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Abstract

Something between an expository note and an extended research problem, this article is an
invitation to expand the existing literature on a family of graph invariants rooted in linear and
multilinear algebra. There are a variety of ways to assign a real n × n matrix K(G) to each
n-vertex graph G, so that G and H are isomorphic if and only if K(G) and K(H) are per-
mutation similar. It follows that G and H are isomorphic only if K(G) and K(H) are similar,
i.e., that similarity invariants of K(G) are graph theoretic invariants of G, an observation that
helps to explain the enormous literature on spectral graph theory. The focus of this article is
the permutation part, i.e., on matrix functions that are preserved under permutation similarity
if not under all similarity.
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1. Introduction

Let G = (V ,E) be a graph with vertex set V = {v1, v2, . . . , vn}. The familiar
adjacency matrix, A(G), is the n × n matrix whose (i, j)-entry is 1 if vivj is an
edge of G, and 0 otherwise. If H = (W, F ) is a graph with vertex set W =
{w1, w2, . . . , wn}, then G and H are isomorphic if and only if there is a permutation
σ ∈ Sn such that

vivj ∈ E if and only if wσ(i)wσ(j) ∈ F.

(The isomorphism f : V → W is defined by f (vi) = wσ(i), 1 � i � n.) In other
words, G and H are isomorphic if and only if there is a σ ∈ Sn such that

A(G) = P−1A(H)P, (1)

where the permutation matrix P = P(σ) = (δiσ (j)). Thus, G and H are isomorphic
if and only if A(G) and A(H) are permutation similar, only if A(G) and A(H) are
similar, only if det(A(G)) = det(A(H)). It is natural to wonder whether determinant
is the only matrix function that will fit in this last equation.

If A = (ai,j ) is any n × n matrix, then

det(A) = (−1)n
∑
τ∈Sn

(−1)c(τ)
n∏

i=1

ai,τ (i),

where c(τ ) is the number of cycles (including cycles of length 1) in the disjoint cycle
factorization of τ . Evidently, any real valued function f of the symmetric permuta-
tion group Sn induces a similar function of the n × n matrices, namely,

df (A) =
∑
τ∈Sn

f (τ )

n∏
i=1

ai,τ (i).

Moreover,

df (P (σ )−1AP(σ))=
∑
τ∈Sn

f (τ )

n∏
i=1

aσ(i),στ(i)

=
∑
τ∈Sn

f (τ )

n∏
j=1

aj,στσ−1(j)

=
∑
τ∈Sn

f (σ−1τσ )

n∏
j=1

aj,τ(j)

= dg(A), (2)

where g(τ) = f (σ−1τσ ), τ ∈ Sn.
Recall that a real valued function f of Sn is a (conjugacy) class function if

f (σ−1τσ ) = f (τ), for all σ , τ ∈ Sn.

Proposition 1.1. If f is class function of Sn then df (A(G)) is a graph invariant,
i.e., G and H are isomorphic graphs only if df (A(G)) = df (A(H)).



R. Merris / Linear Algebra and its Applications 401 (2005) 67–75 69

Proof. Immediate from Eq. (2) and the definitions. �

Example 1.2. Recall that permutations µ, ν ∈ Sn are conjugate if and only if they
have the same cycle structure. In particular, c(τ ), the number of cycles in the disjoint
cycle factorization of τ , is a class function, as is f : Sn → R defined by f (τ) =
(−1)c(τ). Indeed, df (A) = (−1)n det(A).

If f (τ) = 1, τ ∈ Sn, then df (A) = per(A), the permanent of A. Because it is
(generically) preserved only under monomial similarities, the permanent might seem
almost to have been designed with Eq. (1) in mind.

Recall that a nonincreasing sequence π = [π1, π2, . . . , πk] of positive integers is
a partition of n, denoted π � n, provided

π1 + π2 + · · · + πk = n.

The integers πj , 1 � j � k, are the parts of π . The cycle type of permutation τ ∈ Sn
is the partition π � n whose parts are the lengths of the cycles of τ . If π � n, denote
by fπ : Sn → R the function defined by fπ(τ) = 1, if π is the cycle type of τ , and
fπ(τ) = 0, otherwise. Then fπ is the characteristic function of the conjugacy class
of Sn consisting of the permutations of cycle type π . In fact, {fπ : π � n} is a basis
for the vector space of class functions of Sn.

2. Invariants and graph structure

While invariants of the form df (A(G)) may seem natural enough from an alge-
braic perspective, their ultimate value depends on what they reveal about graph struc-
ture. The case of det(A(G)), e.g., extends naturally to η(G), the nullity of A(G),
about which articles continue to appear. (See, e.g., [23].) One of the nicest results
about η(G) emerges from the coincidence of the adjacency characteristic polynomial
of a tree with its matching polynomial. Let µ(G) be the matching number of G, i.e.,
the maximum number of mutually nonadjacent edges.

Theorem 2.1. If T is a tree with n vertices, then η(T ) = n − 2µ(T ). In particular,
det(A(T )) /= 0 if and only if T has a perfect matching.

In the chemistry literature, perfect matchings are known as Kekulé structures, the
number of which, K(G), is related to chemical stability. The following result is a
classic. (See, e.g., [21] or [12].)

Theorem 2.2. If G is a graph, then per(A(G)) � K(G)2, with equality if and only
if G is bipartite. In particular, if G is bipartite, then per(A(G)) /= 0 if and only if G
has a perfect matching.
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What about invariants induced by characteristic functions?
A graph is hamiltonian if it has a cycle that contains all of its vertices. (Among

the classical NP-Complete problems is to determine whether a given graph is hamil-
tonian.) Denote by h(G) the number of hamiltonian cycles in G.

Theorem 2.3. Suppose G is a graph on n � 3 vertices. Let f = f[n] where [n] is the
unique one-part partition of n. Then df (A(G)) = 2h(G). In particular, df (A(G)) /=
0 if and only if G is hamiltonian.

Proof. If C[n] is the conjugacy class of Sn consisting of all (n − 1)! full n-cycles
then

df (A(G)) =
∑
τ∈C[n]

n∏
i=1

ai,τ (i), (3)

where A(G) = (ai,j ). For a fixed but arbitrary τ ∈ C[n]
n∏

i=1

ai,τ (i) =
{

1, if 〈vτ(1), vτ 2(1), . . . , vτn(1)〉 is a cycle of G,

0, otherwise.

Now, 〈vτ(1), vτ 2(1), . . . , vτn(1)〉 cycle of G if and only if 〈vτ−1(1), vτ−2(1), . . . ,

vτ−n(1)〉 = 〈vτn(1), vτn−1(1), . . . , vτ(1)〉 is a cycle; indeed, if and only if it is the same
cycle with the order reversed. In particular, Eq. (3) counts every hamiltonian cycle
of G exactly twice. �

3. Immanants

Corresponding to each partition π � n is an irreducible character χπ of Sn. For
our purposes, the irreducible characters may be viewed as certain integer valued class
functions given by tables such as the one in Fig. 1, where Cπ denotes the conjugacy
class of cycle type π . The set Irr(Sn) = {χπ : π � n} is another basis of the vector
space of class functions of Sn. (Details can be found, e.g., in [24], or [18, Chapter 4].)

For a fixed but arbitrary χ ∈ Irr(Sn), the corresponding matrix function dχ is
called an immanant [13]. It will be convenient to abbreviate the notation and denote

Fig. 1. Character table for S5.
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by dr the immanant corresponding to [r, 1n−r ] � n. Thus, d1 is another name for the
determinant and dn for the permanent.

Because χ ∈ Irr(Sn) is a class function, it follows from Proposition 1.1 that
dχ(A(G)) is an invariant for n-vertex graphs. Indeed, transcribing Theorem 2.3 for
immanants yields the following.

Theorem 3.1 [15]. Let G be a graph on n vertices. Then the number of hamiltonian
cycles in G is

h(G) = 1

2n

n∑
r=η+1

(−1)n−rdr (A(G)),

where η is the nullity of A(G).

If D(G) = diag(d(v1), d(v2), . . . , d(vn)) is the diagonal matrix of its vertex de-
grees, the Laplacian matrix of G is L(G) = D(G) − A(G). The Laplacian analog
of Eq. (1) is that G and H are isomorphic graphs if and only if there is a permutation
matrix P such that L(G) = P−1L(H)P . In particular, df (L(G)) is (also) a graph
invariant for every class function f .

Because L(G) is positive semidefinite symmetric, dχ(L(G)) is the norm of a
certain “decomposable symmetrized tensor”. (See, e.g., [20, Theorem 1.4] or [18,
Theorem 7.26].) In particular, dχ(L(G)) � 0 for every χ ∈ Irr(Sn) and every
n-vertex graph G. For this and other reasons, Laplacian matrices and immanants
seem well fitted to each other.

Recall that H = (W, F ) is a spanning subgraph of G = (V ,E) if W = V and
F ⊂ E. A spanning tree of G is a spanning subgraph that is a tree. The number,
t (G), of spanning trees of G is a well known graph invariant.

Theorem 3.2. Let G be a graph with n � 3 vertices and m edges. Then d2(L(G)) =
2mt(G).

This well known result follows from the Matrix-Tree Theorem (see, e.g., [19,
Theorem 9.19]) and the fact [16, Eq. (5)] that for any n × n matrix B = (bi,j ),

d2(B) =
n∑

i=1

bii det(Bi) − det(B),

where Bi is the (n − 1)-square submatrix of B obtained by deleting its ith row and
column.

In 1947, Harry Wiener introduced what has come to be known as the Wiener
Index [27]. 1 If u and v are vertices of some tree T on n vertices, denote by .(u, v)

1 Wiener discovered a remarkable correlation between his index and the boiling point of alkanes (also
known as paraffins), hence between the index and such properties as surface tension and viscosity.
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the distance from u to v, i.e., the length of the unique path in T from u to v. The
Wiener Index of an alkane, with chemical graph T , is

W(T ) =
∑

.(u, v),

where the sum is over all C(n, 2) pairs of vertices of T .

Theorem 3.3 [7]. If T is a tree on n vertices, then d3(L(T )) = 4W(T ) − 2n(n − 1).

4. Immanantal polynomials

Suppose K is a function from the graphs on n vertices to the n × n matrices.
Suppose further, that G is isomorphic to H if and only if there is a permutation matrix
P = P(σ) such that K(G) = P−1K(H)P . Then, for any class function f of Sn,

df [xIn − K(H)] = df (P
−1[xIn − K(H)]P)

= df (xIn − [P−1K(H)P ])
= df [xIn − K(G)]. (4)

In particular, the immanantal polynomials dχ [xIn − A(G)] and dχ [xIn − L(G)] are
graph invariants.

Definition 4.1. Suppose n � 3. If G is a graph with n vertices and m edges, write

d2[xIn − L(G)] =
n∑

k=0

(−1)kck(G)xn−k. (5)

It follows from Eq. (4) that the coefficients ck(G) on the right-hand side of Eq. (5)
are all graph invariants. It is not hard to give formulas for the first few, e.g., c0(G) =
n − 1 and c1(G) = 2m(n − 1). Moreover, from Theorem 3.2, cn(G) = 2mt(G).
What about the other coefficients? A special case of the general answer [16, Theorem
5] can be found in Theorem 4.3.

Definition 4.2. If T = (V ,E) is a tree, the moment at vertex u ∈ V is

M(u) =
∑
w∈V

d(w).(u,w),

where, recall, d(w) is the degree of vertex w and .(u,w) is the distance in T from u

to w.

Theorem 4.3. Let T = (V ,E) be a tree on n vertices. Denote by cn−1(T ) the coef-
ficient of (−1)n−1x in the immanantal polynomial d2[xIn − L(G)]. Then cn−1(T ) is
the moment sum, i.e.,

cn−1(T ) =
∑
u∈V

M(u).
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With appropriate modifications, Theorem 4.3 can be extended to graphs that are
not trees. More interesting, perhaps, is the relation between the moment sum and the
Wiener Index. For trees, at least, cn−1(T ) is equal to the Schultz molecular topolog-
ical index which, in turn, is 4W(T ) − n(n − 1) [11]. (Also see [4,7,8,25].)

5. The graph isomorphism problem

Might immanantal polynomials, taken all together, suffice to distinguish noniso-
morphic graphs?

Theorem 5.1 [1]. Denote by tn the number of nonisomorphic trees on n vertices and
by sn the number of such trees T for which there exists a nonisomorphic tree T ′ such
that, simultaneously,

(a) dχπ [xIn − A(T )] = dχπ [xIn − A(T ′)], π � n, and
(b) dχπ [xIn − L(T )] = dχπ [xIn − L(T ′)], π � n.

Then lim(sn/tn) = 1.

6. Open problems

It will no doubt be a long time before the spectra of A(G) and L(G) are fully
understood, graph theoretically. Thus, even in the case dχ = det, questions involving
dχ [xIn − A(G)] and dχ [xIn − L(G)] remain open. However, as the main thrust of
this article involves matrix functions preserved generically not under all similari-
ties, but only under monomial similarities, we will discuss spectral graph theory no
further.

Some illustrative results for dr [xIn − L(G)] and dr [A(G)] appeared in Sections
4 and 3. What about dχ [xIn − L(G)] when χ = χπ corresponds to a partition π /=
[r, 1n−r ]? What about the coefficients of dχ [xIn − A(G)]? Good questions! While
some results have appeared (see, e.g., [2,10,14,22,26]) and various applications sug-
gested (see, e.g., [3,9]), it seems likely that many more results about these graph
invariants remain to be discovered.

If χ = χπ an irreducible character of Sn of degree k (the value taken by χ at
the identity permutation), the corresponding normalized immanant is defined by
d̄χ (A) = dχ(A)/k. In 1918, Schur proved that d̄χ (A) � det(A) for every χ ∈ Irr(Sn),
and all n × n positive semidefinite symmetric matrices A. Perhaps the most fam-
ous open problem involving immanants is a sort of dual to Schur’s result, namely,
per(A) � d̄χ (A). (See, e.g., [17].) Given the intractability of this Permanental Dom-
inance Conjecture, it seems reasonable to consider special cases. It would be a
significant achievement, e.g., to prove (or disprove) the following.
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Conjecture 6.1. If G is any graph on n vertices, then per(L(G)) � d̄χ (L(G)) for
every irreducible character χ of Sn.

Interesting result related to Conjecture 6.1 can be found in [5,6].
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