(x)$ $=1$. Analytic and numeric calculations give $2 \mathbb{S}(X) \mu_{\infty}(T, X) \sim 0.794 T$. On the other hand, numeric calculations give for $T=10,000$ the value $N(T, X) / T=0.8024$.

We also show that c_{X} can take the value 1 .

Theorem 0.2. Let f be an indefinite integral-matrix ternary quadratic form, $q \in \mathbf{Z}, q \neq 0$, and let X be the affine quadric defined by the equation $f(x)=q$. Assume that $X(\mathbf{R})$ is two-sheeted (has two connected components). Then $c_{X}=1$:

$$
N(T, X) \sim \subseteq(X) \mu_{\infty}(T, X) \quad \text { as } \quad T \rightarrow \infty .
$$

Theorem 0.2 will be proved in Section 4.

Example 0.2 .1 . Let f_{2} and $|x|$ be as in Example 0.1.1, $q=-1, X: f_{2}(x)$ $=q$. Then $X(\mathbf{R})$ has two connected components, and by Theorem 0.2 $c_{X}=1$. Analytic and numeric calculations give $\mathfrak{S}(X) \mu_{\infty}(T, X) \sim 0.7065 T$. On the other hand, numeric calculations give for $T=10,000$ the value $N(T, X) / T=0.7048$.

Question 0.3. Can c_{X} take values other than $0,1,2$?
The plan of the paper is the following. In Section 1 we describe results of [2] in the case of 2-dimensional affine quadrics. In Section 2 we treat in detail the example of $c_{X}=0$. In Section 3 we prove Theorem 0.1. In Section 4 we prove Theorem 0.2.

1. RESULTS OF [2] IN THE CASE OF TERNARY QUADRATIC FORMS

Let f be an indefinite ternary integral-matrix quadratic form

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\sum_{i, j=1}^{3} a_{i j} x_{i} x_{j}, \quad a_{i j} \in \mathbf{Z}, \quad a_{i j}=a_{j i}
$$

Let $q \in \mathbf{Z}, q \neq 0$. Let $D=\operatorname{det}\left(a_{i j}\right)$. We assume that $-q D$ is not a square.
Let $W=\mathbf{Q}^{3}$ and let X denote the affine variety in W defined by the equation $f(x)=q$, where $x=\left(x_{1}, x_{2}, x_{3}\right)$. We assume that X has a \mathbf{Q}-point x^{0}. Set $G=\operatorname{Spin}(W, f)$, the spinor group of f. Then G acts on W on the left, and X is an orbit (a homogeneous space) of G.

1.1. Rational Points in Adelic Orbits

Let \mathbf{A} denote the adèle ring of \mathbf{Q}. The group $G(\mathbf{A})$ acts on $X(\mathbf{A})$; let $\mathcal{O}_{\mathbf{A}}$ be an orbit. We would like to know whether $\mathcal{O}_{\mathbf{A}}$ has a \mathbf{Q}-rational point.

Let W^{\prime} denote the orthogonal complement of x^{0} in W, and let f^{\prime} denote the restriction of f to W^{\prime}. Let H be the stabilizer of x^{0} in G, then $H=\operatorname{Spin}\left(W^{\prime}, f^{\prime}\right)$. Since $\operatorname{dim} W^{\prime}=2$, the group H is a one-dimensional torus.

We have $\operatorname{det} f^{\prime}=D / q$, so up to multiplication by a square $\operatorname{det} f^{\prime}=q D$. It follows that up to multiplication by a scalar, f^{\prime} is equivalent to the quadratic form $u^{2}+q D v^{2}$. Set $K=\mathbf{Q}(\sqrt{-q D})$, then K is a quadratic extension of \mathbf{Q}, because $-q D$ is not a square. The torus H is anisotropic over \mathbf{Q} (because $-q D$ is not a square), and H splits over K. Let $\mathbf{X}_{*}\left(H_{K}\right)$ denote the cocharacter group of $H_{K}, \mathbf{X}_{*}\left(H_{K}\right)=\operatorname{Hom}\left(\mathbb{G}_{m, K}, H_{K}\right)$; then $\mathbf{X}_{*}\left(H_{K}\right) \simeq \mathbf{Z}$. The non-neutral element of $\operatorname{Gal}(K / \mathbf{Q})$ acts on $\mathbf{X}_{*}\left(H_{K}\right)$ by multiplication by -1 .

Let $\mathcal{O}_{\mathbf{A}}$ be an orbit of $G(\mathbf{A})$ in $X(\mathbf{A}), \mathcal{O}_{\mathbf{A}}=\Pi \mathcal{O}_{v}$ where \mathcal{O}_{v} is an orbit of $G\left(\mathbf{Q}_{v}\right)$ in $X\left(\mathbf{Q}_{v}\right), v$ runs over the places of \mathbf{Q}, and \mathbf{Q}_{v} denotes the completion of \mathbf{Q} at v. We define local invariants $v_{v}\left(\mathcal{O}_{v}\right)= \pm 1$. If $\mathcal{O}_{v}=G\left(\mathbf{Q}_{v}\right) \cdot x^{0}$, then we set $v_{v}\left(\mathcal{O}_{v}\right)=+1$, if not, we set $v_{v}\left(\mathcal{O}_{v}\right)=-1$. Then $v_{v}\left(\mathcal{O}_{v}\right)=+1$ for almost all v. We define $v\left(\mathcal{O}_{\mathbf{A}}\right)=\Pi v_{v}\left(\mathcal{O}_{v}\right)$ where $\mathcal{O}_{\mathbf{A}}=\Pi \mathcal{O}_{v}$. Note that the local invariants $v_{v}\left(\mathcal{O}_{v}\right)$ depend on the choice of the rational point $x^{0} \in X(\mathbf{Q})$; one can prove, however, that their product $v\left(\mathcal{O}_{\mathbf{A}}\right)$ does not depend on x^{0}.

Let $x \in X(\mathbf{A})$. We set $v(x)=v(G(\mathbf{A}) \cdot x)$. Then $v(x)$ takes values ± 1; it is a locally constant function on $X(\mathbf{A})$, because the orbits of $G(\mathbf{A})$ are open in $X(\mathbf{A})$.

For $x \in X(\mathbf{A})$ define $\delta(x)=v(x)+1$. In other words, if $v(x)=-1$ then $\delta(x)=0$, and if $v(x)=+1$ then $\delta(x)=2$. Then δ is a locally constant function on $X(\mathbf{A})$.

Theorem 1.1. An orbit $\mathcal{O}_{\mathbf{A}}$ of $G(\mathbf{A})$ in $X(\mathbf{A})$ has a \mathbf{Q}-rational point if and only if $v\left(\mathcal{O}_{\mathbf{A}}\right)=+1$.

Below we will deduce Theorem 1.1 from [2, Theorem 3.6].

1.2. Proof of Theorem 1.1

For a torus T over a field k of characteristic 0 we define a finite abelian group $C(T)$ as follows

$$
C(T)=\left(\mathbf{X}_{*}\left(T_{k}^{-}\right)_{\text {Gal }(\bar{k} / k)}\right)_{\text {tors }}
$$

where \bar{k} is a fixed algebraic closure of $k, \mathbf{X}_{*}\left(T_{k}^{-}\right)_{\operatorname{Gal}(\bar{k} / k)}$ denotes the group of coinvariants, and $(\cdot)_{\text {tors }}$ denotes the torsion subgroup. If k is a number field and k_{v} is the completion of k at a place v, then we define $C_{v}(T)=$ $C\left(T_{k_{v}}\right)$. There is a canonical map $i_{v}: C_{v}(T) \rightarrow C(T)$ induced by an inclusion $\operatorname{Gal}\left(\bar{k}_{v} / k_{v}\right) \rightarrow \operatorname{Gal}(\bar{k} / k)$. These definitions were given for connected reductive groups (not only for tori) by Kottwitz [10]; see also [2, 3.4]. Kottwitz writes $A(T)$ instead of $C(T)$.

We compute $C(H)$ for our one-dimensional torus H over \mathbf{Q}. Clearly

$$
C(H)=\left(\mathbf{X}_{*}\left(H_{K}\right)_{\text {Gal }(K / \mathbf{Q})}\right)_{\mathrm{tors}}=\mathbf{Z} / 2 \mathbf{Z} .
$$

We have $C_{v}(H)=1$ if $K \otimes \mathbf{Q}_{v}$ splits, and $C_{v}(H) \simeq \mathbf{Z} / 2 \mathbf{Z}$ if $K \otimes \mathbf{Q}_{v}$ is a field. The map i_{v} is injective for any v.

We now define the local invariants $\kappa_{v}\left(\mathcal{O}_{v}\right)$ as in [2], where \mathcal{O}_{v} is an orbit of $G\left(\mathbf{Q}_{v}\right)$ in $X\left(\mathbf{Q}_{v}\right)$. The set of orbits of $G\left(\mathbf{Q}_{v}\right)$ in $X\left(\mathbf{Q}_{v}\right)$ is in canonical bijection with $\operatorname{ker}\left[H^{1}\left(\mathbf{Q}_{v}, H\right) \rightarrow H^{1}\left(\mathbf{Q}_{v}, G\right)\right]$, cf. [13, I-5.4, Corollary 1 of Proposition 36]. Hence \mathcal{O}_{v} defines a cohomology class $\xi_{v} \in H^{1}\left(\mathbf{Q}_{v}, H\right)$. The local Tate-Nakayama duality for tori defines a canonical homomorphism $\beta_{v}: H^{1}\left(\mathbf{Q}_{v}, H\right) \rightarrow C_{v}(H)$, see Kottwitz [10, Theorem 1.2]. (Kottwitz defines
the map β_{v} in a more general setting, when H is any connected reductive group over a number field.) The homomorphism β_{v} is an isomorphism for any v. We set $\kappa_{v}\left(\mathcal{O}_{v}\right)=\beta_{v}\left(\xi_{v}\right)$. Note that if $\mathcal{O}_{v}=G\left(\mathbf{Q}_{v}\right) \cdot x^{0}$, then $\xi_{v}=0$ and $\kappa_{v}\left(\mathcal{O}_{v}\right)=0$; if $\mathcal{O}_{v} \neq G\left(\mathbf{Q}_{v}\right) \cdot x^{0}$, then $\xi_{v} \neq 0$ and $\kappa_{v}\left(\mathcal{O}_{v}\right)=1$.

We define the Kottwitz invariant $\kappa\left(\mathcal{O}_{\mathbf{A}}\right)$ of an orbit $\mathcal{O}_{\mathbf{A}}=\prod \mathcal{O}_{v}$ of $G(\mathbf{A})$ in $X(\mathbf{A})$ by $\kappa\left(\mathcal{O}_{\mathbf{A}}\right)=\sum_{v} i_{v}\left(\kappa_{v}\left(\mathcal{O}_{v}\right)\right)$. We identify $C(H)$ with $\mathbf{Z} / 2 \mathbf{Z}$, and $C_{v}(H)$ with a subgroup of $\mathbf{Z} / 2 \mathbf{Z}$. With this identifications $\kappa\left(\mathcal{O}_{\mathbf{A}}\right)=\sum \kappa_{v}\left(\mathcal{O}_{v}\right)$.

We prefer the multiplicative rather than additive notation. Instead of $\mathbf{Z} / 2 \mathbf{Z}$ we consider the group $\{+1,-1\}$, and set

$$
v_{v}\left(\mathcal{O}_{v}\right)=(-1)^{\kappa_{v}\left(\mathcal{O}_{v}\right)}, \quad v\left(\mathcal{O}_{\mathbf{A}}\right)=(-1)^{\kappa\left(\mathcal{O}_{\mathbf{A}}\right)} .
$$

Here $v_{v}\left(\mathcal{O}_{v}\right)$ and $v\left(\mathcal{O}_{\mathbf{A}}\right)$ take the values ± 1. We have $v\left(\mathcal{O}_{\mathbf{A}}\right)=\Pi v_{v}\left(\mathcal{O}_{v}\right)$. Since $\kappa_{v}\left(\mathcal{O}_{v}\right)=0$ if and only if $\mathcal{O}_{v}=G\left(\mathbf{Q}_{v}\right) \cdot x^{0}$, we see that $v_{v}\left(\mathcal{O}_{v}\right)=+1$ if and only if $\mathcal{O}_{v}=G\left(\mathbf{Q}_{v}\right) \cdot x^{0}$. Hence our $v_{v}\left(\mathcal{O}_{v}\right)$ and $v\left(\mathcal{O}_{\mathbf{A}}\right)$ coincide with $v_{v}\left(\mathcal{O}_{v}\right)$ and $v\left(\mathcal{O}_{\mathbf{A}}\right)$, resp., introduced in Section 1.1.

By Theorem 3.6 of [2] an adelic orbit $\mathcal{O}_{\mathbf{A}}$ contains \mathbf{Q}-rational points if and only if $\kappa\left(\mathcal{O}_{\mathbf{A}}\right)=0$. With our multiplicative notation $\kappa\left(\mathcal{O}_{\mathbf{A}}\right)=0$ if and only if $v\left(\mathcal{O}_{\mathbf{A}}\right)=+1$. Thus $\mathcal{O}_{\mathbf{A}}$ contains \mathbf{Q}-points if and only if $v\left(\mathcal{O}_{\mathbf{A}}\right)=+1$. We have deduced Theorem 1.1 from [2, Theorem 3.6].

1.3. Tamagawa Measure

We define a gauge form on X, i.e. a regular differential form $\omega \in \Lambda^{2}(X)$ without zeroes. Recall that X is defined by the equation $f(x)=q$. Choose a differential form μ of degree 2 on W such that $\mu \wedge d f=d x_{1} \wedge d x_{2} \wedge d x_{3}$, where x_{1}, x_{2}, x_{3} are the coordinates in $W=\mathbf{Q}^{3}$. Let $\omega=\left.\mu\right|_{X}$, the restriction of μ to X. Then ω is a gauge form on X, cf. [2, 1.3], and it does not depend on the choice of μ. The gauge form ω is G-invariant, because there exists a G-invariant gauge form on X, cf. $[2,1.4]$, and a gauge form on X is unique up to a scalar multiple, cf. [2, Corollary 1.5.4].

For any place v of \mathbf{Q} one associates with ω a local measure m_{v} on $X\left(\mathbf{Q}_{v}\right)$, cf. $[14,2.2]$. We show how to define a Tamagawa measure on $X(\mathbf{A})$, following [2, 1.6.2].

We have by $[2,1.8 .1], \mu_{p}(X)=m_{p}\left(X\left(\mathbf{Z}_{p}\right)\right)$, where $\mu_{p}(X)$ is defined in the Introduction. By [14, Theorem 2.2.5], for almost all p we have $m_{p}\left(X\left(\mathbf{Z}_{p}\right)\right)$ $=\# X\left(\mathbf{F}_{p}\right)$.

We compute $\# X\left(\mathbf{F}_{p}\right)$. The group $\operatorname{SO}(f)\left(\mathbf{F}_{p}\right)$ acts on $X\left(\mathbf{F}_{p}\right)$ with stabilizer $\operatorname{SO}\left(f^{\prime}\right)\left(\mathbf{F}_{p}\right)$, where $\operatorname{SO}\left(f^{\prime}\right)\left(\mathbf{F}_{p}\right)$ is defined for almost all p. This action is transitive by Witt's theorem. Thus we obtain that $\# X\left(\mathbf{F}_{p}\right)=$ $\# \operatorname{SO}(f)\left(\mathbf{F}_{p}\right) / \# \operatorname{SO}\left(f^{\prime}\right)\left(\mathbf{F}_{p}\right)$. By [1, III-6],

$$
\# \mathrm{SO}(f)\left(\mathbf{F}_{p}\right)=p\left(p^{2}-1\right), \quad \# \mathrm{SO}\left(f^{\prime}\right)\left(\mathbf{F}_{p}\right)=p-\chi(p)
$$

where $\chi(p)=-1$ if $f^{\prime} \bmod p$ does not represent 0 , and $\chi(p)=+1$ if $f^{\prime} \bmod p$ represents 0 . We have $\chi(p)=\left(\frac{-q D}{p}\right)$. We obtain for $p \nmid q D$

$$
\# X\left(\mathbf{F}_{p}\right)=\frac{p\left(p^{2}-1\right)}{p-\chi(p)}, \quad \mu_{p}(X)=\frac{\# X\left(\mathbf{F}_{p}\right)}{p^{2}}=\frac{1-1 / p^{2}}{1-\chi(p) / p} .
$$

For $p \mid q D$ set $\chi(p)=0$. We define

$$
L_{p}(s, \chi)=\left(1-\chi(p) p^{-s}\right)^{-1}, \quad L(s, \chi)=\prod_{p} L_{p}(s, \chi),
$$

where s is a complex variable. We set

$$
\lambda_{p}=L_{p}(1, \chi)^{-1}=1-\frac{\chi(p)}{p}, \quad r=L(1, \chi)^{-1} .
$$

Then the product $\prod_{p}\left(\lambda_{p}^{-1} \mu_{p}\right)$ converges absolutely, hence the family $\left(\lambda_{p}\right)$ is a family of convergence factors in the sense of [14, 2.3]. We define, as in $[2,1.6 .2]$, the measures

$$
m_{f}=r^{-1} \prod_{p}\left(\lambda_{p}^{-1} m_{p}\right), \quad m=m_{\infty} m_{f},
$$

then m_{f} is a measure on $X\left(\mathbf{A}_{f}\right)$ (where \mathbf{A}_{f} is the ring of finite adèles) and m is a measure on $X(\mathbf{A})$. We call m the Tamagawa measure on $X(\mathbf{A})$.

1.4. Counting Integer Points

For $T>0$ set $X(\mathbf{R})^{T}=\{x \in X(\mathbf{R}):|x| \leqslant T\}$.
Theorem 1.2.

$$
N(T, X) \sim \int_{X(\mathbf{R})^{T} \times X(\hat{\mathbf{Z}})} \delta(x) d m .
$$

In other words,

$$
\begin{equation*}
N(T, X) \sim 2 m\left(\left\{x \in X(\mathbf{R})^{T} \times X(\hat{\mathbf{Z}}): v(x)=+1\right\}\right) . \tag{1}
\end{equation*}
$$

Theorem 1.2 follows from [2, Theorem 5.3] (cf. [2, 6.4] and [2, Definition 2.3]).

For comparison note that

$$
\begin{equation*}
m\left(X(\mathbf{R})^{T} \times X(\hat{\mathbf{Z}})\right)=m_{\infty}\left(X(\mathbf{R})^{T}\right) m_{f}(X(\hat{\mathbf{Z}}))=\mu_{\infty}(T, X) \mathbb{S}_{(X)} \tag{2}
\end{equation*}
$$

cf. $[2,1.8]$.
The following lemma will be used in the proof of Theorem 0.1.

Lemma 1.3. Assume that there exists $y \in X(\mathbf{R} \times \hat{\mathbf{Z}})$ such that $v(y)=+1$. Then the set $X(\mathbf{Z})$ is infinite.

Proof. Since v is a locally constant function on $X(\mathbf{A})$, there exists a nonempty open subset $\mathscr{U}_{f} \in X(\hat{\mathbf{Z}})$ and an orbit \mathscr{U}_{∞} of $G(\mathbf{R})$ in $X(\mathbf{R})$ such that $v(x)=+1$ for all $x \in U_{\infty} \times \mathscr{U}_{f}$. Set $\mathscr{U}_{\infty}^{T}=\left\{x \in \mathscr{U}_{\infty}:|x| \leqslant T\right\}$, then $m_{\infty}\left(\mathscr{U}_{\infty}^{T}\right) \rightarrow \infty$ as $T \rightarrow \infty$. We have

$$
\int_{X(\mathbf{R})^{T} \times X(\hat{\mathbf{Z}})} \delta(x) d m \geqslant \int_{\mathscr{U}_{\infty}^{T} \times \mathscr{U}_{f}} \delta(x) d m=2 m_{\infty}\left(\mathscr{U}_{\infty}^{T}\right) m_{f}\left(\mathscr{U}_{f}\right) .
$$

Since $2 m_{\infty}\left(\mathscr{U}_{\infty}^{T}\right) m_{f}\left(\mathscr{U}_{f}\right) \rightarrow \infty$ as $T \rightarrow \infty$, we see that

$$
\int_{X(\mathbf{R})^{T} \times X(\hat{\mathbf{Z}})} \delta(x) d m \rightarrow \infty \quad \text { as } \quad T \rightarrow \infty
$$

and by Theorem $1.2 N(T, X) \rightarrow \infty$. Hence $X(\mathbf{Z})$ is infinite.

1.5. The Constant c_{X}

Here we prove the following result:
Proposition 1.4.

$$
N(T, X) \sim c_{X} \Xi(X) \mu_{\infty}(T, X) \quad \text { as } \quad T \rightarrow \infty
$$

with some constant $c_{X}, 0 \leqslant c_{X} \leqslant 2$.
Proof. If $X(\mathbf{R})$ has two connected components, then by Theorem 0.2 (which we will prove in Section 4 below), $N(T, X) \sim \subseteq(X) \mu_{\infty}(T, X)$, so the proposition holds with $c_{X}=1$.

If $X(\mathbf{R})$ has one connected component, then $X(\mathbf{R})$ consists of one $G(\mathbf{R})$-orbit and $v_{\infty}(X(\mathbf{R}))=+1$. For an orbit $\mathcal{O}_{f}=\prod \mathcal{O}_{p}$ of $G\left(\mathbf{A}_{f}\right)$ in $X\left(\mathbf{A}_{f}\right)$ we set $v_{f}\left(\mathcal{O}_{f}\right)=\prod_{p} v_{p}\left(\mathcal{O}_{p}\right)$. We regard v_{f} as a locally constant function on $X\left(\mathbf{A}_{f}\right)$ taking the values ± 1. Define $X(\hat{\mathbf{Z}})_{+}=\left\{x_{f} \in X(\hat{\mathbf{Z}}): v_{f}\left(x_{f}\right)=+1\right\}$. We have

$$
\int_{X(\mathbf{R})^{T} \times X(\hat{\mathbf{Z}})} \delta(x) d m=2 m_{\infty}\left(X(\mathbf{R})^{T}\right) m_{f}\left(X(\hat{\mathbf{Z}})_{+}\right) .
$$

Set $c_{X}=2 m_{f}\left(X(\hat{\mathbf{Z}})_{+}\right) / m_{f}(X(\hat{\mathbf{Z}}))$, then $0 \leqslant c_{X} \leqslant 2$ and

$$
\int_{X(\mathbf{R})^{T} \times X(\hat{\mathbf{Z}})} \delta(x) d m=c_{X} m_{\infty}\left(X(\mathbf{R})^{T}\right) m_{f}(X(\hat{\mathbf{Z}}))=c_{X} \mu_{\infty}(T, X) \Theta(X) .
$$

Using Theorem 1.2, we see that

$$
N(T, X) \sim c_{X} \mu_{\infty}(T, X) \mathbb{S}_{(X)} \quad \text { as } \quad T \rightarrow \infty .
$$

2. AN EXAMPLE OF $c_{X}=0$

Let

$$
f_{1}\left(x_{1}, x_{2}, x_{3}\right)=-9 x_{1}^{2}+2 x_{1} x_{2}+7 x_{2}^{2}+2 x_{3}^{2}, \quad q=1 .
$$

This example was mentioned in [2, 6.4.1]. Here we provide a detailed exposition.

Consider the variety X defined by the equation $f_{1}(x)=q$. We have $f_{1}\left(-\frac{1}{2}, \frac{1}{2}, 1\right)=1$. It follows that f_{1} represents 1 over \mathbf{R} and over \mathbf{Z}_{p} for $p>2$.

We have $f_{1}(4,1,1)=-127 \equiv 1\left(\bmod 2^{7}\right)$. We prove that f_{1} represents 1 over \mathbf{Z}_{2}. Define a polynomial of one variable $F(Y)=f_{1}(4,1, Y)-1$, $F \in \mathbf{Z}_{2}[Y]$. Then $F(1)=-2^{7},|F(1)|_{2}=2^{-7}, F^{\prime}(Y)=4 Y,\left|F^{\prime}(1)^{2}\right|_{2}=2^{-4}$, $|F(1)|_{2}<\left|F^{\prime}(1)^{2}\right|_{2}$. By Hensel's lemma (cf. [11, II-§2, Proposition 2]) F has a root in \mathbf{Z}_{2}. Thus f_{1} represents 1 over \mathbf{Z}_{2}.

Now we prove that f_{1} does not represent 1 over \mathbf{Z}. I know the following elementary proof from D. Zagier.

We prove the assertion by contradiction. Assume on the contrary that

$$
-9 x_{1}^{2}+2 x_{1} x_{2}+7 x_{2}^{2}+2 x_{3}^{2}=1 \quad \text { for some } \quad x_{1}, x_{2}, x_{3} \in \mathbf{Z}
$$

We may write this equation as follows:

$$
2 x_{3}^{2}-1=\left(x_{1}-x_{2}\right)^{2}+8\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}\right) .
$$

The left hand side is odd, hence $x_{1}-x_{2}$ is odd and therefore $x_{1}+x_{2}$ is odd. We have $\left(x_{1}-x_{2}\right)^{2} \equiv 1(\bmod 8)$. Hence the right hand side is congruent to $1(\bmod 8)$. We see that x_{3} is odd, hence $2 x_{3}^{2}-1 \equiv 1(\bmod 16)$. But

$$
8\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}\right) \equiv 8 \quad(\bmod 16)
$$

It follows that

$$
\begin{aligned}
\left(x_{1}-x_{2}\right)^{2} & \equiv 9 \\
x_{1}-x_{2} & \equiv \pm 3 \quad(\bmod 16) \\
& (\bmod 8) .
\end{aligned}
$$

Therefore $x_{1}-x_{2}$ must have a prime factor $p \equiv \pm 3(\bmod 8)$. Hence $2 x_{3}^{2}-1$ has a prime factor $p \equiv \pm 3(\bmod 8)$. On the other hand, if $p \mid\left(2 x_{3}^{2}-1\right)$, then

$$
2 x_{3}^{2} \equiv 1 \quad(\bmod p)
$$

and 2 is a square modulo $p,\left(\frac{2}{p}\right)=1$. By the quadratic reciprocity law $p \equiv \pm 1(\bmod 8)$. Contradiction. We have proved that f_{1} does not represent 1 over \mathbf{Z}, hence $N(T, X)=0$ for all T.

On the other hand,

$$
\mathfrak{\Im}(X) \mu_{\infty}(T, X)=m_{f}(X(\hat{\mathbf{Z}})) m_{\infty}\left(X(\mathbf{R})^{T}\right) .
$$

Since $X(\hat{\mathbf{Z}})$ is a nonempty open subset in $X\left(\mathbf{A}_{f}\right), m_{f}(X(\hat{\mathbf{Z}}))>0$. Now $m_{\infty}\left(X(\mathbf{R})^{T}\right) \rightarrow \infty$ as $T \rightarrow \infty$. Hence $\Theta(X) \mu_{\infty}(T, X) \rightarrow \infty$ as $T \rightarrow \infty$, and thus $c_{X}=0$.

3. PROOF OF THEOREM 0.1

Lemma 3.1. Let k be a field of characteristic different from 2, and let V be a finite-dimensional vector space over k. Let f be a non-degenerate quadratic form on V. Let $u \in \operatorname{GL}(V)(k), f^{\prime}=u^{*} f$. Then the map $y \mapsto u y: V$ $\rightarrow V$ takes the orbits of $\operatorname{Spin}(f)(k)$ in V to the orbits of $\operatorname{Spin}\left(f^{\prime}\right)(k)$.

Proof. Let $x \in V, f(x) \neq 0$. The reflection (symmetry) $r_{x}=r_{f, x}: V \rightarrow V$ is defined by

$$
r_{x}(y)=y-\frac{2 B(x, y)}{f(x)} x, \quad y \in V,
$$

where B is the symmetric bilinear form on V associated with f. Every $s \in \operatorname{SO}(f)(k)$ can be written as

$$
\begin{equation*}
s=r_{x_{1}} \cdots r_{x_{l}} \tag{3}
\end{equation*}
$$

cf. [12, Theorem 43:3]. The spinor norm $\theta(s)$ of s is defined by

$$
\theta(s)=f\left(x_{1}\right) \cdots f\left(x_{l}\right) \quad\left(\bmod k^{* 2}\right) \in k^{*} / k^{* 2}
$$

and it does not depend on the choice of the representation given by (3), cf. [12, §55]. Let $\Theta(f)$ denote the image of $\operatorname{Spin}(f)(k)$ in $\operatorname{SO}(f)(k)$. Then $s \in \mathrm{SO}(f)(k)$ is contained in $\Theta(f)$ if and only if $\theta(s)=1$, cf. [13, III-3.2] or [3, Chap. 10, Theorem 3.3].

Now let u, f^{\prime} be as above. Then $r_{f^{\prime}, u x}=u r_{f, x} u^{-1}, f^{\prime}(u x)=f(x)$, and so $\theta_{f^{\prime}}\left(u s u^{-1}\right)=\theta_{f}(s)$. We conclude that $u \Theta(f) u^{-1}=\Theta\left(f^{\prime}\right)$ and that the map $y \mapsto u y$ takes the orbits of $\Theta(f)$ in V to the orbits of $\Theta\left(f^{\prime}\right)$.

Let f, f^{\prime} be integral-matrix quadratic forms on \mathbf{Z}^{n} and assume that f^{\prime} is in the genus of f. Then there exists $u \in \mathrm{GL}_{n}(\mathbf{R} \times \hat{\mathbf{Z}})$ such that $f^{\prime}(x)=$ $f\left(u^{-1} x\right)$ for $x \in \mathbf{A}^{n}$. Let $q \in \mathbf{Z}, q \neq 0$. Let X denote the affine quadric $f(x)=q$, and X^{\prime} denote the quadric $f^{\prime}(x)=q$.

Lemma 3.2. The map $x \mapsto u x: \mathbf{A}^{n} \rightarrow \mathbf{A}^{n}$ takes $X(\mathbf{R} \times \hat{\mathbf{Z}})$ to $X^{\prime}(\mathbf{R} \times \hat{\mathbf{Z}})$ and takes orbits of $\operatorname{Spin}(f)(\mathbf{A})$ in $X(\mathbf{A})$ to orbits of $\operatorname{Spin}\left(f^{\prime}\right)(\mathbf{A})$ in $X^{\prime}(\mathbf{A})$.

Proof. Let A denote the matrix of f, and A^{\prime} denote the matrix of f^{\prime}. We have

$$
\left(u^{-1}\right)^{t} A u^{-1}=A^{\prime}, \quad A=u^{t} A^{\prime} u .
$$

The variety X is defined by the equation $x^{t} A x=q$, and X^{\prime} is defined by $x^{t} A^{\prime} x=q$. One can easily check that the map $x \mapsto u x$ takes $X(\mathbf{R} \times \hat{\mathbf{Z}})$ to $X^{\prime}(\mathbf{R} \times \hat{\mathbf{Z}})$ and $X(\mathbf{A})$ to $X^{\prime}(\mathbf{A})$.

In order to prove that the map $x \mapsto u x: X(\mathbf{A}) \rightarrow X^{\prime}(\mathbf{A})$ takes the orbits of $\operatorname{Spin}(f)(\mathbf{A})$ to the orbits of $\operatorname{Spin}\left(f^{\prime}\right)(\mathbf{A})$, it suffices to prove that the map $x \mapsto u_{v} x: X\left(\mathbf{Q}_{v}\right) \rightarrow X^{\prime}\left(\mathbf{Q}_{v}\right)$ takes the orbits of $\operatorname{Spin}(f)\left(\mathbf{Q}_{v}\right)$ to the orbits of $\operatorname{Spin}\left(f^{\prime}\right)\left(\mathbf{Q}_{v}\right)$ for every v, where u_{v} is the v-component of u. This last assertion follows from Lemma 3.1.

Proposition 3.3. Let f^{\prime} and q be as in Theorem 0.1, in particular f^{\prime} represents q over \mathbf{Z}_{v} for any v (we set $\mathbf{Z}_{\infty}=\mathbf{R}$), but not over \mathbf{Z}. Let X^{\prime} be the quadric defined by $f^{\prime}(x)=q v$. Then $X^{\prime}(\mathbf{R} \times \hat{\mathbf{Z}})$ is contained in one orbit of $\operatorname{Spin}\left(f^{\prime}\right)(\mathbf{A})$.

Proof. Set $G^{\prime}=\operatorname{Spin}\left(f^{\prime}\right)$. We prove that $X^{\prime}\left(\mathbf{Z}_{v}\right)$ is contained in one orbit of $G^{\prime}\left(\mathbf{Q}_{v}\right)$ for every v by contradiction. Assume on the contrary that for some v the set $X^{\prime}\left(\mathbf{Z}_{v}\right)$ has nontrivial intersection with two orbits of $G^{\prime}\left(\mathbf{Q}_{v}\right)$. Then v_{v} takes both values +1 and -1 on $X^{\prime}\left(\mathbf{Z}_{v}\right)$. It follows that v takes both values +1 and -1 on $X^{\prime}(\mathbf{R} \times \hat{\mathbf{Z}})$. Hence by Lemma $1.3 X^{\prime}$ has infinitely many \mathbf{Z}-points. This contradicts to the assumption that f^{\prime} does not represent q over \mathbf{Z}.

Proof of Theorem 0.1. Let $u \in \mathrm{GL}_{3}(\mathbf{R} \times \hat{\mathbf{Z}})$ be such that $f^{\prime}(x)=f\left(u^{-1} x\right)$. Let X, X^{\prime} be as above, in particular X^{\prime} has no \mathbf{Z}-points. By Proposition 3.3 $X^{\prime}(\mathbf{R} \times \hat{\mathbf{Z}})$ is contained in one orbit of $\operatorname{Spin}\left(f^{\prime}\right)(\mathbf{A})$. It follows from Lemma 3.2 that $X(\mathbf{R} \times \hat{\mathbf{Z}})$ is contained in one orbit of $\operatorname{Spin}(f)(\mathbf{A})$. Since f represents q over \mathbf{Z}, this orbit has \mathbf{Q}-rational points, and v equals +1 on
$X(\mathbf{R} \times \hat{\mathbf{Z}})$. Thus δ equals 2 on $X(\mathbf{R} \times \hat{\mathbf{Z}})$, and by Formulas (1) and (2) of Section $1.4 N(T, X) \sim 2 \mathbb{S}(X) \mu_{\infty}(T, X)$.

4. PROOF OF THEOREM 0.2

We prove Theorem 0.2. We define an involution τ_{∞} of $X(\mathbf{R})$ by $\tau_{\infty}(x)=$ $-x, x \in X(\mathbf{R}) \subset \mathbf{R}^{3}$. Since $f(x)=f(-x), \tau_{\infty}$ is well defined, i.e takes $X(\mathbf{R})$ to itself. Since $|-x|=|x|, \tau_{\infty}$ takes $X(\mathbf{R})^{T}$ to itself. We define an involution τ of $X(\mathbf{A})$ by defining τ as τ_{∞} on $X(\mathbf{R})$ and as 1 on $X\left(\mathbf{Q}_{p}\right)$ for all prime p. Then τ respects the Tamagawa measure m on $X(\mathbf{A})$.

By assumption $X(\mathbf{R})$ has two connected components. These are the two orbits of $\operatorname{Spin}(f)(\mathbf{R})$. The involution τ_{∞} of $X(\mathbf{R})$ interchanges these two orbits. Thus we have

$$
\begin{align*}
v_{\infty}\left(\tau_{\infty}\left(x_{\infty}\right)\right) & =-v_{\infty}\left(x_{\infty}\right) & & \text { for all } \tag{4}
\end{align*} \quad x_{\infty} \in X(\mathbf{R})
$$

Let $X(\mathbf{R})_{1}$ and $X(\mathbf{R})_{2}$ be the two connected components of $X(\mathbf{R})$. Set

$$
X(\mathbf{R})_{1}^{T}=X(\mathbf{R})_{1} \cap X(\mathbf{R})^{T}, \quad X(\mathbf{R})_{2}^{T}=X(\mathbf{R})_{2} \cap X(\mathbf{R})^{T}
$$

Then τ interchanges $X(\mathbf{R})_{1}^{T} \times X(\hat{\mathbf{Z}})$ and $X(\mathbf{R})_{2}^{T} \times X(\hat{\mathbf{Z}})$. From Formula (5) in this section we have

$$
\int_{X(\mathbf{R})_{1}^{T} \times X(\mathbf{Z})} v(x) d m=-\int_{X(\mathbf{R})_{2}^{T} \times X(\hat{\mathbf{Z}})} v(x) d m,
$$

hence

$$
\int_{X(\mathbf{R})^{T} \times X(\hat{\mathbf{Z}})} v(x) d m=0 .
$$

Since $\delta(x)=v(x)+1$, we obtain

$$
\int_{X(\mathbf{R})^{T} \times X(\hat{\mathbf{Z}})} \delta(x) d m=\int_{X(\mathbf{R})^{T} \times X(\hat{\mathbf{Z}})} d m=m\left(X(\mathbf{R})^{T} \times X(\hat{\mathbf{Z}})\right),
$$

and $m\left(X(\mathbf{R})^{T} \times X(\hat{\mathbf{Z}})\right)=\mathfrak{S}(X) \mu_{\infty}(T, X)$. By Theorem 1.2

$$
N(T, X) \sim \int_{X(\mathbf{R})^{T} \times X(\hat{\mathbf{Z}})} \delta(x) d m .
$$

Thus $N(T, X) \sim \Theta(X) \mu_{\infty}(T, X)$ as $T \rightarrow \infty$, i.e. $c_{X}=1$.

ACKNOWLEDGMENT

This paper was partly written when the author was visiting Sonderforschungsbereich 343 "Diskrete Strukturen in der Mathematik" at Bielefeld University, and I am grateful to SFB 343 for hospitality and support. I thank Rainer Schulze-Pillot and John S. Hsia for useful e-mail correspondence. I am grateful to Zeév Rudnick for useful discussions and help in analytic calculations.

REFERENCES

1. E. Artin, "Geometric Algebra," Interscience, New York, 1957.
2. M. Borovoi and Z. Rudnick, Hardy-Littlewood varieties and semisimple groups, Invent. Math. 111 (1995), 37-66.
3. J. W. S. Cassels, "Rational Quadratic Forms," Academic Press, London, 1978.
4. J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups," 2nd ed., Springer-Verlag, New York, 1993.
5. H. Davenport, "Analytic Methods for Diophantine Equations and Diophantine Inequalities," Ann Arbor, Ann Arbor, MI, 1962.
6. W. Duke, Z. Rudnick, and P. Sarnak, Density of integer points on affine homogeneous varieties, Duke Math. J. 71 (1993), 143-179.
7. A. Eskin and C. McMullen, Mixing, counting, and equidistribution in Lie groups, Duke Math. J. 71 (1993), 181-209.
8. A. Eskin, S. Mozes, and N. Shah, Unipotent flows and counting lattice points on homogeneous spaces, Ann. of Math. (2) 143 (1996), 253-299.
9. T. Estermann, A new application of the Hardy-Littlewood-Kloosterman method, Proc. London Math. Soc. 12 (1962), 425-444.
10. R. E. Kottwitz, Stable trace formula: elliptic singular terms, Math. Ann. 275 (1986), 365-399.
11. S. Lang, "Algebraic Number Theory," Addison-Wesley, Reading, MA, 1970.
12. O. T. O’Meara, "Introduction to Quadratic Forms," Springer-Verlag, Berlin/Göttingen/ Heidelberg, 1963.
13. J.-P. Serre, "Cohomologie Galoisienne," 5th ed., Lecture Notes in Mathematics, Vol. 5, Springer-Verlag, Berlin/Heidelberg/New York, 1994.
14. A. Weil, "Adeles and Algebraic Groups," Birkhäuser, Boston, 1982.
