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Fractional differentiation in the self-affine case 
I - Random functions 
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The invariance structure of self-affine functions and measures leads to the concept of fractional Cesaro 

derivatives and densities, respectively. In the present paper the case of random functions from W’ into 

W4 is considered. It is shown that the corresponding derivatives exist as. and equal a constant in the 

ergodic case. Part II will deal with the class of self-similar extremal processes and certain extensions. 

In Part III the fractional density of the Cantor measure will be evaluated, and arbitrary self-similar 

random measures will be treated in Part IV. There exists a deeper connection to fractional differentiation 

in the theory of function spaces which will be established elsewhere. 

Introduction 

A well-known theorem of Paley, Wiener and Zygmund (1933) states that one- 

dimensional Brownian motion B(t) is nowhere differentiable with probability 1. 

The sample paths and the level sets are fractals of Hausdorff dimensions 5 and $, 

respectively. Moreover, their exact Hausdorff measures which agree with the occupa- 

tion measures and the local time measures, respectively, are explicitly determined 

by the local behaviour of B(t) (for references cf. Taylor, 1986; Kahane, 1985). The 

latter, i.e., the law of iterated logarithm 

lim sup ,,2 
B(t) 

1+0 t (2 1n)ln tl)‘l’= ’ a’s” 

results essentially from the following two characterizing properties of Brownian 

motion: B(t) has stationary independent increments with EB( l)* = 1 and it is 

+-self-similar, i.e., 

P -“‘B(p( .)) 2 B( .), p > 0. 

Although this scale invariance suggests fractional differentiation with exponent $, 

the law of iterated logarithm shows that it cannot hold in the usual sense of function 

theory. However, we show in this paper that the fractional derivatives in the mean 

R B(t+e-‘)-B(t)dr 

e 
-r/2 
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exist and (by symmetry) are equal to zero at almost all t with probability 1. For the 

absolute derivatives of B the corresponding statement looks more interesting: 

for almost all t with probability 1. 

We first prove the a.s. existence of the derivative at t =O. As an immediate 

consequence of stationary increments and measurability we obtain the assertion for 

almost all t with respect to Lebesgue measure. Moreover, the statement remains 

valid for almost all t from the zero set of Brownian motion with respect to its exact 

Hausdorff measure. 

Similarly, if B*(t) = supoG.$Gr B(s) one can prove (cf. Part II) that 

lim -? 
I 

R B*(t+e-‘)-B*(t) 

R o 
-r/2 

dr = EB*(l) 
R+a? e 

at almost all record instants t where B*(t) = B(t) with probability 1. 

Our approach was inspired by a talk of T. Bedford on fractional densities of the 

middle-third Cantor set and of the zero set of Brownian motion held at the 18th 

Winter School on Abstract Analysis in Srni (1990) as well as by a paper of U. Zahle 

(1991). 

More generally, let X(t) be a measurable random function from [w” into [WY with 

finite expectations which is D-scale invariant (self-similar), i.e., it has stationary 

increments and satisfies 

p?X(p(&X(.), O<p<l, 

for some D > 0. Then the random fractional derivative in direction ZI E Rp at almost 

all t E W’ is determined by the average 

d,X(t)u= lim f 
I 

R X(t+emrv)-X(t) dr 
-rD 9 

R-CC 0 e 

with probability 1. d,X( . )v is explicitly calculated and under a certain ergodicity 

assumption it agrees with the constant EX(v). 

In full generality our result is as follows (cf. Theorems 1 and 2). Let U, V be 

linear contractions in Rp and Ry, respectively, whose eigenvalues are all positive. 

Then the powers U’, V’ for arbitrary real r are meaningful. Let X be a measurable 

random function from [wp into Rq with finite expectations which is (U, V)-self-affine, 

i.e., it has stationary increments and satisfies 

V’X(LI(.)) 2 X(.). 

In this case there exists at almost all t E Rp the corresponding affine directional 

derivative 

du,“X( t)v = lim + 
R 

Vpr(X(t+Urv)-X(t))dr, 
R+CC 
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with probability 1. d,vX( . )v is explicitly computed and equals a constant for 

ergodic distributions, in particular, for all X as above with independent increments. 

The phrase ‘almost all t’ may be understood in the Lebesgue sense as well as in 

terms of local time measures if the latter exist. 

Further examples of D-self-similar random processes are fractional Brownian 

motion and certain stable processes. For references and constructions see Vervaat 

(1985). Recall that we additionally assume finite expectations so that the example 

of O’Brien and Vervaat (1985) does not fit our model. For cr-stable (l/a)-self-similar 

processes this assumption means that 1 < (Y < 2. Self-affine random functions arise, 

e.g., from linear transformations of vector functions whose coordinates are indepen- 

dent D-scale invariant random functions with different D. 

1. Palm relationships for random functions with stationary increments 

The aim of this section is to make available tools for extending the existence of the 

fractional derivatives at the point zero to almost all points from the zero level sets 

of self-affine random local time functions. Thereby we will show that the distributions 

of arbitrary random functions with stationary increments are the Palm distributions 

of their stationary flows with respect to the kernels defined by the occupation 

measure as well as by the local time measure (if it exists). This interpretation allows 

the transition mentioned above from the point zero to almost all points of the sets 

carrying these random measures without any further assumptions such as strong 

Markov property used in Bedford and Fisher (1990). The same approach will be 

applied in Part II of this paper to the case of random functions which have stationary 

increments with respect to random time measures, in particular, to the case of 

extremal processes. The idea of Palm distributions also plays an essential role in 

the case of fractional densities of self-similar random measures (cf. Part IV). 

We use here concepts and notations from U. Zahle (1991). Let 3” be the Bore1 

a-algebra and 3”’ be Lebesgue measure in Euclidean space [w”. M(n) is the family 

of Radon measures on [Iw”, %.“I. map(p, q) denotes the space of functions from Iw” 

to [w9, mble( p, q) the subspace of (S”, S9)-measurable functions, and map( p, q) 

the Daniel-Kolmogorov u-algebra (?4¶)““. Define the groups ( TF,_)C.S,ZjtlW~~XIW~~, 

(O~).~~R~ of measurable transformations of map(p, q) by 

(TJ)(t)=f(t+s)-z, fE[W”, 

and 

@f = T,,.K~,L 

respectively. 

For any Y-measurable f 6 map( p, q) the occupation measure vf E M( p + q) may 

be determined by 
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It is concentrated on graph(f). Note that 

We call f as before a local time function (LT) if for 2?‘-almost all y and for y = 0 

there exist the vague measure limits 

where B(y, E) is the ball with centre y and radius E. rl.(y, .) is said to be the local 

time measure off at level y. Obviously, we have for those y, 

?/ (Y, .I = TT”,,.f (0, . ) 

For brevity denote the local time measure of f at level zero rf (0, . ) by rP The 

well-known relation between the occupation measure and the local time measure 

of an LT function f may then be formulated as follows: 

We now turn to stochastic versions. By a measurable (Tp-measurable) random 

function X with values in [WY we mean a mapping from a basic probability space 

[Q 9, P] into map( p, q) such that the map (w, t) + X,,,(t) is measurable with respect 

to SC363 p (to the Px P-completion of 98% “). The distribution of X will be 

denoted by Px. Note that in this case P,-almost all f~ map(p, q) are measurable 

(Y-measurable) and vx is a random measure. An 2.P-measurable X is said to be 

of local time (LT) if Px-almost all _Y-measurable f are LT. For such X, 7x is a 

random measure. (In this paper we are only interested in invariance properties of 

LT functions with stationary increments. We will not deal with the difficult problem 

of checking the LT condition. Note that for LT the relation p 2 q is necessary.) 

Now suppose that the 2?p-measurable random function X has stationary increments, 

i.e., the distribution of 0,X does not depend on t E[W~, and that X(0) =0 with 

probability 1. Then there exists a biunique relationship between the distribution Px 

and its j7ow H,, i.e., the (non-finite) (T,,,)-invariant quasi-distribution on 

[map@, q), map(p, q)l defined by 

Hx = 

(Note that Hx is q-finite and is also concentrated on 2”‘-measurable functions.) 

Px may be determined by Hx through a ‘random shift’ according to the correspond- 

ing occupation measure, i.e., Px is the Palm distribution of Hx with respect to the 

kernel I/: 
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Proposition 1. 

Px = Y+y( C)_’ l,.,(T,.zf)v,(d(s, z))Hx(df) 
c 

for arbitrary C~9?~092~ with O<5?p+q(C)<~. 

Proof. By definition of Hx the right-hand side of the assertion equals 

lc(s, z)lc.,(T,,z+,f )VT,,,,Jd(S, z))zq(dy)Px(df) 

= p+“(c)-’ lc(s, z-y)l(.,(T,,f )vf(d(s, zW(dy)Px(df) 

g(s, 4+,.&f (d(s, 2)) = [ g(s - t, z -y)vf(d(s, 4)) 

= p+q( q’ lc(S,f(S) -y)l,.,(@f W’(ds)~‘(dy)Px(df) 

(in view of the definition of vr) 

= ,P’“( C))’ 
lli 

lc(s, y)~q(dy)l,.,(@sf W”(ds)Px(df) 

(by Fubini and invariance of 2’) 

= TP’Y( f-J’ 
lil 

lc.,(f )Px(df )lc(s, y)~p(ds)~q(dy) 

(by Fubini and stationary increments of X) 

= Px. cl 

An extension of this relationship is the key for the results of Part II. It may be 

completed by a version for the local time measure 7x if it exists. Suppose that X 

is LT. Then in view of the defintion of the flow for H,-almost all f E map(p, q) the 

local time measure TV at level zero exists. Moreover, Px may also be interpreted as 

the Palm distribution of Hx with respect to the kernel r: 

Proposition 2. Under the above conditions we have 

Px = Zp(A)-’ 
II 

lc.,(T,,of )T,(dt)Hx(df) 
A 

for arbitrary A E 92 p with 0 < Zp (A) < co. 
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Proof. By definition of Hx the right-hand side equals 

2?‘(A)-’ I,.,( T,yf)?,.,, (dtW4(dy)Px(df) 

=9’(A)-’ lA(S)l~.)(TF,=f)Vf(d(S, z))Px(df) 

= 2!p(A)m1 l/,(~)l~.j(@sfW’(d~)Px(df) 

following (l), definition of v, and (@,)-invariance of Px. 0 

Remark. Special cases of Propositions 1 and 2 (for the distributions of the random 

measures v, and TV, respectively,) are proved in U. Zahle (1991). In the next section 

we need only Proposition 2, since v x is closely related to stationary increments. 

2. Self-affine random functions 

Let U, V be linear contractions in RPand [WY, respectively, with strictly positive 

eigenvalues. Then for any real r the rth powers U’ and V’ make sense. For r > 0 

they are also contractions. Recall that a random function from Rp into W is said 

to be (U, V)-selfujine if it has stationary increments and if 

V’X( U( .)) 1 x 

(cf. U. Zahle (1991), 2 means equality of the distributions). 

Proposition 3. If X is self-afine then we have X(0) = 0 with probability 1. 

Proof. The proof is obvious. q 

In the special case of D-scale invariant X, i.e., when 

p_“X(p(*)) 2 x, O<p<l, 

we may put U = ee’id, V = eC” id, r = -In p, and then X is ( U’, V’)-self-affine for 

any r>O. 

Definition. For any f E mble( p, q) the mean ( U, V)-fractional derivative off at t E R ’ 

in direction v E R” is determined by 

d,,f(t)v = lim i 
I 

R 
V-‘(f(t+ Urv)-f(t)) dr 

R-CC 0 

if this limit exists. 
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We are interested in the random version d,,X for measureable X as above. 

Let S,, : map(p, 4) + map(p, 9) be given by 

S,vf= v-‘f(u(.)L 

and denote the pullback of the a-algebra of SU,,-invariant sets from mup(p, q) 

under the mapping X by 9”,“. 9’“,, is the corresponding u-algebra if X is replaced 

by 0,X. It may be interpreted as the o-algebra of events for X which are So,“- 

invariant in the shifted coordinate system with (t, X(t)) as origin. 

Theorem 1. Let X be a measurable (U, V)-self-afine random function with finite 

expectations. Then for any v E Rp with probability 1 there exist at _Yp-almost all t 

including t = 0 the fractional derivatives of X in direction v and may be computed by 

Vr(X(t+ Urv)-X(t)) dr $a;,, . I 1 
we have with probability 1 that 

for 2Yp-almost all t including t = 0. 

Proof. We first consider the case t = 0 and show that 

[I 

1 
d,.X(O)v = E Vr(X( U’v)) dr 9o,, 

0 I 1 
with probability 1. 

By definition of the map So,, we get for any natural N, 

1 N 

I 
V-rX(Urv)dr=$N$’ 

I 

1 

%I 
V~(n+r)X( U”+‘v) dr 

nO 0 

_$Nc’[’ VrSb,,X( WV) dr. 
no 0 

The distribution Px is invariant under S U,V and therefore according to BirkhofI’s 

ergodic theorem the last expression tends to 

[I 

1 
E VrX( WV) dr 4o v 

0 I 31 

as N + cc with probability 1. In order to prove convergence of the Cesaro averages 

for arbitrary R -+ 00 it suffices to consider the positive and the negative parts of the 

coordinates of the integrands separately. For them we make use of the inequality 
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By the above convergence which holds for the S U,v-transformations of arbitrary 

integrable functions of X the limits of the right- and the left-hand sides as R+CO 

exist and coincide. Thus, the assertion is true. 

Similarly, if X is ( U’, V’)-self-affine for all r > 0 then we may apply the individual 

ergodic theorem to the transformation group (SU:vr)rsR1 (which is measurable on 

the space of measurable functions) in order to obtain that 

V-‘X(U’v)dr=E 

with probability 1, where n, 9 Ur,v’ agrees with the a-algebra of events for X which 

are SU:vr-invariant for all r. 

Finally, let D be the set of those (0, t) E 0 x Rp where d,,X,( t)v exists and 

equals the expression in the assertion. Note that it is 90 9? P-measurable and may 

be represented by D = {(w, t): (XW, t) E 6} for some fi E ~~up(p, q)O%! p. Put Do= 

{fe map( p, q): (A 0) E 6}. Then we get for the complement sets 

lDc(w, t)ZP(dt)P(do) = l&o, t)P(dw)Zp(dt) 

= ElD;(0,X)3Yp(df). 
I 

In view of the (@,)-invariance of Px and the above result for t = 0 the function 

under the last integral is identically zero. Consequently, j l&w, t)_Y?‘(dt) = 0 for 

P-almost all w, i.e., for these w we have (w, t) E D for Zp-almost all t. 0 

Remark. By similar arguments as in the last step of the preceding proof for fixed 

t E Rp, d,,X( t)u is determined for Zp-almost all ~1 E Rp with probability 1. Note 

that the differential d,,X(t) is a non-linear function which is Sr,:,r-invariant in 

the JZ’-sense for all r>O. 

Theorem 2. If X is as in Theorem 1 and possesses the LTproperty then the statements 

remain valid for r,-almost all t (instead of .2p-almost all t). 

Proof. Let D, be as in the proof of Theorem 1. (It is the set of those functions 

where the derivative at zero exists and equals the corresponding expression.) 

Theorem 1 implies Px (Di) = 0. From Proposition 2 we now infer 

0 = P,(D;) = cYp(A)~’ 

Hence, for H,-almost all f, 

I 1 D;( T,,ofh-f(dt) = 0. 
A 
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Since A is arbitrary we conclude that 

173 

for H,-almost all f: Using that for any s E [w”, 

I 
1 D$ T,+.Qlf)rT,,oJ. (dt) = 

I 
1 &T&-)rAd~L 

we obtain for f as before 

II 
l~$Tt+,, of)TT,,,r(d+-f(d4 =O. 

A 

Consequently, Proposition 2 implies 

0 = P’(A)-’ 
II I 

1 D;(T,+S,of)?,,“f (dt)T,(dx)Hx(df) 
A 

= 

II 
l~~(~,of)?/(dt)Px(df). 

Therefore we get with probability 1, 

II 
1 D;( r,OX)rX(df) = 0. 

Since T~ is concentrated on the zero level set of X this yields the assertion. q 

3. Ergodicity conditions 

Recall that the proof of Theorem 1 is based on the ergodic theorem for the mappings 

S u, v and (SY,V)~~~~, respectively. If Px is ergodic with respect to these transforma- 

tions then the limits in the ergodic theorem are equal to the expectations of the 

corresponding functions of X. Thus we obtain the following. 

Corollary. If X is as in Theorem 2 and ergodic under the corresponding afinities then 

the fractional derivatives are constant: 

I 

1 
d,,X(t)v = E VerX( U’v) dr 

0 

in the (U, V)-self-afine case and 

d,,X(t)v = EX(v) 

in the (U’, Vr)-self-afine case for Zp-almost all t inclusive t = 0 with probability 1. 

The same result is true in the LT case with respect to the local time measure TV. 0 
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We now will derive a natural sufficient condition for ergodicity. Recall that X 

has stationary increments, i.e., Px is invariant under the flow ( O,),,,P. For a > 0 

let mup”(p, q) be the a-algebra on map(p, q) generated by the increments of the 

functions outside the ball in [wp with centre 0 and radius a. As usual, Px is said to 

be uniformly (@,)-mixing if for any A E mup(p, q), 

Proposition 4. Any uniformly (@,)-mixing ( U, V)-self-ujine measurable random jiunc- 

tion X is ergodic with respect to the mapping S,.. (The analogous statement holds 

for theflow (S,:,r).) 

Proof. We will show the sharper mixing relation 

lim Px(An F&B) = P,(A)P,(B) 
n+cC 

for any A, BE mup(p, q). By the structure of the a-algebra mup(p, q) and since 

X(0) = 0 with probability 1 there exist some B” E mup”( p, q) such that B* 3 B and 

lim P,(B*\B) =O. 
a-0 

From the estimation 

=IPx(AnS”,.B”)-P,(AnS~,,(B”\B))+P,(A)P,(B”\B)-P,(A)P,(B”)I 

<IPx(AnS&,,B”)-P,(A)P,(B”)I+2P,(B”\B), 

we conclude that it suffices to prove the asserted mixing relation for A and B” when 

cr is fixed. Note that 

S;,,B” = { V-‘f( U”( 0)): f E B”}, 

and U is a non-singular linear contraction. 

Hence, for any u > 0 there exists an n(u) such that for all n > n(a), 

SC,vB” E m@Yp, 4). 

Thus, the uniform (@,)-mixing condition implies the convergence 

lim Px(AnS”,,,B”)= Px(A)P,(B”). Cl 
n-m 

Remark. It is easy to verify that any measurable random function with stationary 

independent increments is uniformly (O,)- mixing. Therefore self-affine functions of 

this type possess constant fractional derivatives (cf. the corollary). 
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Note that all our results remain valid if we replace the fractional derivatives by 

their absolute variants 

lim 4 Vu)-f(t))1 dr. 
R+m R Jo 

(Then in the explicit expressions of Theorem 1 the corresponding absolute value 

signs have to be inserted.) 

The ideas of this paper may also be applied to the case of fractional densities of 

self-affine random measures. Moreover, our appoach carries over to fractional 

differentiation of deterministic ‘self-similar’ functions by means of a suitable ran- 

domization. This will be demonstrated in a forthcoming part. In particular, we will 

extend results of Bedford and Fisher (1990). 
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