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Allelic Mutations of KITLG, Encoding KIT Ligand,
Cause Asymmetric and Unilateral Hearing Loss
and Waardenburg Syndrome Type 2

Celia Zazo Seco,1,2,18 Luciana Serrão de Castro,3,4,18 Josephine W. van Nierop,1,5,18 Matı́as Morı́n,3,4,18

Shalini Jhangiani,6 Eva J.J. Verver,1,20 Margit Schraders,1,2 Nadine Maiwald,7 Mieke Wesdorp,1,2

Hanka Venselaar,8 Liesbeth Spruijt,7 Jaap Oostrik,1,2 Jeroen Schoots,7 Baylor-Hopkins Center for
Mendelian Genomics,6 Jeroen van Reeuwijk,7 Stefan H. Lelieveld,2,7 Patrick L.M. Huygen,1

Marı́a Insenser,9 Ronald J.C. Admiraal,1,10 Ronald J.E. Pennings,1,5 Lies H. Hoefsloot,7,21

Alejandro Arias-Vásquez,7,11,12 Joep de Ligt,7,22 Helger G. Yntema,7 Joop H. Jansen,13,14

Donna M. Muzny,6 Gerwin Huls,13,14 Michelle M. van Rossum,15 James R. Lupski,6,16,17

Miguel Angel Moreno-Pelayo,3,4,19 Henricus P.M. Kunst,1,5,19 and Hannie Kremer1,2,7,19,*

Linkage analysis combined with whole-exome sequencing in a large family with congenital and stable non-syndromic unilateral and

asymmetric hearing loss (NS-UHL/AHL) revealed a heterozygous truncatingmutation, c.286_303delinsT (p.Ser96Ter), inKITLG. Thismu-

tation co-segregatedwithNS-UHL/AHLas adominant traitwith reducedpenetrance. By screeningapanel of probandswithNS-UHL/AHL,

we found an additional mutation, c.200_202del (p.His67_Cys68delinsArg). In vitro studies revealed that the p.His67_Cys68delinsArg

transmembrane isoform of KITLG is not detectable at the cell membrane, supporting pathogenicity. KITLG encodes a ligand for the

KIT receptor. Also, KITLG-KIT signaling and MITF are suggested to mutually interact in melanocyte development. Because mutations in

MITF are causative of Waardenburg syndrome type 2 (WS2), we screened KITLG in suspected WS2-affected probands. A heterozygous

missense mutation, c.310C>G (p.Leu104Val), that segregated with WS2 was identified in a small family. In vitro studies revealed that

the p.Leu104Val transmembrane isoform of KITLG is located at the cell membrane, as is wild-type KITLG. However, in culture media of

transfected cells, the p.Leu104Val soluble isoform of KITLG was reduced, and no soluble p.His67_Cys68delinsArg and p.Ser96Ter KITLG

could be detected. These data suggest that mutations in KITLG associated with NS-UHL/AHL have a loss-of-function effect. We speculate

that themechanismof themutationunderlyingWS2 and leading tomembrane incorporation and reduced secretionofKITLGoccurs via a

dominant-negative or gain-of-function effect. Our study unveils different phenotypes associated with KITLG, previously associated with

pigmentation abnormalities, and will thereby improve the genetic counseling given to individuals with KITLG variants.
Introduction

Familial sensorineural non-syndromic unilateral and

asymmetric hearing loss (NS-UHL/AHL) (UHL [MIM:

125000]) is rare; only a few families affected by it are

described in literature, and no disease-associated genes or

loci are known to date.1–3 Like symmetric hearing loss

(HL), UHL/AHL can negatively affect affected individuals’
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lives because of cognitive and social developmental delay.

UHL/AHL can be inherited as part of a syndrome,

e.g., Waardenburg syndrome (WS [MIM: PS193500]) or

Pendred syndrome (MIM: 274600), or it can be induced

by environmental factors such as prematurity, trauma, or

meningitis.

WS is a dominantly inherited auditory-pigmentary syn-

drome with an estimated prevalence of 5–10:100,000.
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To date, four types of WS (1–4) have been distinguished,

and seven genes have been found to be associated with

the syndrome. The classification of WS is based on the

presence of specific clinical features in addition to pigmen-

tary abnormalities of hair, skin, and eyes and congenital

HL.4 These specific, additional clinical features are cranio-

facial defects in the case of WS1, craniofacial and limb de-

fects in in the case ofWS3, and Hirschsprung disease in the

case of WS4. WS2 is not associated with additional clinical

features. All WS-associated genes function in the same

pathways involved in the development of neural-crest-

derived melanocytes by influencing Mitf expression

and/or activity.5–9

Besides WS, there are other HL syndromes accompanied

by hypopigmentation due to melanocyte defects.10 One of

these is the piebald trait (MIM: 172800). Piebaldism is

characterized by a congenital regional absence of melano-

cytes in the skin and hair that is caused by heterozygous

loss-of-function mutations in KIT (MIM: 164920).10 Very

occasionally, the piebald trait has been found to be associ-

ated with congenital HL, indicating that they might be

part of the same disorder.11,12

By using a combined strategy of linkage analysis and

whole-exome sequencing (WES) in a large Dutch family

affected by NS-UHL/AHL, we identified a truncating

mutation, c.286_303delinsT (p.Ser96Ter [GenBank: NM_

003994.5 and NM_000899.4]), of KITLG (MIM: 184745).

Targeted gene testing of a panel of NS-UHL/AHL-affected

individuals identified an in-frame deletion, c.200_202del

(p.His67_Cys68delinsArg [GenBank: NM_003994.5 and

NM_000899.4]), in a family of Spanish origin. Due to the

dual regulation of melanocyte development by KIT-KITLG

signaling and MITF,6,8,13 a cohort of WS2-affected individ-

uals was tested for mutations in KITLG, which revealed a

missense mutation, c.310C>G (p.Leu104Val [GenBank:

NM_003994.5 and NM_000899.4]), that was segregating

with WS2 in another family from the Netherlands. We

analyzed the effect of these mutations on subcellular local-

ization and secretion of the transmembrane and soluble

KITLG isoforms, respectively.
Subjects and Methods

Subject Evaluation
The current study was approved by the medical ethics committees

of the Radboud University Medical Center and the Hospital Uni-

versitario Ramón y Cajal and the institutional review board of

the Baylor College of Medicine. Written informed consent was ob-

tained from all participating subjects.

Medical histories were taken from all participants, and special

attention was paid to hearing impairment, vestibular symptoms,

and possible causes of acquired deafness. In family W09-1628

(Figure 1A), 26 people (II:4, III:1, III:3, III:4, III:5, III:6, III:7, III:9,

IV:1, IV:3, IV:4, IV:5, IV:6, IV:7, IV:8, V:1, V:2, V:3, V:4, V:5, V:6,

V:7, V:8, V:9, V:10, and V:11) participated in the ear, nose, and

throat (ENT) evaluation. In family S1489, the index case, individ-

ual III:1, and his father, individual II:1, took part in an ENT exam-
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ination (Figure 1B). From family 12-01744, two individuals, the in-

dex case, individual II:1, and his mother, individual I:2, both

affected by WS2, participated in an ENT evaluation (Figure 1C).

The affection status of the other family members was based on in-

formation provided by close relatives.

Individuals were considered to be affected if at least one ear

showed three pure-tone thresholds below the 95th percentile

(P95) at the last evaluation. HL was indicated as asymmetric

when the difference between the hearing thresholds of both ears

was more than 10 dB at three or more frequencies or more than

15 dB at two or more frequencies. HL was indicated as unilateral

if three or more frequencies were beyond the P95 value in only

one ear and there was normal hearing in the contralateral ear.

Audiometric examination comprised conventional pure-tone

audiometry in a sound-treated room, in accordance with the Inter-

national Organization for Standardization (ISO) standards

389:1985 and 8253-1:1989. Air-conduction thresholds were

measured in dB of HL at 0.25, 0.5, 1, 2, 4, and 8 kHz. Bone-conduc-

tion thresholds were measured to exclude conductive or mixed

HL. The P95 threshold values in relation to the person’s age and

sex were derived for each frequency via the ISO 7029:1984

method.14 In family W09-1628, speech audiometry was per-

formed under the above-mentioned conditions with standard

monosyllabic (consonant-vowel-consonant) Dutch word lists.

For individual II:1 of family 12-01744, play audiometry with

blocks was performed at the age of 3 years. Thresholds were

measured in dB of HL at 0.5, 1, and 4 kHz.

Six affectedmembers (III:5, IV:1, V:1, V:5, V:6, and V:7) of family

W09-1628 underwent vestibular and ocular motor tests. Ocular

motor evaluation comprised saccades, smooth pursuit, optoki-

netic nystagmus, and gaze-evoked and spontaneous nystagmus.

Vestibulo-ocular reflexes (VOR) were evaluated via electronystag-

mography (ENG) with computer analysis. Vestibular stimulation

comprised rotary and caloric tests.15 The diagnosis of hyporeflexia

in the rotary test was based on finding parameter values below the

5th percentile of normal.When the response parameters had direc-

tional preponderance values of >25%, VOR asymmetry was

considered to be significant. The finding of caloric asymmetry re-

lates to a difference in response levels larger than 20%. Caloric hy-

poreflexia indicates a response level of <7�/sec for cold irrigation

and<10�/sec for warm. In accordance with the AmericanNational

Standards Institute procedures (1999), we have established norma-

tive laboratory data by using the 95% confidence limit for the

normal population. To avoid underestimation, we have calculated

the lower limit of acceptance by using 2.34 times the SD from

the mean to define a hyporeactivity of the caloric responses

(i.e., 7�/sec and 10�/sec for cold and warm irrigation, respec-

tively).16

High-resolution spiral computed tomography (CT) images of

the temporal bones of both ears, with 0.6 mm axial sections and

coronal reconstructions, were obtained for detection of possible

inner ear anomalies in one affected individual (V:7) of family

W09-1628. The images were analyzed by an experienced head

and neck radiologist.

In the index case, individual III:1, of family S1489, we

performed MRI to exclude inner-ear defects and retrocochlear

pathology.

To evaluate the presence of pigmentation abnormalities, we

took histories and performed physical examinations in all three

families: W09-1628, 12-01744, and S1489. Fourteen individuals

of family W09-1628 participated in a dermatological evaluation,

ten of whom were heterozygous for the mutation underlying HL
er 5, 2015



Figure 1. Families Affected by KITLG Mutations
(A) Pedigree of familyW09-1628, affected byNS-UHL/AHL. Asterisks indicate individualswhowere genotypedwithHumanOmniExpress
BeadChip arrays. For privacy reasons, the genotype for the c.286_303delinsT variant has not been indicated for unaffected individuals,
except for thosewith affected offspring. Abbreviations are as follows:M,mutant allele c.286_303delinsT;þ, thewild-type allele; ?, unclear
affection status.
(B) Pedigree of family S1489, affected by NS-AHL. Abbreviations are as follows: M, the c.200_202del variant; þ, the wild-type allele.
(C) Pedigree of family 12-01744, affected by WS2. Abbreviations are as follows: M, the variant c.310C>G; þ, the wild-type allele; ?, un-
clear affection status.
in the family (eight had HL, in one of whomHLwas not associated

with the mutation in the family, and two did not show HL) and

four of whom were control individuals without the mutation.

Dermatological evaluation included determination of skin type

(I–VI), eye color, hair color, poliosis of the head, cilia, and eye-

brows, skin depigmentation, hypopigmentation, and hyperpig-

mentation, number of naevi, allergic reactions, other observed

skin abnormalities, and treatment of skin abnormalities in the

past. The whole body was examined and a Wood’s lamp was

used to analyze hypo-, hyper-, and depigmentations. If necessary,

skin abnormalities were reviewed with a dermatoscope. Examina-

tion with a Wood’s lamp was also performed for the affected indi-

viduals of family 12-01744.

To evaluate the presence of abnormalities in hematopoiesis, we

collected blood samples from the 14 individuals who underwent

dermatological evaluation. Blood samples were evaluated for hemo-
The American
globin concentration,meancorpuscularhemoglobinconcentration

(MCHC), erythrocyte counts,mean corpuscular volume (MCV), red-

blood-cell-count distributionwidth (RDW), reticulocyte counts, he-

matocrit, trombocyte counts, leukocyte counts, and differentiated

leukocytes (neutrophilic granulocytes, lymphocytes, eosinophilic

granulocytes, basophil granulocytes, and monocytes) by micro-

scopic analysis and an automated protocol. As a reference, the

Radboud University Medical Center standard was used.17
Description of Subject Cohorts
The cohort of 64 probands of Dutch origin, with a clinical suspi-

cion of WS2, consisted of three groups of affected individuals:

(1) 31 subjects with bilateral symmetric HL and hair, eye, and/or

skin pigmentation abnormalities, (2) 9 subjects with AHL,

5 of whom had additional hair, eye and/or skin pigmentation
Journal of Human Genetics 97, 647–660, November 5, 2015 649



abnormalities, and (3) 24 subjects with UHL, 15 of whom had

pigmentation abnormalities of hair, eye, and/or skin. Because

AHL is described in WS2, MITF testing was requested in routine

diagnostics, and MITF was excluded as a disease-associated gene.

In the index individual in family 12-01744 of this cohort, all

genes known to be involved in WS2 (MITF, SOX10, and SNAI2)

were analyzed by Sanger sequencing, and no potentially patho-

genic variants were found. The NS-UHL/AHL cohort consisted

of 23 index cases, including 10 individuals with NS-UHL and

13 with NS-AHL. In all subjects of this cohort, the c.35delG

GJB2 (MIM: 121011) mutation (p.Gly12Valfs*2 [GenBank:

NM_004004.5]) and the m.1555A>G mutation (GenBank:

NC_012920.1) in MT-RNR1 (MIM: 561000) were excluded. These

subjects were not pretested for MITF mutations.
Linkage Analysis
Genomic DNAwas isolated from peripheral blood lymphocytes by

standard procedures. The HumanOmniExpress BeadChip arrays

(Illumina), with a total of 733,202 SNPs’ covering the genome at

a median of 2.2 kb intervals, were used for genotyping DNA

from individuals’ blood (Figure 1A). Superlink online SNP 1.1 soft-

ware was employed for multipoint LOD score calculations, and a

window size of ten SNPs was used.18 In order to select independent

SNPs, pruning (r2 ¼ 0.025) was performed with PLINK.19 The dis-

ease was assumed to be an autosomal-dominant disorder with a

disease-allele frequency of 0.001. The penetrance of the disease

allele was set at 70%.

In order to confirm the linkage region defined by Superlink,

we performed genotyping of variable number of tandem repeat

(VNTR) genetic markers.20 Touchdown PCR was used to amplify

the VNTR markers. Marker heterozygosity, order, and genetic

location were derived from the Marshfield genetic map. VNTR

markers were selected to encompass the linkage interval, on chro-

mosome 12, region q21.32-q23.1. The alleles were assigned with

GeneMapper v.4.0 software (Applied Biosystems).
WES
WES was performed at the Human Genome Sequencing Center

(HGSC) at the Baylor College of Medicine through the Baylor-

Hopkins Center for Mendelian Genomics initiative. Using 0.5 mg

of DNA, we constructed an Illumina paired-end pre-capture library

in accordance with the manufacturer’s protocol (Illumina Multi-

plexing_SamplePrep_Guide_1005361_D), with modifications as

described in the BCM-HGSC Illumina Barcoded Paired-End

Capture Library Preparation protocol. Four pre-captured libraries

were pooled and then hybridized in solution to the HGSC CORE

design (52 Mb, NimbleGen), in accordance with the manufac-

turer’s protocol (NimbleGen SeqCap EZ Exome Library SR User’s

Guide version 2.2), with minor revisions.21 The sequencing run

was performed in paired-end mode with the Illumina HiSeq

2000 platform, and sequencing-by-synthesis reactions were

extended for 101 cycles from each end and for an additional seven

cycles for the index read. With a sequencing yield of 10.4 Gb, the

samples achieved 91% of the targeted exome bases covered to a

depth of 203 or greater. The overall coverage in the linkage inter-

val was optimal, with 97.7% and 94.4% of base pairs covered

R103 for individuals IV:1 and III:9, respectively. Illumina

sequence analysis was performed with the HGSCMercury analysis

pipeline,22,23 which moves data through various analysis tools,

from the initial sequence generation on the instrument to anno-

tated variant calls (SNPs and intra-read insertions and deletions).
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Sanger Sequence Analysis
Primers for amplification of exons and exon-intron boundaries of

KITLG (GenBank: NM_003994.5 and NM_000899.4) and KITLG

rs642742 and rs12821256 were designed with ExonPrimer

(Table S1). Amplification by PCR was performed on 40 ng of

genomic DNA with Taq DNA polymerase (Roche or Invitrogen).

PCR fragments were purified with NucleoFast 96 PCR plates

(Clontech) or ExoI/FastAP (Fermentas), in accordance with

manufacturers’ protocols. Sequence analysis was performed with

the ABI PRISM BigDye Terminator Cycle Sequencing v.2.0 Ready

Reaction kit and analyzed with the ABI PRISM 3730 DNA analyzer

(Applied Biosystems). GenBank: NM_003994.5 and NM_000899.4

were employed as reference sequences.

The presence of the KITLG c.286_303delinsT mutation was

determined in 153 ethnicity-matched control individuals. To do

so, we amplified exon 4 of KITLG and analyzed fragments by

agarose gel electrophoresis. The presence of the KITLG

c.200_202del variant was investigated in 200 control individuals

of Spanish origin by a size-based screeningwith one primer labeled

with a 6-FAM fluorophore. Allele size was determined by capillary

electrophoresis in an ABI PRISM 3100 genetic analyzer (Applied

Biosystems) and analysis with the GeneScan software (Applied

Biosystems). For all three KITLG variants, absence was verified in

the following databases: the Exome Variant Server (>200,000

exomes), the Nijmegen WES database (5,031 exomes), the Exome

Aggregation Consortium database (ExAC; 65,000 exomes), the

‘‘Centro de Investigación Biomédica en Red de Enfermedades

Raras’’ (CIBERER) Exome Sever (403 exomes), and the WES data-

base of the Baylor-Hopkins Center for Mendelian Genomics

(~5,000 exomes).

A possible effect of the KITLG variants was predicted with

the following software tools included in Alamut (Interactive

Biosoftware): Sorting Intolerant from Tolerant (SIFT), Polymor-

phism Phenotyping version 2 (PolyPhen2), MutationTaster,

NetGene, the Berkeley Drosophila Genome Project splice predic-

tion site, and Human Splice Finder. The conservation of the

substituted amino acids was scored with the ConSeq online tool.
pCR4-Topo Cloning
Exon 4 of KITLG from individual IV:1 in familyW09-1628 and the

index case, individual III:1, from family S1489 was amplified

(primers as for sequencing) and cloned into a pCR4-Topo vector

(Invitrogen), in accordance with the manufacturer’s protocol.

Plasmid DNA was isolated from transformed E. coli DH5a with

the NucleoSpin Plasmid (NoLid) kit (Machery Nagel) and analyzed

by Sanger sequence analysis as described above.
Expression of KITLG in NIH 3T3 Cells
Total RNA was extracted from human control peripheral blood

with the QIAamp RNA Blood Mini Kit (QIAGEN), according to

the manufacturer’s instructions. Reverse transcription was carried

out with 1 mg of RNA and random hexamers with the Transcriptor

First Strand cDNA Synthesis Kit (Roche). Full-length transcripts

encoding the human KITLG transmembrane (GenBank: NM_

003994.5) and soluble (GenBank: NM_000899.4) isoforms were

amplified with modified primers; the forward primer contains a

BamHI site and the reverse primers (R2-XhoI or R1-XhoI) contain

a XhoI restriction site (Table S1). We cloned amplimers in the

eukaryotic expression vector pIRES-hrGFP-1a (Stratagene) to

obtain two different sets of plasmids suitable to generate, respec-

tively, (1) human soluble KITLG (with the region encoded by
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exon 6) and (2) KITLG (without the region encoded by exon 6)

fused to three FLAG epitopes at the C-terminal end.

Plasmidsencoding the aberrantKITLG,p.His67_Cys68delinsArg,

p.Ser96Ter, and p.Leu104Val, were generated by directmutagenesis

with the QuickChange Site-Directed Mutagenesis Kit (Stratagene)

and verified by Sanger sequencing. Cell culture, transfection, and

detection of proteins by immunofluorescence were performed as

previously described.24 Cells were transiently transfected with

500 ng of wild-type or mutated constructs via Lipofectamine 2000

(111668, Invitrogen), according to the manufacturer’s protocol.

As primary antibodies, the monoclonal anti-FLAGM2mouse anti-

body (1:500; Sigma, F1804) or anti-KITLG antibody (1:1,000;

Abcam, ab52603, anti-SCF)were used, and as secondary antibodies,

the Alexa Fluor 488-conjugated goat anti-mouse IgG antibody

(1:1,000; Molecular Probes, A11017; Invitrogen) or Alexa Fluor

594-conjugated goat anti-rabbit antibody (1:500;Molecular Probes,

A11037; Invitrogen) were employed. Slides were mounted with

Fluorsave Reagent (Calbiochem). Images were acquired and

analyzed by confocal microscopy (Nikkon C1 plus ECLIPSE Ti-e

microscope and an 60X Plan Apo VC OIL objective with NA 1.4).
ELISA
In order to assess the levels of the soluble KITLG isoform, we

employed a commercial ELISA kit (ab100636 SCF Human ELISA

kit) according to manufacturer’s instructions (Abcam). NIH 3T3

cells were independently transfected with plasmids encoding

soluble wild-type KITLG or soluble KITLG containing the muta-

tions identified in this study (p.Ser96Ter, p.Leu104Val, and

p.His67_Cys68delinsArg). After cells were cultured for 24 hr,

we collected cell-free supernatants by centrifuging them at

15,000 rpm for 10 min at 4�C. Samples were stored at �70�C until

the ELISAs were performed. Samples were dilutedwith one volume

of13 assaydiluentB. Thedetection limitwas2pg/mland themean

intra- and inter-assay coefficients of variability were <10% and

<12%, respectively. Samples were assayed in quadruplicate and at

least four independent transfections were performed. Transfection

levels of cells with the wild-type andmutant constructs were deter-

mined by detection of GFP and KITLG by fluorescence and immu-

nofluorescence, respectively, of permeabilized cells. For detection

of the latter, we used the anti-KITLG antibody (Abcam, ab52603,

anti-SCF) (Figure S1). The dosage of the soluble form detected by

ELISA in themediumwasnormalized to the quantity of transfected

cells per well in each case. Cells were examinedwith a fluorescence

inverted microscope (Olympus IX81) equipped with UPLFLN40X,

PLAPON60XO, and UPLSAPO100XO objectives. Images were

recordedwitha cooledCCD-FView II camera (Soft ImagingSystem)

and processed withCell R software (Olympus).We verified that the

ELISA kit allowed the identification of the aberrant KITLGproteins,

including the truncated form (p.Ser96Ter), by using cellular

extracts of permeabilized cells transfected with constructs encod-

ing FLAG-tagged transmembrane KITLG aberrant isoforms

(Figure S2).
Results

Clinical Characterization of Families with NS-UHL/

AHL and WS2

Family W09-1628

A large Dutch family, W09-1628 (Figure 1A), with

autosomal-dominant, congenital, non-syndromic sensori-
The American
neural HL and a large inter- and intra-individual variation

of severity and audiogram configuration was ascertained.

Otoscopy was normal for all but two individuals, V:7 and

V:8 (for details, see the Supplemental Note).

In individuals with UHL, either the left or the right ear

was affected, and severity of the HL varied from mild to

profound (Figure 2A and Figure S3). Overall, five individ-

uals presented with NS-AHL (III:9, V:1, V:5, V:6, and

V:11) and four individuals with NS-UHL (III:1, III:5, IV:1,

and V:7) (Figure S3). In four ears, HL either only affected

lower frequencies (<2 kHz) or was more pronounced in

these frequencies. Interaural differences in audiogram

configuration were observed in one individual (III:9,

Figure S3). Additional information on individual cases is

provided in the Supplemental Note.

Analysis of longitudinal data revealed that HL was stable

in all individuals. Only minor negative progression was

seen in individual longitudinal data, which can probably

be explained by the young age at which first thresholds

were determined. The genetic defect underlying the NS-

UHL/AHL in this family has a reduced penetrance, as evi-

denced by the fact that four individuals transmitting the

disease to their offspring were unaffected (II:4, IV:3, IV:5,

and IV:7) (Figure 1A).

Vestibular function was evaluated in six of the hearing-

impaired family members (Table S2). Three individuals

(V:1, IV:1, and III:5) displayed asymmetry on calorisation,

corresponding with the side of the worst ear. One UHL-

affected individual (V:7) displayed a marginal hyporeflexia

onboth sides; theother earhadadipat 4kHzonly, although

no history of excessive noise exposure was reported. In the

remaining two individuals (V:5 and V:6), vestibular func-

tion was found to be normal (Table S2). Except for individ-

ual II:4, none of the individuals who carried the mutation

reported vestibular symptoms. During history taking, indi-

vidual II:4 indicated a possible Meniére disease.

Because KITLG functions in the proliferation, migration,

and survival of hematopoietic stem cells and melano-

blasts,25–28 blood cell counts, as well as skin, hair, and eye

color, were evaluated in family-W09-1628 members with

and without the KITLG mutation. All determined hemato-

logical parameters were within the normal range, although

individuals IV:1, IV:3, and V:4 were treated with ferrofuma-

rate for anemia in the past (Table S3). These findings suggest

that, in the heterozygous state, the KITLG mutation in the

present family does not affect steady-state hematopoiesis.

All evaluated individuals had skin type I or II, blond hair,

and blue eyes (Table S4). Heterochromia iridis and dystopia

canthorum were not observed. Hypo- and depigmenta-

tions of the skin were not found in the younger generation

(generation V). In the older generations, hypo- and depig-

mentations were present in individuals with and without

the KITLG mutation (Table S4). These pigmentation char-

acteristics are age related and a common feature in the pop-

ulation.29 Our findings suggest that the heterozygous

KITLG mutation in this family does not lead to pigmenta-

tion abnormalities of skin, eyes, or hair.
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Figure 2. Pure Tone Audiometry in Families Affected by KITLG Mutations
(A) Pure tone audiograms for family-W09-1628 individuals with UHL (III:5) and AHL (V:6).
(B) Pure tone audiograms for family S1489, affected by AHL.
(C) Pure tone audiograms for family 12-01744, affected by WS2. Abbreviations are as follows: R, right ear; L, left ear; P95, thresholds
according to the P95 of presbyacusis (ISO 7029:1984).14
Family S1489

The index individual of family S1489 (Figure 1B) and his

father presented with AHL and variability in severity and

audiogramconfiguration(Figure2B), aswasobserved in fam-

ilyW09-1628. TheAHL in thepropositus (III:1)was reported

to be of prelingual onset without progression. The earliest

clinical evidence of HLwas obtained at the age of four years.

HL was profound at all frequencies in the right ear andmild

in the left ear, affecting the low frequencies. The father of the

propositus (II:1) presented with moderate bilateral AHL.

Audiogram configuration was downsloping for the left ear

and flat for the right ear. No vestibular symptoms were re-

ported by the affected father and son. Examination of the

skin revealednohypo- orhyperpigmentation features.Addi-

tional information is provided in the Supplemental Note.

Family 12-01744

In family 12-01744 (Figure 1C), otoscopy demonstrated

otitis media with effusion in the right ear of the index

individual (II:1) at the age of almost five years. Therefore,

reliable thresholds could only be measured for the left
652 The American Journal of Human Genetics 97, 647–660, Novemb
ear, and these were normal. At the age of three years,

play audiometry had been performed elsewhere, which re-

vealed profound HL for the right ear (Figure 2C). The

mother of the index individual (I:2) did not show any ab-

normalities in otoscopy, and her hearing was normal with

only two frequencies, 4 kHz and 8 kHz, below the P95
values (Figure 2C). The index individual had heterochro-

mia iridis, which is suggested to be present in his mother

as well by small blue spots in the iris (Figures 3A and 3B).

Both individuals had skin type III. The index individual

had brown-blond hair. On the thorax and upper arms, he

had a partially sharply demarcated hypopigmented

macule, which was already present at birth. Furthermore,

a nummular sharply demarcated hyperpigmented macule

was seen on his back (Figures 3C and 3D).

A Locus for NS-UHL/AHL on Chromosome

12q21.32–q23.1

In familyW09-1628, genotypingwas performedwith high-

density SNP arrays (Figure 1A). Genome-wide multipoint
er 5, 2015



Figure 3. Eye and Skin Hypopigmentation Phenotypes in Family
12-01744, Affected by WS2
(A) Heterochromia iridis in the index case, individual II:1.
(B) Signs of heterochromia iridis in his mother (I:2).
(C) A hypopigmented, sharply demarcated macule on the thorax
of individual II:1 and
(D) on the upper arm. A nummular, sharply demarcated hyperpig-
mented macula at the back, detected by a Wood’s lamp.

Table 1. Filter Steps Applied on Sequence Variants Identified in
WES of Individuals III:9 and IV:1 of Family W09-1628

Filter Steps No. of Variants

Shared exome 87,751

In linkage region 12q21.31–q23.1 241

%0.5% Nijmegen in-house frequency 50

Exonic missense, nonsense, indels, non- and
canonical splice sites

9

Confirmed by Sanger sequencing 2 in KITLG

Indicated are the number of variants as compared to reference genome
GRCh37 (hg19) after each filter step.
LOD scores were calculatedwith 14,488 independent SNPs,

which revealed a single linkage interval of 13.15 Mb on

chromosome 12q21.32–q23.1, delimited by rs10459171

and rs35723 (chr12: 87,808,426–100,960,087; UCSC

Genome Browser GRCh37/hg19). A maximum LOD score

of 4.27 was calculated for rs7132875 and rs7309222

(Figure S4). There were no other regions with a LOD score

suggestive of linkage (R2.0) (Figure S4).

As a next step, we confirmed linkage of the disease to the

12q21.32–q23.1 region by genotyping VNTR genetic

markers, and recombination events delimited the linkage

interval to a region flanked by markers D12S88

and D12S346 (12q21.31–q23.1; chr12: 86,371,384–

99,528,530; GRCh37/hg19) (Figure S5). According to the

UCSC Genome Browser (GRCh37/hg19), 82 RefSeq genes

were present in the critical region, but none were previ-

ously reported to be related to deafness in humans, and

in regard to mice, only the ortholog of KITLG (Kitl) was

associated with sensorineural HL (Mouse Genome Infor-

matics database).

WES Revealed a Truncating Mutation in KITLG

Because of the size of the critical region, we performedWES

for the affected individuals III:9 and IV:1 to identify the

genetic defect underlying the NS-UHL/AHL in family

W09-1628. Multiple filter steps conducted on the initial

87,751 variants that were shared by individuals III:9 and

IV:1 (Table 1) revealed two heterozygous candidate vari-

ants in exon 4 of KITLG, c.286_303del and c.303insT.

Sanger sequencing after the cloning of KITLG exon 4 am-

plimers demonstrated that both variants are present in

cis and thus are likely to represent one mutational event

(c.286_303delinsT) (Figure 4A). The predicted effect of
The American
the c.286_303delinsT variant is a shift of the reading

frame and a premature termination of protein synthesis,

p.Ser96Ter. The variant was detected heterozygously in

all affected individuals of the family, in all unaffected indi-

viduals who transmitted themutation to their offspring, in

one individual with an unknown affection status, and in

an additional unaffected individual (Figure 1A). The KITLG

variant c.286_303delinsT was neither present in 153

ethnicity-matched control individuals nor in exome data-

bases (see Subjects and Methods). Copy-number variation

(CNV) analysis of WES data did not reveal any CNV in the

linkage interval or any CNVs that were shared by the two

individuals (Table S5).

On the basis of the segregation pattern of the

c.286_303delinsT variant in KITLG, we calculated a pene-

trance of 60%–67%. The SNPs rs642742 and rs12821256

are located in KITLG enhancers ~326 kb and ~350 kb up-

stream of the KITLG transcription start site, respectively,

and are described to alter enhancer activity.30,31 To eval-

uate a possible contribution of these SNPs to the pene-

trance of HL in the family, they were genotyped in all

members with the mutation (Figure S5). No correlation

was observed between the SNP genotypes and the pene-

trance of the mutation in this family.

KITLG Variants in NS-UHL/AHL and WS2

We further addressed involvement of KITLG mutations in

both NS-UHL/AHL and in WS2. HL in individuals with

WS2 is variable, given that it can be asymmetric and/or

unilateral in some of the cases.32,33 Furthermore, function

of MITF (MIM: 156845), which is associated with WS2, is

influenced by KITLG-KIT signaling.8 We selected two

panels of affected individuals. The first panel consisted of

64 probands with a clinical suspicion of WS2. The second

panel consisted of 23 unrelated probands with autosomal-

dominant NS-UHL/AHL, mainly of Spanish origin.

Further details on the panels are provided in Subjects

and Methods. Two additional heterozygous KITLG

variants were identified, namely an in-frame deletion,

c.200_202del (p.His67_Cys68delinsArg; Figure 4B), in an

index individual of Spanish origin with NS-AHL and a

missense variant, c.310C>G (p.Leu104Val; Figure 4C), in

a WS2-affected individual of Dutch origin with UHL.
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Figure 4. Genetic Defects Underlying UHL and AHL and Schematic Representation of the Genomic Structure of KITLG and of the
Encoded KITLG Isoforms
(A) Electropherograms of pCR4-topo clones representing the wild-type and c.286_303delinsT alleles of KITLG exon 4 of individual IV:1
(family W09-1628).
(B) Electropherograms of pCR4-topo clones representing the wild-type and c.200_202del alleles of KITLG exon 4 of individual III:1 (fam-
ily S1489).
(C) Partial nucleotide sequences of KITLG exon 4 of case II:1 of family 12-01744. The mutated nucleotide is marked by an arrowhead.
GenBank: NM_003994.5 and NM_000899.4 were used as reference sequences.
(D) Exon 6 is alternatively spliced. The yellow dots represent the gain-of-function mutations c.98C>T, c.100A>C, and c.107A>G, caus-
ative of familial hyper- and hypopigmentation syndromes. The green and red dots represent the mutations identified to be causative of
NS-UHL/AHL in the present study. The white dot represents themutation identified in a family withWS2. All depicted variants affect the
KIT ligand domain of both the soluble and transmembrane isoforms of KITLG. Abbreviation is as follows: WT, wild-type.
The KITLG variant c.200_202del was heterozygously

present in the father of the proband who also presented

with NS-AHL (Figure 1B, Figure 2B). The c.200_202del

variant was neither detected in 200 ethnicity-matched

control alleles nor in exome databases (see Subjects and

Methods). The predicted effect of the deletion of three

nucleotides on the encoded protein is an amino acid

deletion and a substitution (p.His67_Cys68delinsArg).

Cys68 is highly conserved with a score of 9 in the

ConSeq online bioinformatic tool (range of 1–9, where

9 is conserved and 1 is variable). The Cys68 residue forms

an intramolecular Cys-Cys bond with Cys163, which is

essential for the full biological activity of KITLG.25,34–36

The loop in which Cys68 is located connects a b sheet

to an a helix. Homology modeling of KITLG p.His67_

Cys68delinsArg predicts that when residue Cys68 is not

present and the Cys68-Cys163 bond thus cannot be

formed, the local structure of KITLG around the loop is

affected. Also, a reactive Cys (Cys163) is left without a

binding partner, which could lead to even larger struc-

tural changes than predicted (Figures S6A and S6B). The

interaction with the KIT receptor is predicted to be pre-

served (Figure S6B). In aggregate, these data suggest

that the cysteine at position 68 has a critical role in main-

taining the structural and functional integrity of the

protein.

In family 12-01744, KITLG variant c.310C>G was

inherited from the mother (Figure 1C). The variant is

predicted to substitute valine for leucine at position 104

(p.Leu104Val) and is not present in any of the exome data-
654 The American Journal of Human Genetics 97, 647–660, Novemb
bases (see Subjects and Methods), which include at least

4,000 exomes of individuals of Dutch origin. The amino

acid substitution is predicted to be deleterious for protein

function according to PolyPhen2, with a score of 0.998

(range of 0–1, where 0 is benign and 1 is probably

damaging), MutationTaster, with a score of 1 (range of

0–1, where 0 is benign and 1 is probably damaging), and

SIFT, with a score of 0.04 (where %0.05 is probably

damaging and >0.05 is predicted to be tolerated). Leu104

is highly conserved with a score of 9 in ConSeq. Leu104

is buried inside an a helix and therefore does not interact

with the KIT receptor. The substitution Leu104Val is pre-

dicted to have a small, local effect on the structure given

that valine is predicted not to be exactly at the same posi-

tion as leucine (Figures S6C and S6D). Although Leu104 is

buried in the protein, neighboring residues can contact the

KIT receptor. Therefore, a small effect on the position of

these contacting residues is expected, but because the con-

tact surfaces of KITLG and the KIT receptor aremuch larger,

the interaction is not predicted to be severely impaired by

the Leu104Val substitution (Figures S6C and S6D).

KITLG encodes two KITLG isoforms, a transmembrane

isoform and a soluble isoform, through alternative splicing

and proteolytic processing, respectively (Figure 4D). In

mice, it appears that soluble KITLG plays a role in melano-

cyte migration and/or early survival and that transmem-

brane KITLG plays a role in melanocyte survival at or

close to the destination.26,37 All three KITLG mutations

identified in this study affect both KITLG isoforms

(Figure 4D).
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Figure 5. Effect of KITLG Mutations on
Subcellular Localization and Excretion of
the Transmembrane and Soluble KITLG
Isoforms, Respectively
(A) WGA staining of NIH 3T3 cells trans-
fected with constructs encoding the FLAG-
tagged wild-type, p.His67_Cys68delinsArg,
and p.Leu104Val transmembrane isoform
of KITLG. Cells were incubated with anti-
FLAGantibodies andAlexa-488-conjugated
goat anti-mouse (left column), and WGA
Texas Red-X is visualized in the middle col-
umn. In the right column, the signals of the
left and middle columns are merged. Co-
localization of WGA with wild-type and
p.Leu104Val KITLG was observed at the
cell membrane but not with p.His67_
Cys68delinsArg KITLG. WGA (red) and
KITLG (green) fluorescence intensity pro-
files were plotted as a function of distance
with ImageJ software. Scale bar represents
25 mm.
(B) The amount of soluble p.Leu104Val
KITLG is significantly reduced (p < 10�3,
Student’s t test) in the medium of trans-
fected NIH 3T3 cells as measured by ELISA.
No soluble KITLG was detected for the
p.His67_CysdelinsArg and p.Ser96Ter
mutations. Data are means 5 SD of four
independent experiments. Abbreviation is
as follows: WT, wild-type.
KITLG Variants Affect Protein Localization and/or

Secretion

We studied the effect of the p.His67_Cys68delinsArg and

p.Leu104Val variants on subcellular localization of trans-

membrane KITLG. NIH 3T3 cells were transiently trans-

fected with a set of plasmids to express the FLAG-tagged

wild-type or variant human transmembrane KITLG

(Figure 5A). The levels of wild-type and aberrant variants

of KITLG were verified by western blot analysis

(Figure S7). We addressed localization of KITLG at the

cell membrane by labeling the membrane with wheat

germ agglutinin (WGA), a member of the lectin family,

which binds to N-acetyl-D-glucosamine and sialic acid

residues on the surface of cells. Both FLAG-tagged wild-

type and p.Leu104Val KITLG were detected in the

cytoplasm and at the cell membrane, as well as in lamel-

lipodia and filipodia (Figure 5A). In contrast, p.His67_

Cys68delinsArg KITLG staining did not overlap with the

WGA labeling (Figure 5A). This indicates that the trans-

membrane p.His67_Cys68delinsArg KITLG fails to reach

the cell membrane and therefore will not, or only to a
The American Journal of Human Gen
very limited extent in comparison

to controls, be integrated in the cell

membrane, which supports func-

tional consequences of the mutation

and the pathogenic effect of this

variant.

As a next step, we investigated

whether the p.His67_Cys68delinsArg,
p.Leu104Val, and p.Ser96Ter variants affect proteolytic pro-

cessing and subsequent secretion of soluble KITLG. After

expression of wild-type and variant soluble KITLG in NIH

3T3 cells, secreted KITLG was measured by ELISA of the

growthmedium.Theamountof solublep.Leu104ValKITLG

was significantly reduced as compared to that of wild-type

soluble KITLG, whereas no p.His67_Cys68delinsArg and

p.Ser96Ter soluble KITLG could be detected (Figure 5B).

These findings support a pathogenic effect of all three

KITLG variants.

Because KITLG can be detected in human blood,34

we assessed by western blot analysis whether the levels

of KITLG were significantly reduced in peripheral

blood samples of affected individuals with the

c.286_303delinsT, c.200_202del, and c.310C>G muta-

tions as compared to levels in control individuals. No

clear differences were observed (Figure S8). Moreover,

the truncated protein encoded by the c.286_303delinsT

KITLG allele was not detected. This suggests that either

the truncated protein is not stable and/or that the tran-

script is degraded by nonsense-mediated decay (NMD).
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Because the truncating variant is in exon 4, not in the last

or penultimate exon, the transcript is predicted to be sub-

ject to NMD.38
Kitl Expression in the Mouse Cochlea

Because expression of KITLG or Kitl in cochlear tissue was

not demonstrated previously, we assessed transcription of

Kitl in mouse cochlea by RT-PCR, employing cDNA derived

from RNA of P2 and P28 mice as templates. Two amplifica-

tion products were obtained that corresponded to Kitl

transcripts with and without exon 6. Moreover, qPCR

demonstrated that the relative levels of both Kitl alterna-

tive transcripts were higher at postnatal day 28 (P28)

than at P2 (Figure S9). Although blood in cochlear vessels

might have contributed to the detected Kitl transcripts,

our data suggest that Kitl functions postnatally in the

mouse inner ear.
Discussion

Here, we present variant alleles of KITLG, alternatively

called SCF (stem cell factor) or MGF (mast cell growth

factor), and provide evidence that these disease-associ-

ated alleles underlie dominantly inherited NS-UHL/AHL

and WS2. A combined strategy of linkage analysis

and WES revealed a heterozygous truncating mutation,

c.286_303delinsT, in KITLG in a large Dutch family

(W09-1628) affected by NS-UHL/AHL. The HL is inherited

as a dominant trait with incomplete penetrance. Through

further testing of KITLG, two additional mutations were

identified in a small family affected by NS-UHL/AHL

and in a family affected by WS2. The HL in all three fam-

ilies with mutations in KITLG was congenital, stable, and

variable with regard to the affected ear as well as audio-

gram configuration and severity. Based on the variable

expression of KITLG mutations, bilateral symmetric HL

might be seen as a phenotypic outcome. However, no

potentially pathogenic variants were identified in WES

data of 231 individuals with bilateral and symmetric HL

(87 autosomal-dominant NS-HL and 144 isolated cases).

This indicates that KITLG mutations are not a frequent

cause of bilateral symmetric sensorineural HI.

KITLG-KIT signaling plays a role in proliferation, migra-

tion from the neural crest, and survival and differentiation

of hematopoietic precursor cells, primordial germ cells,

and melanoblasts.25–28,39 In mice, severe mutations in

Kitl (Sl locus) and Kit (W locus) are embryonic lethal

when homozygous, but viable when compound heterozy-

gous with less severe defects, as are semi-dominant muta-

tions.40–42 Mice homozygous for the semi-dominant

allelesWv of Kit and Sld of Kitl are viable and display similar

phenotypes, i.e. macrocytic anemia, sterility, absence of

coat pigmentation, and abnormal pigmentation of the

iris and of the stria vascularis in the inner ear.28,31,43–47

Absence or reduction of highly specialized melanocytes,

the intermediate cells, in the stria vascularis leads to no
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or reduced endocochlear potential (EP) and consequently

to HL. This EP is the driving force for the transduction of

sound into hair cells via influx of Kþ and other cat-

ions.48,49 Steel et al. (1992)47 demonstrated that in Sld/Sld

mice, both the survival and targeting of melanoblasts to

the developing inner ear is affected, but early melanoblast

differentiation and migration is not. At 11 days of gesta-

tion, lower numbers of melanoblasts could be detected

near the otic vesicle in mutant animals than in control

animals, and these numbers further decreased during

development.26,47

In most of the studied inner ears of 6-day-old Wv/Wv

mice, no melanocytes could be detected in the stria vascu-

laris, which explains why no EP was measured. However,

the penetrance of this phenotype was incomplete, as evi-

denced by the fact that, in some ears, the EP was nearly

normal and intermediate cells were present, as in control

mice.28 This variability in severity of the hearing impair-

ment and affected ear is reminiscent of the phenotype in

the presented families with KITLG mutations. In Wv/Wv

mice, this variability in inner-ear phenotype was found

to reflect the number of melanocytes present and how

far they migrated along each cochlea.28 Also, a stria vascu-

laris with structural anomalies was found to be capable of

maintaining a normal EP,50 which could contribute to

the variable expressivity of the KITLG mutations in fam-

ilies W09-1628 and 12-01744. Findings on secondary

hair-cell degeneration have been reported in Kit and Kitl

mutant mice compound heterozygous for a null allele

and an allele with the less severe mutations, Wv and Sld,

respectively.27,51 We have no indications of secondary

hair-cell loss in the presented families because the HL

was found or reported to be stable. However, we cannot

exclude progressive degeneration of hair cells in the prena-

tal stage, especially in those individuals with severe to pro-

found HL in one ear.

In family W09-1628, vestibular testing in six individuals

with the mutation and with HL revealed abnormal, vestib-

ular responses in four of the subjects. However, these sub-

jects did not report vestibular symptoms during history

taking. The only individual who complained about bal-

ance problems was not tested on vestibular function

because of her high age. In conclusion, it seems that vestib-

ular dysfunction could be part of the inner-ear phenotype

associated with KITLG mutations. However, this seems to

lead to subclinical abnormal function, given that the

majority of individuals with the mutation did not report

vestibular symptoms, which suggests sufficient compensa-

tory mechanisms.

In families W09-1628 and S1489, there are no indica-

tions for phenotypes of the tissues that are affected in

the Kit and Kitlmutant mice, i.e. hematopoietic tissues, go-

nads, eye, hair, and skin, other than the inner ear. This sug-

gests dominance of the wild-type KITLG allele over the

mutant allele in those tissues. For the KITLG mutation

in family 12-01744, this does not hold true for the iris

and skin.
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Interestingly, activation of KITLG mutations and

variants in regulatory sequences of KITLG affects

pigmentation of skin and hair. First, missense mutations

in KITLG are causative for familial progressive 2 hyper-

pigmentation and/or hypopigmentation syndromes

(Figure 4D) (MIM: 145250). Mutations underlying these

syndromes are demonstrated (c.107A>G, p.Asn36Ser

[GenBank: NM_003994.5 and NM_000899.4]) or predicted

(c.107A>G, p.Val33Ala; and c.100A>C, p.Thr34Pro) to

have an activating effect because all three are in the

conserved ValThrAsnAsn motif.52,53 Protein modeling

suggests that mutations in this domain might affect the

affinity of KITLG for KIT.52 Second, SNPs in KITLG regula-

tory regions are associated with skin and hair pigmenta-

tion (rs642742 and rs12821256 [MIM: 611664]).31 These

data, together with the facts that KIT signaling regulates

MITF function13,54,55 and that genes associated with hypo-

pigmentation-deafness disorders function in the KIT-MITF

pathway,8,56 pinpointed KITLG as a candidate gene for

WS2. Indeed, we have identified a missense mutation in

KITLG to be associated with WS2 in family 12-01744.

The HL phenotype in this family is similar to that in fam-

ilies W09-1628 and S1489. The pigmentation abnormal-

ities of skin and iris in this WS2-affected family suggest

that the p.Leu104Val substitution has a more severe effect

in these tissues than the p.Ser96Ter and the p.His67_

Cys68delinsArg mutations do; the mechanism behind

this greater severity might be a gain-of-function or domi-

nant-negative effect of either the transmembrane isoform

of p.Leu104Val KITLG, the soluble isoform, or both. To

activate KIT, dimerization occurs for both isoforms.57,58

The p.Ser96Ter and the p.His67_Cys68delinsArg defects

are likely to have a loss-of-function effect because

the transmembrane isoform of p.His67_Cys68delinsArg

KITLG is not detectably integrated into the membrane;

this will also be the case for p.Ser96Ter KITLG because it

lacks the transmembrane domain. Also, for both defects,

the soluble isoform could not be detected in ELISA of the

medium of cultured cells.

Our findings add KITLG to the family of genes associated

with pigmentation-deafness disorders, i.e., KIT, PAX3

(MIM: 606597), SOX10 (MIM: 602229), EDN3 (MIM:

131242), EDNRB (MIM: 131244), and MITF. As presented

here for KITLG, the phenotypic variability of mutations

in several of these hypopigmentation-deafness genes

depends on whether the effect of the mutation is loss-of-

function, presumably dominant-negative, dominant-

negative, or activating. Loss-of-function mutations in

MITF, for example, are dominant and cause WS2. Muta-

tions in MITF that underlie Tietz syndrome are assumed

to have a dominant-negative effect. Tietz syndrome

(MIM: 103500) is more severe than WS2 and is character-

ized by fully penetrant bilateral, congenital, and profound

HL, fair skin, and blond hair.59

In conclusion, we demonstrate that allelic mutations

in KITLG can underlie different clinical conditions,

and these findings extend the set of genes known to be
The American
associated with hypopigmentation-deafness disorders

given that KITLG is now shown to be associated with

WS2 and with NS-UHL/AHL. Analogous to the pheno-

type in mice, the severity of the human phenotype is

likely to reflect the number of melanocytes that have

reached the inner ear and skin and/or survived in these

tissues.
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Alamut Visual, http://www.interactive-biosoftware.com/alamut-
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CIBERER Exome Server, http://bioinfo.cipf.es/apps-beta/exome-

server/beta/

ConSeq Server, http://conseq.tau.ac.il/
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software/mercury
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Mouse Genome Informatics, https://www.jax.org/research-and-

faculty/tools/hereditary-hearing-impairment/hearing-mice-table-

two

MutationTaster, http://www.mutationtaster.org/

NHLBI Exome Sequencing Project (ESP) Exome Variant Server,

http://evs.gs.washington.edu/EVS/

OMIM, http://www.omim.org/

OMIM Phenotypic Series, http://www.omim.org/phenotypic

SeriesTitle/all

PLINK, http://pngu.mgh.harvard.edu/~purcell/plink/

PolyPhen-2, http://genetics.bwh.harvard.edu/pph2/

SIFT, http://sift.jcvi.org/

Superlink Online SNP 1.1, http://cbl-hap.cs.technion.ac.il/

superlink-snp/

UCSC Genome Browser, http://genome.ucsc.edu

WHAT IF Twinset, http://swift.cmbi.ru.nl/whatif/

Yasara, http://www.yasara.org/
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