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Abstract. Concurrent systems viewed as partially ordered sets of states are considered. A property 
of system states is called inevitable, if the system will eventually reach a state with this property. 
This notion is discussed within the partial order framework. 

Introduction 

Sequences of system states are a commonly used tool in analysing the behaviour 
of discrete systems. Such a sequence is said to be admissible, if each but the first 
state in the sequence results from its predecessor as a result of a system action; and 
is said to be nonextendable, if it starts with an initial state of the system and is either 
infinite, or its lrst element is a state to which no system action is applicable. In the 
theory of sequential systems admissible and nonextendable sequences of system 
states (we will call them execution sequences) represent processes generated by 
such systems; and the set of all processes generated by a system defines fully its 
behaviour. 

Execution sequences are also used to analyse concurrent systems. In this case the 
situation becomes more complex, since admissible and infinite sequences may not 
describe the full execution of a system. Therefore, in such a case, a third requirement 
is added to the previous two: to describe a full process generated by a concurrent 
system a state sequence must not only be a missible and nonextendable, but also 
fair. Roughly speaki; a,, cf a sequence is fair, if it does not ignore any component of 
the system. For a precise formul 

of Lehmann et al. [6], 
ueli [ 181; here, only a sketch of the main ideas concerning this issue will 

e fairness assumption is needed in order to 
during the run of a system. Intuitively, we call a property inevitable, if sooner CM= 
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later the system will be in a state meeting this property. TO formally prove the 
inevitability of a property it seems to be natural to consider execution sequences 
and to check whether each of them contains a state with the property in question; 
if so, the property is inevitable, otherwise it is not. But, clearly, each of the considered 
execution sequences must represent the full behaviour of the system, i.e. they must 
be fair. If the fairness assumption were too weak, e.g. requiring only the nonextenda- 
bility of sequences, some intuitively inevitable properties could not be proved; if it 
were too strong, then it would allow the inevitability of some doubtful properties 
to be proved. The weakest fairness assumption, known to the authors, is that of 

“justice” [6]. 
The idea of defining processes of concurrent systems by fair execution sequences, 

as discussed above, will be referred to as the “sequential approach”. In this paper 
an attempt is made to look at inevitability from the point of view of the so-called 
“partial order semantics”, where processes are represented by partially ordered sets 
of states rather than sequences of states. In such an approach an assumption which 
guarantees partially ordered sets to represent the full behaviour of the system is 
also needed. In this “partial order approach” the difference between nondeterminism 
and concurrency is made explicit, in contrast to the sequential approach in which 
this difference disappears. Due to this fact, in a partial order approach one could 
distinguish two types of fairness assumptions: one, which guarantees that no system 
component is ignored in a process run (“concurrency fairness”), and another 
concerning decisions made during the system action (“conflict resolution fairness”). 
Since the first type of fairness seems to be the weakest possible, we assume every 
process to have this type of fairness; the second is ignored here, since we do not 
want to impose any restrictions on the way the conflicts are resolved. 

The present paper is certainly not the first dealing with fairness in the partial 
order framework; in [2] problems of transition fairness and in [ 123 also of marking 
fairness in Petri nets have been considered. In the present approach, however, no 
particular formalism is assumed, nor any kind of events is distinguished with respect 
to fairness; it is the inevitability of arbitary properties (sets of states) which is 
discussed here. 

The paper is organized as follows. First, a definition of concurrent systems is 
given; next, the notion of processes is introduced; such processes are intended to 
describe the full system behaviour, i.e., they havtf “concurrency fairness”. It gives 
a basis for defining inevitability; this definition relies on the notion of process 
observations. Next, the notion of observable system is defined and some properties 
of such systems are considered. Later, a definition of inevitability is given and finally 
this notion is considered in so-called diamond-discrete concurrent systems. It is not 
the intention of this work to develop a temporal logic based on the notion of 
inevitability defined here; the aim is only to offer a possible model for such a logic. 

erefore, all tools used here are set-theoretical. 
Several papers have influenced the present one: those mentioned above, the paper 

of Nielsen et al. [ 131 and of Winkowski [21]. The reader will easily find a relationship 
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between them and the present paper. It should be stressed that the need for the 
partial order approach for describing the behaviour of nonsequential systems was 
pointed out very early on by Petri [17]. 

This paper is b.:sed on [IO]; some results in Sections 6 and 7 have already appeared 
in [14] and 1861. 

1. Basic notions 

Standard mathematical notation is used here. The set of all non-negative integers 
will be denoted by o. A relation will always be understood to be a binary relation. 
For any relation + in a set S by +* we shall denote its transitive and reflexive 
closure (in S). Sometimes we shall write xRy for (x, y) E R. Each reflexive, transitive 
and antisymmetric relation in S is an ordering relation in S. A pair (S, s), where S 
is a set and G is an ordering relation in S, is a parkzlly ordered set, or a poset for 
short. A poset (S, s) is discrete, if there exists a nontransitive and irreflexive relation 
+ in S such that s =-* (the successor relation for s: it is easy to show that the 
successor relation for a poset is unique, if it exists). In discrete poset, if x + y, then 
y is a successor of x and x is a predecessor of y. Throughout the whole paper, posets 
in examples are discrete. A poset (S’, s’) is a subposet of a poset (S, s), if 

SE s, s’= s A (S’x S’). 

Thus, any subset of S uniquely determines a subposet of (S, s). As usual, we shall 
write S instead of (S, s) if it does not lead to confusion. If S and S’ are posets, S’ 
is a subposet of S, we shall write S’ r S. Clearly, the family of all subposets of a 
poset is (partially) ordered by E. Let a E S; then TO and Ja are defined by 

Operations t, and & are extended to subposets of S by defining for each PC, S: 

From the transitivity of G it follows that IT = t(tP) and &P = J(@), and from its 

reflexivity P c f P and P c_ &I?, Hence, in particular, tS = &S = S and t0 = 40 = 0. TO 

avoid a number of parentheses we assume t and 4 to bind stronger than other 
set-theoretical operations, e.g. t P’ n P” denotes (t ’ * P’,)* For each 
(r E S the set JU (tcr) is called a backward (firward) cone in S; the union Jgu j’a 
is a cone in S determined by 0. If C is a cone in S determined by a, then (S - C) u {a) 

is an anticone determined by a. Let P’, be subposets of S; ’ is said to be cofinal 

(coinitial) with P”, if &P’ = 4 P” (t P’ = “, respectively). Two elements a’, (+I’ of a 

poset (S, G) are comparable, if either u’s o-” or a” s a’, a ~~co~p~rQbie ot 
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A poset S is linearly ordered, if each two of its lements are comparable. Each 
linearly ordered subposet of a poset S is called a chain in S. A maximal chain in 
a poset S is called a line in S. A subposet P of S is said to be backward closed, if 
J, P = l? A poset is directed, if together with any two elements a’, ~8’ it contains an 
element (r such that U’S u and a “s a, and branching otherwise. A subset P of S 

is bounded by a in S, if CT ‘s a for every a’ E P; P is bounded, if it is bounded by 
an element of S and unbounded otherwise. _A poset S is backwardfinite, if for any 
c E S the set Ja is finite. 

The following fact is known as the Zom-Kuratowski Lemma [22]. 

Proposition 1.1. If every chain in a pose? (S, s) is bounded, then for each &, in S 
there is a maximal element 6 of S with &, G 6. 

Proof. Can be found e.g. in [S]. 0 

A family of sets is monotonically additive, if it contains the union of any of its 
subfamilies linearly ordered by inclusion. We shall use the following earlier version 
of the Zom-Kuratowski Lemma 143. 

Proposition 1.2. Any member of a monotonically additive family can be extended to 
a maximal member of this family. 

roof. Take in the Zorn-Kuratowski Lemma a monotonically additive family of 
sets ordered by inclusion and observe that any subfamily is bounded by its union. Cl 

2. Concurrent systems 

A concurrent system will be viewed here as the set of all possible histories of its 
activity. As in [13], by history we understand hare a set of events which, together 
with an event, contains all events prior to it. Each such history determines uniquely 
a (global) state of the system, and any system state can be supplied with the whole 
of its history; thus, we shall identify histories with system states. The set of such 
states is ordered by inclusion: earlier states a e contained in later ones. It is clear 
that no state can be repeated during a system run (histories can only grow) nor can 
its two different executions lead to the same state (a history contains the whole 
past). In contrast to the sequential case, in nonsequential processes the inclusion 
ordering of histories is only partial (some initial parts of the same history can be 
noncomparable by inclusion). 

Simple examples states are: left-closed subsets of an elementary event structure 
[l3], processes in a tri net [I91 from the initial slice to another slice, prefixes of 
string-vectors [20], and those of &races [9, 111. 
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Each of the concepts mentioned above leads to a suitable mathematical model 
of concurrent systems. Since we do not intend to specify any of these models but 
we are going to keep our framework as general as possible, we simply view such 
systems as partially ordered sets of states. It turns out that even such a general 
approach allows us to formulate and discuss our questions. 

Definition 2.1. By a concurrent system (or simply, a system), abbreviated as cs, we 
shall understand here any poset (S, s), where S is called the set of states of the 
system, and G the dominating relation of the system. We shall say that a system S 
is discrete if S is a discrete poset. If 0’~ a’, we say that a” dominates CT’, or that 
o’ is dominated by u’. This notion is extended to sets of states: we say that a subset 
P of S is dominated by a subset Q of S, if for each state Q in P there is a state in 
Q dominating a. Two states a’, a’ of S are said to be consistent, if there is a state 
a in S such that a’ G a, U’S u (there is a state dominating both of them), and 
inconsistent otherwise; S is sequential, if any two of its consistent states are compar- 
able; it is conjkt-free9 if any two of its states are consistent (i.e., S is directed). 

If a state u’ is dominated by another state a’, it means that there is a run of the 
system, containing both these states, in which u’ comes up later than u’. Thus, in 
our intended interpretation, two states are comparable, if and only if they appear 
in the same execution of the system and the history of one of them is an initial part 
of the history of the other. If u’ is incomparable with u’, two cases are possible: 
either both of them are dominated by a common state u (then they are consistent), 
or such a common state does not exist (then they are inconsistent). In the first case 
u’ and a” are two states of the same run of the system, but they result in some 
concurrent actions of the system; they identify different pieces of the same history, 
exhibited later by u. In the second case a’ and u’ are states identifying pieces of 
two different histories, resulting in a choice (a conflict resolution) made earlier 
during the system action. 

Example 2.1. Consider a concurrent system in which first an action a is executed, 
and next two actions, b and c, are performed concurrently; after doing it, the system 
terminates. The following states of the system are possible: [&]-the initial state, 
[al-after performing action a, [a&J-after performing action a and b, [ ac]-after 
a and c, and finally [abc]-aft r performing a:! actions a, b, c. This system can be 
defined as the cs (S, +*), where 

S = R.4, [al, I30 bcl, bW 

and. where + is the relation de ned by the dlaagrzm in Fig. l(a); (in this and the 
following figures the convention is to represent x-, 41 by drawing a line from x to 

placing x above y). States [ab] an 
(both of them are dominated by [ah]). The wMe poset represents a single run of 
the system; an observer of the system can see the sequence [E], [a], [ab], [ah]; 
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(a) 

[El 
I 

[al 
/ \ 

WI bcl 

(b) 

Fig. 1. 

another observer, however, can see the same run as the sequence [e], [a], [UC], 
[abc] and both observations are equally valid. 

The reader acquainted with traces [ 1 l] can easily see that states here are construc- 
ted from prefixes of all traces generated by the system. The system is conflict-free, 
since its only two incomparable states [ab] and [ ac] are consistent. 

Example 2.2. Consider now the system in which, first, action Q is performed yielding 
a state [a], and next either action 6 or action c can be executed, giving [ ab] or 
[ ac], respectively, and no futikcr action is performed. This system can be viewed 
as cs (S, +*), whet<:! 

s = {M, M, WI, Cac3) 

and where ---) is detined by the diagram in Fig. l(b). In this case two different runs 
are possible in the systern. States [ab] and [UC] are incomparable and inconsistent- 
there is no common state dominating them. Any observer will now notice the same 
sequence, namely [e], [aI9 [ab] or [E], [a], [ac], depending on which continuation 
of state [a] will be chosen by the system. This system is sequential, since any two 
of its consistent states are comparable. 

mcesse~ and their properties 

Let S = (S, 6) be a cs: any maximal directed subposet of S is called 
a process in S; the family of all processes in S is called the behaviour of S. 

In view of the explanations given above, the interpretation of this notion is clear: 
each process contains only states which can appear in a single execution of the 
system (because of the directedness all states of a process are consistent, hence they 
define pieces oft aximality, processes in a system correspond 
to its full executions (i.e. they display “concurrency fairness”). 
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Example 3.1. In Fig. l(a), {[E], [a], [UC]} is directed but not maximal, hence it is 
not a process; in system terms, the concurrent component performing 6 is ignored. 

ig. I(b) the same set is a process. 

Example 3.2. The following example is intended to show how the above notions 
are related to typical concurrent systems. As a sample system let us take the 
well-known system with two active components, SENDER and RECEIVER, com- 
municating with each other by an unbounde BUFFER working according to the 
first-in-first-out principle. 

SENDER sends successive messages to the BUFFER until it (possibly) decides to 
terminate its activity: then it sends a closing message and halts. RECEIVER takes 
messages from the BUFFER until it (possibly) gets the closing message; then it halts. 
SENDER and RECEIVER act independently of each other; if, however, the BUFFER 

is empty, RECEIVER mcst wait for a message from SENDER. 

Thus, three actions are being performed bjr the system: sending messages, receiving 
them, and terminating (the SENDER). A state of the system is then completely defined 
by knowing how many actions of each type have already been performed. Such 
information can be represented by a triple (i, j, k) of nonnegative integers indicating 
how many *imes the sending action (the integer i), the receiving zction (the integer 
j), and the terminating action (the integer k) have already been executed by the 
system (however, in the general case, such information may not be sufficient; then 
tuples of individual histories rather than tuples of numbers have to re 
Clearly, k G 1 and j - ‘< i (the number of receiving actions cannot exceed that of 
sending actions). Therefore, our specification turns into a system SBR = (S, +*), with 

S=((i, j, k)Ijs i, ks l}, 

+=R,vR2vR3. 

where 

(sending), 

R2=(((i, j, k), (i, j+l, k))(j< i, ks 1) (receiving), 

&=W,j,OL(kj, 1))lj4 (terminating). 

By its very definilyion SBR is discrete. The actions in R, 

messages, those ic R2 to receiving messages, and those in 
sending messages. A graphical form of the system described above is presented in 
Fig. 2. In this figure lines directed downwards-right correspond to 1’ i*e* to =nding 

ions, those directed downwards-left to 
ected straight down to R3, 

for “(i, j, k)“. 
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Fig. 2. (/ = receive, \ = send, I= terminate). 

In this system states (I, I, Q), (2,O,O) are incomparable, but consistent: states 
(2,1, l), (3,1,0) are inconsistent; subsets 

Q=W, WI si,j=k=O}, 

P, ={(i,j, k)lOsja i, k=O}, 

(n E o), are directed subsets. Q is not a run of the system. In Q only SENDER is 
active and its sending activity is endless; since RECEIVER is ignored, there is no 
concurrency fairness. P, and P, are runs of the system. In P, both components act 
forever. In P, SENDER halts after n steps and RECEIVER consumes all messages 
having been sent by SENDER. Later we shall prove formally that P, and P, are (all) 
processes of SBR. 

Let (S, s) be a system fixed from now on; all directed subsets and processes 
discussed below are assumed to be in S, and in all introduced notions S is assumed 
to be known. 

Let us mention some general facts about processes. First of all, from the definition 
of a process it follows that for any two directed subsets P’ and P” with P’s P”, if 
P’ is a process, then so is P” (in fact, P’ = P”); and thus, if P” is not a process, then 
neither is P’. Secondly, it follows from Proposition 1.2 that each directed subposet 
can be extended to a process because the family of all directed subposets is 
monotonically additive. This implies that the behaviour of a system is never empty. 
It also implies that each state in S is in a process in S. Thirdly, it should be clear 
that if S is conflict-free, then the only nrocess generated by S is S itself. If S is a 
sequential system, then every directed , .-_ is a chain, and hence every process is a 

urthly, each process is backward close ; indeed, let P be a process and let 
a’s CE P: then 

a proposition useful for proving directed subposcts to be processes. 
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state is consistent with a set o t is consistent with ach state of this set. 
Clearly, each state of a direct is consistent with 

directed subset of S containing all states consistent with itself is a 

process. 

Proof. Let P be a directed subset containing all states consistent with P and let 
be another directed subset such that P s Q. Let u E Q; then u is consistent with Q, 
hence also with P; by assumption, a E R Thus, Q s P, hence P = Q. It means that 
P is a process. Cl 

In other words, a directed subset P of S is a process, if for any state a not in P 
there is a state in P inconsistent with V. 

The converse of the above proposition is not true. In the following example we 
have a state consistent with all states of a process but not belonging to this process. 

Example 3.3. Let C = (0, +*) be a cs where 

+={(3n,3n+2)1 nE~}u{(3n+1,3n+2))nEw} 

u{(3n,3n+3)lnCo}u{(3n+193n+4)1nEw}. 

Then P = {0,3,6,. . .} and Q = (1,4,7,. l .) are two maximal directed subposets of 
C, i.e. 
Q are 

processes in C, each state of P is consistent with each state of Q9 but P and 

0 I\ A 
3 2 I\ /t 

6 5 I\ 4 
. g . 

Fig. 3. 

This ends our list of general properties of processes. 
As an important special case we will now consider terminating 

define termination by analogy with the case of sequential syste 
sequence terminates if it reaches a state from which no further action can be 
performed. 
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efinition 3.2. 
terminating, if 

A state is terminal, 

it contains a terminal 
if it is 
state. 

a maximal state of ; a subposet is 

It is easy to see that for each terminating subposet P of S which is directed and 
backward closed, there exists a terminal state u such that P = $0 (in fact, if 0 E P 
is terminal, then, by directedness of P, CT must be the greatest state of P, i.e., P G iv; 
since, moreover, P is backward closed, also &cr c P). Hence each terminating process 
is of the form Jcr with a terminal. This also holds in the other direction: for every 
terminal state u, Jcr is a process. Indeed, let 7 be a state not in Ja; then 7 must be 
inconsistent with v since otherwise a would be not terminal. Thus, &a contains all 
states consistent with it an by Proposition 3.1 it is a process. This characterizes 
terminating processes. Another characterization (of which the easy proof is left to 
the reader) is: a process is terminating if and only if it is bounded. 

ExampIe 3.4. We prove that the family of all processes generated by the SBR system 
defined in Example 3.2 is the family 

where 

P,=J(n,n,l) fornew, 

P, ={(i,j,O)JjC ho}. 

These processes are presented in graphical form (using the same conventions as 
previously) in Fig. 4. 

First we prove that each member of the family B is a process. Each P, (n E o) 

is a process since P, = &(n, n, 1) and (n, n, 1) is a terminal state of SBR. To prove 
it for P, take an arbitrary state not in P,, say (i, j, 1); it is clearly inconsistent with 
(i + 1, j, 0) belonging to P,, hence P, is a proces , by Proposition 3.1. Now we prove 
that the family is the family of all processes generated by SER. Let P be an 
arbitrary direete If P contains a state (i, j, 1) then PE Pi because 
(i, j, 1) is inconsistent wi every state not in Pi ; otherwise P E P,. This proves that 
each directed subset in S is contained in some member of B, i.e. that B is the 

. observe that the directed set Q, Q = {(i, 0,O) 1 i E w}, 
is not a process, since it is strictly contained in P,. 

Thus, turning back to the original interpretation of SBR, we can say that in each 
process RECEIVER acts as long as possible. 

e behaviour of the system defined in xample 3.3 consists of the 

,/,(3n+2) (nEW,ter inating processes), 

{0,3,6,. . .}, and (1, , . . .} (unbounded processes). 
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Fig. 4. 

We end this section by a characterization of processes in sequential systems. It 
shows that processes in sequential systems are execution sequences satisfying the 
usual requirements, as discussed in the introduction. 

Proposition 3.2. Let S be a sequential s,astem, and P G S. P is a process gand only if 
P is a backward closed chain which i. c p ither terminating or unbounded. 

roof. We have already seen that every process is backward closed, every directed 
set in a sequential system is a chain, and a process ir terminating if and only if it 
is bounded. Now assume that P is a backward closed ch 
that P is unbounded. Let Q be a dire 
unbounded, there exists TE P such t 
chain, CT s r. ence Q E P, because 

ence is a process. 
before that P is of the form ,/,a with gr terminal. Thus, as also shown before, since 
G is terminal, P is a process. 0 
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This explains why in the anal-rsis of sequential systems there is no need for a 
special fairness assumption: nonentendability is sufficient. 

Note that Proposition 3.2 does not hold for nonsequential systems. In example 
3.2, the set Q is a backward closed unbounded chain but we have proved that Q 
is not a process. 

ines and observations 

The set of states of a process consists of all states that can be noticed during a 
run of a system. The presence of a state in a process indicates only the possibility 
(but not the necessity) of its occurrence in a single run of the system. Any tvw 
incomparable states of a process are equally likely to be noticed, but none of them 
will necessarily be noticed (actually, there is no observation of a system run 
containing both of them together). To infer some invariant properties of a process 
(“safety” properties) it is quite sufficient to consider all possible process states; to 
prove some eventualities (“liveness” properties) we must rely on the necessity of 
the appearance of some states in lines, i.e. we must be sure that each observer of 
the process, sooner or later, will notice a state with a required property. To prove 
that a property will eventually ho!d in a process, we must show that in any (reasonably 
defined) process observation there is a state meeting the property. Therefore, to 
speak about eventual properties of processes we must refer to observations. A 
definition of inevitable properties of processes will be given in Section 6; in this 
and the next section we define the notion of an observation and discuss some of 
its properties. 

In the sequential approach lines are of the main interest and considered as the 
onP representatives of processes generated by concurrent systems. However, as has 
already been mentioned above, in such an approach the distinction between lines 
in the same process and those of different processes disappears. In the partial order 
approach lines of the system behaviour are also considered; but since they are 
related to each process separately, and only the set of all processes defines the 
system behaviour, this difference is preserved and gives rise to another setup. In 
this approach, the behaviour of a system is not a set of lines, as in the sequential 
approach, but a set of processes containing sets of lines (each process contains at 
least one line). 

n important notion connected with lines is that of domination. In general, lines 
in a process, being its linear subseis, do not contain all its states. However, remember- 

that the history of a state u contains (as prefixes) the histories of all states 
by a, the amount of information about a process supplied 

ends upor how big a set of process states is dominated by this line. 
lity, lines are not co we can compare their 

roperties and s formation” than U, if 
dominates more process states than U, i.e. if J, U c & V, or equivalently, if U G & K 
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Clearly, a line dominating all states of f, i.e. cofinal with P, is a line with “maximal 
amount of information”. The above intuitions lead to the following definition. 

A line V of a process P is said to be an observation of 

Observations give full information about processes; since each state identifies its 
history, states of an observation identify the total history of the observed process. 

Example 4.1. Consider the SBR system defined in Example 3.2. The subset Q defined 
in this example is a line of P, ; it is not an observation of P,, since it dominates 
only itself, leaving all states (i, j, 0) with j > 0 undominated. On the other hand, the 
chain V: V = {(i, j, 0) 1 j s i s j + l}, is an example of an observation of p0, since 

(i) it is a line and 
(ii) each state (n, m, 0) in P, is dominated by a state in V, namely by (n, n, 0). 

Definition 4.2. A process is observable, if there exists an observation of it, and 
unobservable otherwise; a system is observable, if every process in it is observable 
and unobservable otherwise. 

Proposition .l. Each chain in a process P can be extended to a line in P. 

Proof. By Proposition 1.2, since the family of all chains in a process is monotonically 
additive. !7 

Theorem 4.1. Each bounded chain in an obsemable process P can be extended to an 
observation of P. 

Proof. If P is empty, the assertion trivially holds; otherwise, let V be an observation 
of P and let L be a chain bounded by a (i.e. L c Jcr) for some (r E 
and T = Lu U; clearly, T is a chain in P; we shall show that T dominates 
6 be a state of ; by directedness of P, there is T E P dominating 5 and a. Since 
is an observation of P, there is 7% V dominatin 7. Since B< 7s T’, 
6 s T s T’, 7’ dominates 6. This means that P is final with U, hence 
with LU U. By extending LU U to a maximal chain (Propositi 
required observation, since extensions preserve cofinality. 0 

ere is no way, i 

a given nntial segme an observation or not. 
character of the notion of observation. 
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Corollary. For each state in an observable process P there is an observation of P 
containing this state. 

At the end of this section we give an example of an unobservable system. 

(Marek [S]). Let RN be the system with all finite subsets of real numbers 
as states and inclusion as dominating relation. RN is obviously directed, since the 
union of any two finite sets contains both of them and is finite. Thus, RN is 
conflict-free and is its own (only) process. Any chain in RN can dominate at most 
a countable family of states, since it consists of a countable number of finite sets 
only; thus, it cannot dominate the whole set RN, since RN is not countable. 
Therefore, RN is not cofinal with any of its lines, i.e. there is no observation of RN. 

Observe that RN is discrete (!) and backward finite. 

Properties of unobservable systems are interesting on their own and will be 
discussed separately elsewhere. Here, we concentrate only on observable systems. 
Some important classes of such systems will be discussed in the next section. 

efinition 5.1. A system is cone-countable, if each cone in S is countable. 

Note that the set of all states in a cone-countable system may be not countable; 
any countable system, however, is clearly cone-countable. 

sition 5.1. Each process in a cone-countable system is countable. 

Let S be a cone-countable system and let P be a process in S. if P is empty, 
the proof is completed. Let CT E P and P’ = TO, P” = 4 P’. Since S is cone-countable, 
j’~, &a are countable. Thus, P’ is countable, and so is P”, since the union of a 
countable family of countable sets is also countable. It remains to show that PC_ P”. 
Let o. E P; by directedness of P there is a’~ P such that aos u’, CT G 0’; hence 
a’~ P’ and, by definition, a0 E P’. It proves P G P”. Cl 

. Cone-countable systems are observable. 

e a process in a cone-countable system, Q be the set of states of P. 
is (the only) observation of ssume P to be not empty; 
is countable; let then 

( c&q ,..., o-“,... ) 
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be an enumeration of Q (i.e. Q = (0, 1 n E 0)). efine a sequence V= 
( TO,? 9 . . . . 7 ,,, . . .) inductively as follows: 

70 =a,: 

r,+l is a state in P dominating T,, and a,,, . 

Clearly, V is linearly ordered since T, G T,+~ for each n; moreover, V dominates P. 
Indeed, let a’~ P: then a’ = oi for some j, hence o’s q. Thus, each state of P is 
dominated by a state of V. Extending V to a line (Proposition 4.1) we get an 
observation of P. Iz1 

Note that an observable process can also admit lines which are not observations, 
as follows from Example 4.1. In the systems discussed in the rest of this section all 
lines of processes are observations, and hence they are observable (because by 
Proposition 4.1 each process contains at least one line). 

Definition 5.2. A system S is terminating iff all its processes are terminating. 

Proposition 5.2. Each line of a terminating process is an observation. 

Proof. Assume P to be terminating; hence there is a krminal state u such that 
P = 4~. Let V be a line in P; since V is maximal, u E V: hence a C_ 4 V. This proves 

Corollary. Terminating systems are observable. 

Definition 5.3. A system S is strongly synchronized, if for each state u E S there is 
at most a finite number of states incomparable and consistent with V. 

Example 5.1. All systems discussed above (except SBR and RN) are strongly 
synchronized. 

eorem 5.2. Each line in a process of a strongly synchronized system is an observation 
of that process. 

roof, Assume S to be strongly synchronized and let r” b process in S, V be a 

line of P, and u E P. We have to prove that a E 4 V. If em E 
aqsu~~s m g V 5%~~ V is a maximal linearly ordered subpose 
states in V not comparable with a. Since S is stro 
finite number of such states. Let a0 be the greatest of 
element of V, since then V 
a’ is a state domin 
a0 an 
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orollary. Strongly synchronized systems are observable. 

itio 3. Sequential systems are observable. 

oof. There are no consistent and incomparable states in sequential processes; 
hence, they are strongly synchronized. 0 

The (only) observation of a process gwera by a sequential system 
is the process itserf: 

roof. Let P be a process generated by a sequential system. Then P is a line in P 
dominating Pp hence it is an observation of P 0 

The above fact shows why in the sequential approach to concurrent syatems 
observations are used as representatives of processes: in sequential systems processes 
can be identified with their observations. 

nevitability 

In this section the notion of inevitability will be introduced and discussed. The 
difference between reachability and inevitability is that the first refers to a possibility, 
while the second refers to the necessity of reaching a state with a given property 
during the system run. Clearly, any inevitable property is reachable, but not the 
other way arou&. 

We define inevitability in observable systems making use of observations of its 
processes. Informally, a property is inevitable, if any sequential observer of the 
system run will notice, sooner or later, a state with this property, provided his 
observation, though sequential, contains (directly or indirectly) information about 
every state occurring in the system run (i.e., it is an observation as defined formally 
in Definition 4.1). 

The intuitions given above lead to the following formal definition. Let S be a 
fixed, nonempty, observable concurrent system and let a property mean a subset of 
S. Given two sets, we say that one of them intersects the second, if their intersection 
is nonempty. 

A property Q is inevitable in a process P of S, if any o5servation of 
and avoidable in P otherwise. A property is inevitable in S, if it is 

inevitable in eat recess of S and avoidable otherwise. 

m gives a necessary condition for inevitability in observable 
it states that if is inevitable, then either now it is or it 
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. If Q is inevitable in a process the11 PC $Quf 

Assume Q to be inevitable in R Let a E P. By the corollary to Theorem 
there is an observation V of P containing u. Since Q is inevitable in P, the 
6 c 3 n K Since V is a line, either us 6, or & 0, Since f~ Q, either u E 4 
~ETQ, i.e. a~&QutQ. 0 

The converse of this theorem does not hold, as fohows from the example below. 

6.1. Let Sl = (w, +*) with 

-={(2n,2n+1)1 nEw)u{(2n,2n+2)~n~w~ 

u{(2n+192n+3))nEw}, 

(Fig. 5) and let Q={1,4}. Then Sl is its only process, SE$Quj’Q, 
avoidable in Sl : {0,2,3,5,7, . . J is an observation of S1 not intersecting 

0 

I 1 
2 

1 \ t 

4 

1,: 

. 5 

. . I 

Fig. 5. 

Proposition .I. Any anticone is intersected by any line. 

roof. If a chain V does not intersect the anticone determined by a, then Vu {u} 
is a chain again; hence V is not maximal, i.e. it is not a line. Cl 

Any anticone is inevitable in S. 

For each u in a process P the forward cone TO- is inevita 

Informally: (;ny process state will be eventually in the past of this process. 

is an observation of tersects 

Note that anticones are inevitable in the whole system eorem 6.2) whereas 
forward cones not necessarily. In order to discuss more closely the notion of 
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inevitability, consider the following three conditions: 

CUP, 0): any line in P dominating P intersects 

C2( P, Q): any line in P undominated by P n Q intersects Q; 

C3( P, Q): any line in P dominating PA Q intersects Q. 

By definition, Q is inevitable in P iff Cl (P, Q). Now, we intend to find relationships 
of inevitability with conditions C2( P, Q) and C3( P, Q). The following theorem holds. 

eorem 6.4. Cl (P, Q) implies C2( P, Q). 

roof. Assume Cl( P, Q) and let V be a line in P undominated by P n Q. Hence 
there is (r E V such that alll J( P n Q). The chain Vn $a can be (Theorem 4.1) 
extended to an observation U of P Since Q is inevitable in P, U n Q # 0. Since 
o&PnQ), (Unfo)nQ=0; thus, it must be (UnJa)nQ#fl; but (UnJcr)= 
(VnJo=), hence VnQ#fl. Cl 

The above theorem cannot be converted. This is shown by the following example. 

xample 6.2. Let S2 = (0, +*) with 

+={(2n,2n+l)l nEo)u{(2n,2n+2)1nEo} 

(Fig. 6) and let Q = (1,3,5 , . . .}, P = S2; since S2 is conflict free, P is the only 
process of S2. Then C2( P, Q) holds for Q, since &Q = P, hence every line in P is 
dominated by Q. But Q is avoidable in P, since {0,2,4, . . .} is an observation of P 
not intersecting Q. El 

It is clear fhat C3( P, Q) implies Cl (P, Q). The following example shows that this 
implication cannot be converted. 

0 

/ \ 

txf 
3 4 

I x I 

5 

I xf 

. . 

. . 

Fig. 6. 
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.3. Let S3 = (0, +*), where 

S3 is conflict-free, hence its only process P is S3 itself. The se 
is inevitable in I? But Q does not satisfy C3( P, Q), since th 
dominates Q and does not intersect Q (Fig. 7). 

1 2 

Ix \ 
4 5 3 

Ix \I 

7 8 6 

IX II 
10 II 9 

IX \I 

13 14 12 

IX \I 
. . . 
. . . 
. . . 

Fig. 7. 

The last results of this section are summarized in the diagram below indicating 
whether implication holds or does not: 

C3(P, Q)+cUP,Q)+C2(P,Q)~ 

These facts indicate that the notion of inevitability adopted here can be included 
among the other possible candidates for its definition. 

we will show that for a class of o e 

) fro e last section. 

of diamond-discrete systems defined below. 
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efinition 7.1. A poset P has the diamond property, if any two different and consistent 
states of S with a common predecessor also have a common successor. A system 
is diamond-discrete iff it is discrete and each process in its behaviour has the diamond 
property. 

The diamond property assumption is cluite natural in discrete systems; e.g. 
processes in systems generated by Condition/Event Petri Nets have the diamond 
property; the unobservable system RN from Example 4.2 also has this property. 

Let (S, +*) be an observable, diamond-discrete system fixed from now on: all 
processes discussed below are assumed to be in S. Let P be a process and Q c_ P. 
Let Suc( Q) be the set of all successors of states in Q: 

Suc( Q) = {o E P 1 there is 7 in Q such that T + CT}. 

P ition 7.1. Let P be an unbounded process, a,, a’, u” E P, n, m E o. If a0 -” o’ 
and c~--*~ a”, then there is T in P such that Q’ *m r and a”+” r. 

Proof. It is not difficult to p rove, using unboundedness, that for eve q E P there 
exists o2 E P such that o1 + 0,. This implies that in P any two (not necessarily 
different) states with a common predecessor also have a common successor. From 
this the statement is easy to show, using double induction w.r.t. m and n. Cl 

Now we formulate two auxiliary lemmas holding for diamond-discrete processes. 

V dominates f K 
abounded process and VG l? If Vdominates Suc( V), then 

Assume V dominates Suc( V). Let 6 E j’ K Thus c +” 6 for some u E V, n E o. 
prove this lemma by induction on n. If n = 0 then f = u E VG 4 V. Let n > 0 and 

assume, as induction hypothesis, that u +n-l { implies f E 1 V. Since u ** 6 there 
is SE t V such that u +n-l 5 + & By inductio hypothesis f E & V, thus f G T for 
some T E K By Proposition 7.1 there is (P’ E: P such that 6 s CT’ and T + CT’. Thus 
~~u’ESuc(V)c~vY so &G&V 0 

et P be an unbounded process and $3 # VG P. l’len V dominates P i$ 
V donCnates Suc( V). 

ous. 

and T E V Since process there is UE such that 6 s u and 
ma 7.1; since 6 s u it holds that 6 E ,J, 

e above lemma 
can be seen fro 

old for processes that are not diamond-discrete as 
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le 7.1. Consider system S3 depicted in Fig. 7. S3 is not mend_discrete, 
since e.g. 2+ 4 and 24 3, a.nd 3 is consistent with 4, but 4 and 3 ve go common 

direct successor. The set V ,= (0, 1,4,7, . . .} dominates Suc( V) = { I+ 3-,4,5,7,8, . . .}, 

but V does not dominate S3. 

Now we are ready to prove the main result of this section, characterizing inevitabil- 
ity in observable diamond-discrete processes. 

efinition 7.2. A grDperty Q is said to be locally inevitable in a process P, if any 
line in P dorni~&~g P n Q intersects Q (i.e. if the condition C3( P, Q) from Se 
6 holds). 

Theorem 7.1. Let P be a process in an observable diamond-discrete system S and let 
Q G S. Then Q is inevitable in P iff Q is locally inevitable in I? 

Proof. Clearly, we may assume that Q c P 
(+): Obvious; any observation dominates Q. 
(a): If P is bounded, then this trivially holds, since then any line in P is an 

observation of P (by proposition 5.2 and the fact that a process is bounded if and 
only if it is terminating), hence any line dominating P n Q is an observation of P 
Consider now the case that P is an unbounded process. Assume Q is inevitable in 
P and let VE P be a line dominating P n Q. We have to show that V intersects Q. 
If V is an observation, then V intersects Q by the definition of inevitability. Assume 
now that V is not an observation, i.e. that V does not dominate l? By Lerr-ma 7.2 
there is e E Suc( V) such that 6 e 1 V. It follows from Theorem 5.2 that the chain 
( Vn 15) u {f} can be extended to an observation V’. Since Q is inevitable, V’ 
intersects Q. Let o E V’ n Q. If f s o and a E Q, then, since Q is dominated by V, 
6 G o E 4 V, thus 6 E 4 V. This contradicts & 4 V, hence us 6 and CT f: 6. But then 
u E V, hence V intersects Q. El 

Our result can be generalized for systems. 

Corollary. Let S be an observable diamond-discrete system and 
Then Q is inevitable in S if Q is locall’, inevitable in each process of S. 

It should be stressed that lot 1 inevitability can be proved without using ti?e 
observation concept; hence, to check the local inevitability of a property it may Se 
sufficient to take into account only a part of the whole syste 

A property has been defined as inevitable in an observable concurrent system, if 
any observation of the system has a state with this property. Since observations are 
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linearly ordered sets of states, this definition is quite close to that uied in the 
sequential approach. However, there are some differences which mean that notions 
of inevitability in the sequential and the present approaches are not equivalent. 
Namely, roughly speaking, there are “more” observations than “just” lines, and 
consequently (cf. [7]), than “fair” lines. This implies that some properties inevitable 
in the sequential approach may not be in the present, “partial order approach’“. 
The following example illustrates this difference. 

.l. Consider the system A = (to, +*) with * defined by the diagram in 
Fig. 8(a). A is sequential (any two consistent stat s are comparable) and it can be 
viewed as a representation of the following, sequential and nondeterministic 
program: 

(t rue+x:=x+2)*Otrue+(x:=x+l;stop)~, 

where 0 denotes the choice operator. 
According to the justice assumption, this program must always terminate, since 

the terminating instruction true+ (x := x + 1; stop) is continuously enabled. In our 
wording it would mzan that the justice assumption implies inevitability of the 
property Q = { 1,3,5 , . . .}. But in our approach this property is not inevitable, since 
the sequence (0,2,4,. . . ) is a process in C (and at the same time its own observation) 
not intersecting Q. (We would not assume the “conflict resolution fairness” in our 
setup.) 

0 0 

e \ I \ 
2 1 2 

I \ 1 \ t 

4 3 4 3 

I \ I \ I 

. 5 . 5 . . . . 
. I . 

(a) (W 

Fig. 8. 

Consider now the system B = (0, +*) with + defined in Fig. 8(b) which can be 
thought as representin the following nonsequential but con&t-free program: 

+.x:=x+2)* 11 +(x:=xfl;stop) 

enotes the parallel composition operator). n this case both-sequential and 

e conclusion, namely that the termination of 
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the right-hand component of the system is inevitable. The argument in the sequential 
is the same as before: the terminating instruction is continuously enabled, 

hence it must eventually be executed; in our approach, the situation is changed 
radically in comparison with system A, since there is now only one process (the 
system itself), and the sequence (0,2,4, . . .) is not an observation anymore (it does 
not dominate e.g. any state from Q = { 1,3,5, . . . }). Our argument for the inevitability 
of Q is Theorem 6.3: the future of any process state is inevitable in this process; 1 
is a state of the considered process, and t 1 = Q is its future. 

From the above example it also follows that a property can be live in a system 
(as defined by Alpem and Schneider in [l]), but not inevitable in our sense; 
termination of the system C is a live property in C while it is not inevitable in our 
approach. 

The point, as already discussed in the introduction, is that in any sequential 
approach every fairness assumption must impose some restrictions on possible 
conflict resolutions, because in such approaches conflicts and concurrency have the 
same effect in execution sequences. In the partial order approach, which admittedly 
leads to more complex notions, the separation of these two phenomena is possible. 
Thus, one can reformulate the justice assumption: 

“A set of instructions cannot be continuously enabled and never executed** 

to the following form adequate to the partial order approach: 

“A set of instructions cannot be continuously and concurrently enabled and never 
executed’* 

or, in a more appropriate wording: 

“A set of instructions cannot be permanently concurrent to the remaining 
instructions and never completed”. 

Clearly, these formulations are vague and imprecise as long as the terms they contain 
are not precisely defined; defining them, however, exceeds the scope of this paper. 
Anyway, they give an idea about the relationship of these two approaches. 
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