
Theoretical Computer Science 64 (1989) 281-304,
North-Holland

281

Antoni MAZURKIEWICZ*, Edward OCW
and Wojciech PENCZEK
Institute of Computer Science of PAS, PO Box 22, PL-00-901 Warszawa PKiN, Poland

Communicated by J. de Bakker
Received January 1987
Revised October 1987

Abstract. Concurrent systems viewed as partially ordered sets of states are considered. A property
of system states is called inevitable, if the system will eventually reach a state with this property.
This notion is discussed within the partial order framework.

Introduction

Sequences of system states are a commonly used tool in analysing the behaviour
of discrete systems. Such a sequence is said to be admissible, if each but the first
state in the sequence results from its predecessor as a result of a system action; and
is said to be nonextendable, if it starts with an initial state of the system and is either
infinite, or its lrst element is a state to which no system action is applicable. In the
theory of sequential systems admissible and nonextendable sequences of system
states (we will call them execution sequences) represent processes generated by
such systems; and the set of all processes generated by a system defines fully its
behaviour.

Execution sequences are also used to analyse concurrent systems. In this case the
situation becomes more complex, since admissible and infinite sequences may not
describe the full execution of a system. Therefore, in such a case, a third requirement
is added to the previous two: to describe a full process generated by a concurrent
system a state sequence must not only be a missible and nonextendable, but also
fair. Roughly speaki; a,, cf a sequence is fair, if it does not ignore any component of
the system. For a precise formul

of Lehmann et al. [6],
ueli [181; here, only a sketch of the main ideas concerning this issue will

e fairness assumption is needed in order to
during the run of a system. Intuitively, we call a property inevitable, if sooner CM=

* Partly sponsored by LPC during the first author’s stay at Leiden University, The Netherlands.

0304-3975/89/$3.50 @ 1989, Elsevier Science Publishers B.V. (North-Holland)

282 A. Mazurkiewicz et al.

later the system will be in a state meeting this property. TO formally prove the
inevitability of a property it seems to be natural to consider execution sequences
and to check whether each of them contains a state with the property in question;
if so, the property is inevitable, otherwise it is not. But, clearly, each of the considered
execution sequences must represent the full behaviour of the system, i.e. they must
be fair. If the fairness assumption were too weak, e.g. requiring only the nonextenda-
bility of sequences, some intuitively inevitable properties could not be proved; if it
were too strong, then it would allow the inevitability of some doubtful properties
to be proved. The weakest fairness assumption, known to the authors, is that of

“justice” [6].
The idea of defining processes of concurrent systems by fair execution sequences,

as discussed above, will be referred to as the “sequential approach”. In this paper
an attempt is made to look at inevitability from the point of view of the so-called
“partial order semantics”, where processes are represented by partially ordered sets
of states rather than sequences of states. In such an approach an assumption which
guarantees partially ordered sets to represent the full behaviour of the system is
also needed. In this “partial order approach” the difference between nondeterminism
and concurrency is made explicit, in contrast to the sequential approach in which
this difference disappears. Due to this fact, in a partial order approach one could
distinguish two types of fairness assumptions: one, which guarantees that no system
component is ignored in a process run (“concurrency fairness”), and another
concerning decisions made during the system action (“conflict resolution fairness”).
Since the first type of fairness seems to be the weakest possible, we assume every
process to have this type of fairness; the second is ignored here, since we do not
want to impose any restrictions on the way the conflicts are resolved.

The present paper is certainly not the first dealing with fairness in the partial
order framework; in [2] problems of transition fairness and in [123 also of marking
fairness in Petri nets have been considered. In the present approach, however, no
particular formalism is assumed, nor any kind of events is distinguished with respect
to fairness; it is the inevitability of arbitary properties (sets of states) which is
discussed here.

The paper is organized as follows. First, a definition of concurrent systems is
given; next, the notion of processes is introduced; such processes are intended to
describe the full system behaviour, i.e., they havtf “concurrency fairness”. It gives
a basis for defining inevitability; this definition relies on the notion of process
observations. Next, the notion of observable system is defined and some properties
of such systems are considered. Later, a definition of inevitability is given and finally
this notion is considered in so-called diamond-discrete concurrent systems. It is not
the intention of this work to develop a temporal logic based on the notion of
inevitability defined here; the aim is only to offer a possible model for such a logic.

erefore, all tools used here are set-theoretical.
Several papers have influenced the present one: those mentioned above, the paper

of Nielsen et al. [131 and of Winkowski [21]. The reader will easily find a relationship

Concurrent systems and inevitability 283

between them and the present paper. It should be stressed that the need for the
partial order approach for describing the behaviour of nonsequential systems was
pointed out very early on by Petri [17].

This paper is b.:sed on [IO]; some results in Sections 6 and 7 have already appeared
in [14] and 1861.

1. Basic notions

Standard mathematical notation is used here. The set of all non-negative integers
will be denoted by o. A relation will always be understood to be a binary relation.
For any relation + in a set S by +* we shall denote its transitive and reflexive
closure (in S). Sometimes we shall write xRy for (x, y) E R. Each reflexive, transitive
and antisymmetric relation in S is an ordering relation in S. A pair (S, s), where S
is a set and G is an ordering relation in S, is a parkzlly ordered set, or a poset for
short. A poset (S, s) is discrete, if there exists a nontransitive and irreflexive relation
+ in S such that s =-* (the successor relation for s: it is easy to show that the
successor relation for a poset is unique, if it exists). In discrete poset, if x + y, then
y is a successor of x and x is a predecessor of y. Throughout the whole paper, posets
in examples are discrete. A poset (S’, s’) is a subposet of a poset (S, s), if

SE s, s’= s A (S’x S’).

Thus, any subset of S uniquely determines a subposet of (S, s). As usual, we shall
write S instead of (S, s) if it does not lead to confusion. If S and S’ are posets, S’
is a subposet of S, we shall write S’ r S. Clearly, the family of all subposets of a
poset is (partially) ordered by E. Let a E S; then TO and Ja are defined by

Operations t, and & are extended to subposets of S by defining for each PC, S:

From the transitivity of G it follows that IT = t(tP) and &P = J(@), and from its

reflexivity P c f P and P c_ &I?, Hence, in particular, tS = &S = S and t0 = 40 = 0. TO

avoid a number of parentheses we assume t and 4 to bind stronger than other
set-theoretical operations, e.g. t P’ n P” denotes (t ’ * P’,)* For each
(r E S the set JU (tcr) is called a backward (firward) cone in S; the union Jgu j’a
is a cone in S determined by 0. If C is a cone in S determined by a, then (S - C) u {a)

is an anticone determined by a. Let P’, be subposets of S; ’ is said to be cofinal

(coinitial) with P”, if &P’ = 4 P” (t P’ = “, respectively). Two elements a’, (+I’ of a

poset (S, G) are comparable, if either u’s o-” or a” s a’, a ~~co~p~rQbie ot

284 A. Mazurkiewicz et al.

A poset S is linearly ordered, if each two of its lements are comparable. Each
linearly ordered subposet of a poset S is called a chain in S. A maximal chain in
a poset S is called a line in S. A subposet P of S is said to be backward closed, if
J, P = l? A poset is directed, if together with any two elements a’, ~8’ it contains an
element (r such that U’S u and a “s a, and branching otherwise. A subset P of S

is bounded by a in S, if CT ‘s a for every a’ E P; P is bounded, if it is bounded by
an element of S and unbounded otherwise. _A poset S is backwardfinite, if for any
c E S the set Ja is finite.

The following fact is known as the Zom-Kuratowski Lemma [22].

Proposition 1.1. If every chain in a pose? (S, s) is bounded, then for each &, in S
there is a maximal element 6 of S with &, G 6.

Proof. Can be found e.g. in [S]. 0

A family of sets is monotonically additive, if it contains the union of any of its
subfamilies linearly ordered by inclusion. We shall use the following earlier version
of the Zom-Kuratowski Lemma 143.

Proposition 1.2. Any member of a monotonically additive family can be extended to
a maximal member of this family.

roof. Take in the Zorn-Kuratowski Lemma a monotonically additive family of
sets ordered by inclusion and observe that any subfamily is bounded by its union. Cl

2. Concurrent systems

A concurrent system will be viewed here as the set of all possible histories of its
activity. As in [13], by history we understand hare a set of events which, together
with an event, contains all events prior to it. Each such history determines uniquely
a (global) state of the system, and any system state can be supplied with the whole
of its history; thus, we shall identify histories with system states. The set of such
states is ordered by inclusion: earlier states a e contained in later ones. It is clear
that no state can be repeated during a system run (histories can only grow) nor can
its two different executions lead to the same state (a history contains the whole
past). In contrast to the sequential case, in nonsequential processes the inclusion
ordering of histories is only partial (some initial parts of the same history can be
noncomparable by inclusion).

Simple examples states are: left-closed subsets of an elementary event structure
[l3], processes in a tri net [I91 from the initial slice to another slice, prefixes of
string-vectors [20], and those of &races [9, 111.

Concurrent systems and inevitability 285

Each of the concepts mentioned above leads to a suitable mathematical model
of concurrent systems. Since we do not intend to specify any of these models but
we are going to keep our framework as general as possible, we simply view such
systems as partially ordered sets of states. It turns out that even such a general
approach allows us to formulate and discuss our questions.

Definition 2.1. By a concurrent system (or simply, a system), abbreviated as cs, we
shall understand here any poset (S, s), where S is called the set of states of the
system, and G the dominating relation of the system. We shall say that a system S
is discrete if S is a discrete poset. If 0’~ a’, we say that a” dominates CT’, or that
o’ is dominated by u’. This notion is extended to sets of states: we say that a subset
P of S is dominated by a subset Q of S, if for each state Q in P there is a state in
Q dominating a. Two states a’, a’ of S are said to be consistent, if there is a state
a in S such that a’ G a, U’S u (there is a state dominating both of them), and
inconsistent otherwise; S is sequential, if any two of its consistent states are compar-
able; it is conjkt-free9 if any two of its states are consistent (i.e., S is directed).

If a state u’ is dominated by another state a’, it means that there is a run of the
system, containing both these states, in which u’ comes up later than u’. Thus, in
our intended interpretation, two states are comparable, if and only if they appear
in the same execution of the system and the history of one of them is an initial part
of the history of the other. If u’ is incomparable with u’, two cases are possible:
either both of them are dominated by a common state u (then they are consistent),
or such a common state does not exist (then they are inconsistent). In the first case
u’ and a” are two states of the same run of the system, but they result in some
concurrent actions of the system; they identify different pieces of the same history,
exhibited later by u. In the second case a’ and u’ are states identifying pieces of
two different histories, resulting in a choice (a conflict resolution) made earlier
during the system action.

Example 2.1. Consider a concurrent system in which first an action a is executed,
and next two actions, b and c, are performed concurrently; after doing it, the system
terminates. The following states of the system are possible: [&]-the initial state,
[al-after performing action a, [a&J-after performing action a and b, [ac]-after
a and c, and finally [abc]-aft r performing a:! actions a, b, c. This system can be
defined as the cs (S, +*), where

S = R.4, [al, I30 bcl, bW

and. where + is the relation de ned by the dlaagrzm in Fig. l(a); (in this and the
following figures the convention is to represent x-, 41 by drawing a line from x to

placing x above y). States [ab] an
(both of them are dominated by [ah]). The wMe poset represents a single run of
the system; an observer of the system can see the sequence [E], [a], [ab], [ah];

286 A. Mazurkiewicz et al.

(a)

[El
I

[al
/ \

WI bcl

(b)

Fig. 1.

another observer, however, can see the same run as the sequence [e], [a], [UC],
[abc] and both observations are equally valid.

The reader acquainted with traces [1 l] can easily see that states here are construc-
ted from prefixes of all traces generated by the system. The system is conflict-free,
since its only two incomparable states [ab] and [ac] are consistent.

Example 2.2. Consider now the system in which, first, action Q is performed yielding
a state [a], and next either action 6 or action c can be executed, giving [ab] or
[ac], respectively, and no futikcr action is performed. This system can be viewed
as cs (S, +*), whet<:!

s = {M, M, WI, Cac3)

and where ---) is detined by the diagram in Fig. l(b). In this case two different runs
are possible in the systern. States [ab] and [UC] are incomparable and inconsistent-
there is no common state dominating them. Any observer will now notice the same
sequence, namely [e], [aI9 [ab] or [E], [a], [ac], depending on which continuation
of state [a] will be chosen by the system. This system is sequential, since any two
of its consistent states are comparable.

mcesse~ and their properties

Let S = (S, 6) be a cs: any maximal directed subposet of S is called
a process in S; the family of all processes in S is called the behaviour of S.

In view of the explanations given above, the interpretation of this notion is clear:
each process contains only states which can appear in a single execution of the
system (because of the directedness all states of a process are consistent, hence they
define pieces oft aximality, processes in a system correspond
to its full executions (i.e. they display “concurrency fairness”).

Conrrrrsws systems and inevitability 287

Example 3.1. In Fig. l(a), {[E], [a], [UC]} is directed but not maximal, hence it is
not a process; in system terms, the concurrent component performing 6 is ignored.

ig. I(b) the same set is a process.

Example 3.2. The following example is intended to show how the above notions
are related to typical concurrent systems. As a sample system let us take the
well-known system with two active components, SENDER and RECEIVER, com-
municating with each other by an unbounde BUFFER working according to the
first-in-first-out principle.

SENDER sends successive messages to the BUFFER until it (possibly) decides to
terminate its activity: then it sends a closing message and halts. RECEIVER takes
messages from the BUFFER until it (possibly) gets the closing message; then it halts.
SENDER and RECEIVER act independently of each other; if, however, the BUFFER

is empty, RECEIVER mcst wait for a message from SENDER.

Thus, three actions are being performed bjr the system: sending messages, receiving
them, and terminating (the SENDER). A state of the system is then completely defined
by knowing how many actions of each type have already been performed. Such
information can be represented by a triple (i, j, k) of nonnegative integers indicating
how many *imes the sending action (the integer i), the receiving zction (the integer
j), and the terminating action (the integer k) have already been executed by the
system (however, in the general case, such information may not be sufficient; then
tuples of individual histories rather than tuples of numbers have to re
Clearly, k G 1 and j - ‘< i (the number of receiving actions cannot exceed that of
sending actions). Therefore, our specification turns into a system SBR = (S, +*), with

S=((i, j, k)Ijs i, ks l},

+=R,vR2vR3.

where

(sending),

R2=(((i, j, k), (i, j+l, k))(j< i, ks 1) (receiving),

&=W,j,OL(kj, 1))lj4 (terminating).

By its very definilyion SBR is discrete. The actions in R,

messages, those ic R2 to receiving messages, and those in
sending messages. A graphical form of the system described above is presented in
Fig. 2. In this figure lines directed downwards-right correspond to 1’ i*e* to =nding

ions, those directed downwards-left to
ected straight down to R3,

for “(i, j, k)“.

A. Mazurkiewicz et al.

ooo
I \

001 100

1 I \

110 101 200

I X / I \

111 210 201 300

/ I X I I 1

220 211 310 301 400

X / I X 1 I \

221 320 311 410 401 500

1 I x / I x / I \

Fig. 2. (/ = receive, \ = send, I= terminate).

In this system states (I, I, Q), (2,O,O) are incomparable, but consistent: states
(2,1, l), (3,1,0) are inconsistent; subsets

Q=W, WI si,j=k=O},

P, ={(i,j, k)lOsja i, k=O},

(n E o), are directed subsets. Q is not a run of the system. In Q only SENDER is
active and its sending activity is endless; since RECEIVER is ignored, there is no
concurrency fairness. P, and P, are runs of the system. In P, both components act
forever. In P, SENDER halts after n steps and RECEIVER consumes all messages
having been sent by SENDER. Later we shall prove formally that P, and P, are (all)
processes of SBR.

Let (S, s) be a system fixed from now on; all directed subsets and processes
discussed below are assumed to be in S, and in all introduced notions S is assumed
to be known.

Let us mention some general facts about processes. First of all, from the definition
of a process it follows that for any two directed subsets P’ and P” with P’s P”, if
P’ is a process, then so is P” (in fact, P’ = P”); and thus, if P” is not a process, then
neither is P’. Secondly, it follows from Proposition 1.2 that each directed subposet
can be extended to a process because the family of all directed subposets is
monotonically additive. This implies that the behaviour of a system is never empty.
It also implies that each state in S is in a process in S. Thirdly, it should be clear
that if S is conflict-free, then the only nrocess generated by S is S itself. If S is a
sequential system, then every directed , .-_ is a chain, and hence every process is a

urthly, each process is backward close ; indeed, let P be a process and let
a’s CE P: then

a proposition useful for proving directed subposcts to be processes.

289

state is consistent with a set o t is consistent with ach state of this set.
Clearly, each state of a direct is consistent with

directed subset of S containing all states consistent with itself is a

process.

Proof. Let P be a directed subset containing all states consistent with P and let
be another directed subset such that P s Q. Let u E Q; then u is consistent with Q,
hence also with P; by assumption, a E R Thus, Q s P, hence P = Q. It means that
P is a process. Cl

In other words, a directed subset P of S is a process, if for any state a not in P
there is a state in P inconsistent with V.

The converse of the above proposition is not true. In the following example we
have a state consistent with all states of a process but not belonging to this process.

Example 3.3. Let C = (0, +*) be a cs where

+={(3n,3n+2)1 nE~}u{(3n+1,3n+2))nEw}

u{(3n,3n+3)lnCo}u{(3n+193n+4)1nEw}.

Then P = {0,3,6,. . .} and Q = (1,4,7,. l .) are two maximal directed subposets of
C, i.e.
Q are

processes in C, each state of P is consistent with each state of Q9 but P and

0 I\ A
3 2 I\ /t

6 5 I\ 4
. g .

Fig. 3.

This ends our list of general properties of processes.
As an important special case we will now consider terminating

define termination by analogy with the case of sequential syste
sequence terminates if it reaches a state from which no further action can be
performed.

A. Mazurkiewicz et al.

efinition 3.2.
terminating, if

A state is terminal,

it contains a terminal
if it is
state.

a maximal state of ; a subposet is

It is easy to see that for each terminating subposet P of S which is directed and
backward closed, there exists a terminal state u such that P = $0 (in fact, if 0 E P
is terminal, then, by directedness of P, CT must be the greatest state of P, i.e., P G iv;
since, moreover, P is backward closed, also &cr c P). Hence each terminating process
is of the form Jcr with a terminal. This also holds in the other direction: for every
terminal state u, Jcr is a process. Indeed, let 7 be a state not in Ja; then 7 must be
inconsistent with v since otherwise a would be not terminal. Thus, &a contains all
states consistent with it an by Proposition 3.1 it is a process. This characterizes
terminating processes. Another characterization (of which the easy proof is left to
the reader) is: a process is terminating if and only if it is bounded.

ExampIe 3.4. We prove that the family of all processes generated by the SBR system
defined in Example 3.2 is the family

where

P,=J(n,n,l) fornew,

P, ={(i,j,O)JjC ho}.

These processes are presented in graphical form (using the same conventions as
previously) in Fig. 4.

First we prove that each member of the family B is a process. Each P, (n E o)

is a process since P, = &(n, n, 1) and (n, n, 1) is a terminal state of SBR. To prove
it for P, take an arbitrary state not in P,, say (i, j, 1); it is clearly inconsistent with
(i + 1, j, 0) belonging to P,, hence P, is a proces , by Proposition 3.1. Now we prove
that the family is the family of all processes generated by SER. Let P be an
arbitrary direete If P contains a state (i, j, 1) then PE Pi because
(i, j, 1) is inconsistent wi every state not in Pi ; otherwise P E P,. This proves that
each directed subset in S is contained in some member of B, i.e. that B is the

. observe that the directed set Q, Q = {(i, 0,O) 1 i E w},
is not a process, since it is strictly contained in P,.

Thus, turning back to the original interpretation of SBR, we can say that in each
process RECEIVER acts as long as possible.

e behaviour of the system defined in xample 3.3 consists of the

,/,(3n+2) (nEW,ter inating processes),

{0,3,6,. . .}, and (1, , . . .} (unbounded processes).

Concurrent systems and inevitability

ooo
\

100

1 \
110 200

\ / \

210

/ \ “‘\

220 . . . nO0

nn0 n21

Process P,,

\

100

1 \
110 200

\ 1 \

210 300

1 \ / \

220 310 400

\ / \ / \

320 410

l *’ 1 \ / \

330 420

\ / \ l **

430

/ \ l *’

440 . . .

\

. . .

Process P,

Fig. 4.

We end this section by a characterization of processes in sequential systems. It
shows that processes in sequential systems are execution sequences satisfying the
usual requirements, as discussed in the introduction.

Proposition 3.2. Let S be a sequential s,astem, and P G S. P is a process gand only if
P is a backward closed chain which i. c p ither terminating or unbounded.

roof. We have already seen that every process is backward closed, every directed
set in a sequential system is a chain, and a process ir terminating if and only if it
is bounded. Now assume that P is a backward closed ch
that P is unbounded. Let Q be a dire
unbounded, there exists TE P such t
chain, CT s r. ence Q E P, because

ence is a process.
before that P is of the form ,/,a with gr terminal. Thus, as also shown before, since
G is terminal, P is a process. 0

292 A. Mazurkiewicz et al.

This explains why in the anal-rsis of sequential systems there is no need for a
special fairness assumption: nonentendability is sufficient.

Note that Proposition 3.2 does not hold for nonsequential systems. In example
3.2, the set Q is a backward closed unbounded chain but we have proved that Q
is not a process.

ines and observations

The set of states of a process consists of all states that can be noticed during a
run of a system. The presence of a state in a process indicates only the possibility
(but not the necessity) of its occurrence in a single run of the system. Any tvw
incomparable states of a process are equally likely to be noticed, but none of them
will necessarily be noticed (actually, there is no observation of a system run
containing both of them together). To infer some invariant properties of a process
(“safety” properties) it is quite sufficient to consider all possible process states; to
prove some eventualities (“liveness” properties) we must rely on the necessity of
the appearance of some states in lines, i.e. we must be sure that each observer of
the process, sooner or later, will notice a state with a required property. To prove
that a property will eventually ho!d in a process, we must show that in any (reasonably
defined) process observation there is a state meeting the property. Therefore, to
speak about eventual properties of processes we must refer to observations. A
definition of inevitable properties of processes will be given in Section 6; in this
and the next section we define the notion of an observation and discuss some of
its properties.

In the sequential approach lines are of the main interest and considered as the
onP representatives of processes generated by concurrent systems. However, as has
already been mentioned above, in such an approach the distinction between lines
in the same process and those of different processes disappears. In the partial order
approach lines of the system behaviour are also considered; but since they are
related to each process separately, and only the set of all processes defines the
system behaviour, this difference is preserved and gives rise to another setup. In
this approach, the behaviour of a system is not a set of lines, as in the sequential
approach, but a set of processes containing sets of lines (each process contains at
least one line).

n important notion connected with lines is that of domination. In general, lines
in a process, being its linear subseis, do not contain all its states. However, remember-

that the history of a state u contains (as prefixes) the histories of all states
by a, the amount of information about a process supplied

ends upor how big a set of process states is dominated by this line.
lity, lines are not co we can compare their

roperties and s formation” than U, if
dominates more process states than U, i.e. if J, U c & V, or equivalently, if U G & K

Concurrent systems and inevitability 293

Clearly, a line dominating all states of f, i.e. cofinal with P, is a line with “maximal
amount of information”. The above intuitions lead to the following definition.

A line V of a process P is said to be an observation of

Observations give full information about processes; since each state identifies its
history, states of an observation identify the total history of the observed process.

Example 4.1. Consider the SBR system defined in Example 3.2. The subset Q defined
in this example is a line of P, ; it is not an observation of P,, since it dominates
only itself, leaving all states (i, j, 0) with j > 0 undominated. On the other hand, the
chain V: V = {(i, j, 0) 1 j s i s j + l}, is an example of an observation of p0, since

(i) it is a line and
(ii) each state (n, m, 0) in P, is dominated by a state in V, namely by (n, n, 0).

Definition 4.2. A process is observable, if there exists an observation of it, and
unobservable otherwise; a system is observable, if every process in it is observable
and unobservable otherwise.

Proposition .l. Each chain in a process P can be extended to a line in P.

Proof. By Proposition 1.2, since the family of all chains in a process is monotonically
additive. !7

Theorem 4.1. Each bounded chain in an obsemable process P can be extended to an
observation of P.

Proof. If P is empty, the assertion trivially holds; otherwise, let V be an observation
of P and let L be a chain bounded by a (i.e. L c Jcr) for some (r E
and T = Lu U; clearly, T is a chain in P; we shall show that T dominates
6 be a state of ; by directedness of P, there is T E P dominating 5 and a. Since
is an observation of P, there is 7% V dominatin 7. Since B< 7s T’,
6 s T s T’, 7’ dominates 6. This means that P is final with U, hence
with LU U. By extending LU U to a maximal chain (Propositi
required observation, since extensions preserve cofinality. 0

ere is no way, i

a given nntial segme an observation or not.
character of the notion of observation.

294 A. Mazurkiewicz et al.

Corollary. For each state in an observable process P there is an observation of P
containing this state.

At the end of this section we give an example of an unobservable system.

(Marek [S]). Let RN be the system with all finite subsets of real numbers
as states and inclusion as dominating relation. RN is obviously directed, since the
union of any two finite sets contains both of them and is finite. Thus, RN is
conflict-free and is its own (only) process. Any chain in RN can dominate at most
a countable family of states, since it consists of a countable number of finite sets
only; thus, it cannot dominate the whole set RN, since RN is not countable.
Therefore, RN is not cofinal with any of its lines, i.e. there is no observation of RN.

Observe that RN is discrete (!) and backward finite.

Properties of unobservable systems are interesting on their own and will be
discussed separately elsewhere. Here, we concentrate only on observable systems.
Some important classes of such systems will be discussed in the next section.

efinition 5.1. A system is cone-countable, if each cone in S is countable.

Note that the set of all states in a cone-countable system may be not countable;
any countable system, however, is clearly cone-countable.

sition 5.1. Each process in a cone-countable system is countable.

Let S be a cone-countable system and let P be a process in S. if P is empty,
the proof is completed. Let CT E P and P’ = TO, P” = 4 P’. Since S is cone-countable,
j’~, &a are countable. Thus, P’ is countable, and so is P”, since the union of a
countable family of countable sets is also countable. It remains to show that PC_ P”.
Let o. E P; by directedness of P there is a’~ P such that aos u’, CT G 0’; hence
a’~ P’ and, by definition, a0 E P’. It proves P G P”. Cl

. Cone-countable systems are observable.

e a process in a cone-countable system, Q be the set of states of P.
is (the only) observation of ssume P to be not empty;
is countable; let then

(c&q ,..., o-“,...)

Concurrent systems and inevitability 295

be an enumeration of Q (i.e. Q = (0, 1 n E 0)). efine a sequence V=
(TO,? 9 7 ,,, . . .) inductively as follows:

70 =a,:

r,+l is a state in P dominating T,, and a,,, .

Clearly, V is linearly ordered since T, G T,+~ for each n; moreover, V dominates P.
Indeed, let a’~ P: then a’ = oi for some j, hence o’s q. Thus, each state of P is
dominated by a state of V. Extending V to a line (Proposition 4.1) we get an
observation of P. Iz1

Note that an observable process can also admit lines which are not observations,
as follows from Example 4.1. In the systems discussed in the rest of this section all
lines of processes are observations, and hence they are observable (because by
Proposition 4.1 each process contains at least one line).

Definition 5.2. A system S is terminating iff all its processes are terminating.

Proposition 5.2. Each line of a terminating process is an observation.

Proof. Assume P to be terminating; hence there is a krminal state u such that
P = 4~. Let V be a line in P; since V is maximal, u E V: hence a C_ 4 V. This proves

Corollary. Terminating systems are observable.

Definition 5.3. A system S is strongly synchronized, if for each state u E S there is
at most a finite number of states incomparable and consistent with V.

Example 5.1. All systems discussed above (except SBR and RN) are strongly
synchronized.

eorem 5.2. Each line in a process of a strongly synchronized system is an observation
of that process.

roof, Assume S to be strongly synchronized and let r” b process in S, V be a

line of P, and u E P. We have to prove that a E 4 V. If em E
aqsu~~s m g V 5%~~ V is a maximal linearly ordered subpose
states in V not comparable with a. Since S is stro
finite number of such states. Let a0 be the greatest of
element of V, since then V
a’ is a state domin
a0 an

296 A. Mazurkiewicz et al.

orollary. Strongly synchronized systems are observable.

itio 3. Sequential systems are observable.

oof. There are no consistent and incomparable states in sequential processes;
hence, they are strongly synchronized. 0

The (only) observation of a process gwera by a sequential system
is the process itserf:

roof. Let P be a process generated by a sequential system. Then P is a line in P
dominating Pp hence it is an observation of P 0

The above fact shows why in the sequential approach to concurrent syatems
observations are used as representatives of processes: in sequential systems processes
can be identified with their observations.

nevitability

In this section the notion of inevitability will be introduced and discussed. The
difference between reachability and inevitability is that the first refers to a possibility,
while the second refers to the necessity of reaching a state with a given property
during the system run. Clearly, any inevitable property is reachable, but not the
other way arou&.

We define inevitability in observable systems making use of observations of its
processes. Informally, a property is inevitable, if any sequential observer of the
system run will notice, sooner or later, a state with this property, provided his
observation, though sequential, contains (directly or indirectly) information about
every state occurring in the system run (i.e., it is an observation as defined formally
in Definition 4.1).

The intuitions given above lead to the following formal definition. Let S be a
fixed, nonempty, observable concurrent system and let a property mean a subset of
S. Given two sets, we say that one of them intersects the second, if their intersection
is nonempty.

A property Q is inevitable in a process P of S, if any o5servation of
and avoidable in P otherwise. A property is inevitable in S, if it is

inevitable in eat recess of S and avoidable otherwise.

m gives a necessary condition for inevitability in observable
it states that if is inevitable, then either now it is or it

Concurrent systems and int vitability 297

. If Q is inevitable in a process the11 PC $Quf

Assume Q to be inevitable in R Let a E P. By the corollary to Theorem
there is an observation V of P containing u. Since Q is inevitable in P, the
6 c 3 n K Since V is a line, either us 6, or & 0, Since f~ Q, either u E 4
~ETQ, i.e. a~&QutQ. 0

The converse of this theorem does not hold, as fohows from the example below.

6.1. Let Sl = (w, +*) with

-={(2n,2n+1)1 nEw)u{(2n,2n+2)~n~w~

u{(2n+192n+3))nEw},

(Fig. 5) and let Q={1,4}. Then Sl is its only process, SE$Quj’Q,
avoidable in Sl : {0,2,3,5,7, . . J is an observation of S1 not intersecting

0

I 1
2

1 \ t

4

1,:

. 5

. . I

Fig. 5.

Proposition .I. Any anticone is intersected by any line.

roof. If a chain V does not intersect the anticone determined by a, then Vu {u}
is a chain again; hence V is not maximal, i.e. it is not a line. Cl

Any anticone is inevitable in S.

For each u in a process P the forward cone TO- is inevita

Informally: (;ny process state will be eventually in the past of this process.

is an observation of tersects

Note that anticones are inevitable in the whole system eorem 6.2) whereas
forward cones not necessarily. In order to discuss more closely the notion of

298 A. Mazurkiewicz et al.

inevitability, consider the following three conditions:

CUP, 0): any line in P dominating P intersects

C2(P, Q): any line in P undominated by P n Q intersects Q;

C3(P, Q): any line in P dominating PA Q intersects Q.

By definition, Q is inevitable in P iff Cl (P, Q). Now, we intend to find relationships
of inevitability with conditions C2(P, Q) and C3(P, Q). The following theorem holds.

eorem 6.4. Cl (P, Q) implies C2(P, Q).

roof. Assume Cl(P, Q) and let V be a line in P undominated by P n Q. Hence
there is (r E V such that alll J(P n Q). The chain Vn $a can be (Theorem 4.1)
extended to an observation U of P Since Q is inevitable in P, U n Q # 0. Since
o&PnQ), (Unfo)nQ=0; thus, it must be (UnJa)nQ#fl; but (UnJcr)=
(VnJo=), hence VnQ#fl. Cl

The above theorem cannot be converted. This is shown by the following example.

xample 6.2. Let S2 = (0, +*) with

+={(2n,2n+l)l nEo)u{(2n,2n+2)1nEo}

(Fig. 6) and let Q = (1,3,5 , . . .}, P = S2; since S2 is conflict free, P is the only
process of S2. Then C2(P, Q) holds for Q, since &Q = P, hence every line in P is
dominated by Q. But Q is avoidable in P, since {0,2,4, . . .} is an observation of P
not intersecting Q. El

It is clear fhat C3(P, Q) implies Cl (P, Q). The following example shows that this
implication cannot be converted.

0

/ \

txf
3 4

I x I

5

I xf

. .

. .

Fig. 6.

Concurrent systems and inevitability

.3. Let S3 = (0, +*), where

S3 is conflict-free, hence its only process P is S3 itself. The se
is inevitable in I? But Q does not satisfy C3(P, Q), since th
dominates Q and does not intersect Q (Fig. 7).

1 2

Ix \
4 5 3

Ix \I

7 8 6

IX II
10 II 9

IX \I

13 14 12

IX \I
. . .
. . .
. . .

Fig. 7.

The last results of this section are summarized in the diagram below indicating
whether implication holds or does not:

C3(P, Q)+cUP,Q)+C2(P,Q)~

These facts indicate that the notion of inevitability adopted here can be included
among the other possible candidates for its definition.

we will show that for a class of o e

) fro e last section.

of diamond-discrete systems defined below.

300 A. Mazurkiewicz et al.

efinition 7.1. A poset P has the diamond property, if any two different and consistent
states of S with a common predecessor also have a common successor. A system
is diamond-discrete iff it is discrete and each process in its behaviour has the diamond
property.

The diamond property assumption is cluite natural in discrete systems; e.g.
processes in systems generated by Condition/Event Petri Nets have the diamond
property; the unobservable system RN from Example 4.2 also has this property.

Let (S, +*) be an observable, diamond-discrete system fixed from now on: all
processes discussed below are assumed to be in S. Let P be a process and Q c_ P.
Let Suc(Q) be the set of all successors of states in Q:

Suc(Q) = {o E P 1 there is 7 in Q such that T + CT}.

P ition 7.1. Let P be an unbounded process, a,, a’, u” E P, n, m E o. If a0 -” o’
and c~--*~ a”, then there is T in P such that Q’ *m r and a”+” r.

Proof. It is not difficult to p rove, using unboundedness, that for eve q E P there
exists o2 E P such that o1 + 0,. This implies that in P any two (not necessarily
different) states with a common predecessor also have a common successor. From
this the statement is easy to show, using double induction w.r.t. m and n. Cl

Now we formulate two auxiliary lemmas holding for diamond-discrete processes.

V dominates f K
abounded process and VG l? If Vdominates Suc(V), then

Assume V dominates Suc(V). Let 6 E j’ K Thus c +” 6 for some u E V, n E o.
prove this lemma by induction on n. If n = 0 then f = u E VG 4 V. Let n > 0 and

assume, as induction hypothesis, that u +n-l { implies f E 1 V. Since u ** 6 there
is SE t V such that u +n-l 5 + & By inductio hypothesis f E & V, thus f G T for
some T E K By Proposition 7.1 there is (P’ E: P such that 6 s CT’ and T + CT’. Thus
~~u’ESuc(V)c~vY so &G&V 0

et P be an unbounded process and $3 # VG P. l’len V dominates P i$
V donCnates Suc(V).

ous.

and T E V Since process there is UE such that 6 s u and
ma 7.1; since 6 s u it holds that 6 E ,J,

e above lemma
can be seen fro

old for processes that are not diamond-discrete as

Concurrent systems and inevitability 301

le 7.1. Consider system S3 depicted in Fig. 7. S3 is not mend_discrete,
since e.g. 2+ 4 and 24 3, a.nd 3 is consistent with 4, but 4 and 3 ve go common

direct successor. The set V ,= (0, 1,4,7, . . .} dominates Suc(V) = { I+ 3-,4,5,7,8, . . .},

but V does not dominate S3.

Now we are ready to prove the main result of this section, characterizing inevitabil-
ity in observable diamond-discrete processes.

efinition 7.2. A grDperty Q is said to be locally inevitable in a process P, if any
line in P dorni~&~g P n Q intersects Q (i.e. if the condition C3(P, Q) from Se
6 holds).

Theorem 7.1. Let P be a process in an observable diamond-discrete system S and let
Q G S. Then Q is inevitable in P iff Q is locally inevitable in I?

Proof. Clearly, we may assume that Q c P
(+): Obvious; any observation dominates Q.
(a): If P is bounded, then this trivially holds, since then any line in P is an

observation of P (by proposition 5.2 and the fact that a process is bounded if and
only if it is terminating), hence any line dominating P n Q is an observation of P
Consider now the case that P is an unbounded process. Assume Q is inevitable in
P and let VE P be a line dominating P n Q. We have to show that V intersects Q.
If V is an observation, then V intersects Q by the definition of inevitability. Assume
now that V is not an observation, i.e. that V does not dominate l? By Lerr-ma 7.2
there is e E Suc(V) such that 6 e 1 V. It follows from Theorem 5.2 that the chain
(Vn 15) u {f} can be extended to an observation V’. Since Q is inevitable, V’
intersects Q. Let o E V’ n Q. If f s o and a E Q, then, since Q is dominated by V,
6 G o E 4 V, thus 6 E 4 V. This contradicts & 4 V, hence us 6 and CT f: 6. But then
u E V, hence V intersects Q. El

Our result can be generalized for systems.

Corollary. Let S be an observable diamond-discrete system and
Then Q is inevitable in S if Q is locall’, inevitable in each process of S.

It should be stressed that lot 1 inevitability can be proved without using ti?e
observation concept; hence, to check the local inevitability of a property it may Se
sufficient to take into account only a part of the whole syste

A property has been defined as inevitable in an observable concurrent system, if
any observation of the system has a state with this property. Since observations are

302 A. Mazurkiewicz et all

linearly ordered sets of states, this definition is quite close to that uied in the
sequential approach. However, there are some differences which mean that notions
of inevitability in the sequential and the present approaches are not equivalent.
Namely, roughly speaking, there are “more” observations than “just” lines, and
consequently (cf. [7]), than “fair” lines. This implies that some properties inevitable
in the sequential approach may not be in the present, “partial order approach’“.
The following example illustrates this difference.

.l. Consider the system A = (to, +*) with * defined by the diagram in
Fig. 8(a). A is sequential (any two consistent stat s are comparable) and it can be
viewed as a representation of the following, sequential and nondeterministic
program:

(t rue+x:=x+2)*Otrue+(x:=x+l;stop)~,

where 0 denotes the choice operator.
According to the justice assumption, this program must always terminate, since

the terminating instruction true+ (x := x + 1; stop) is continuously enabled. In our
wording it would mzan that the justice assumption implies inevitability of the
property Q = { 1,3,5 , . . .}. But in our approach this property is not inevitable, since
the sequence (0,2,4,. . .) is a process in C (and at the same time its own observation)
not intersecting Q. (We would not assume the “conflict resolution fairness” in our
setup.)

0 0

e \ I \
2 1 2

I \ 1 \ t

4 3 4 3

I \ I \ I

. 5 . 5
. I .

(a) (W

Fig. 8.

Consider now the system B = (0, +*) with + defined in Fig. 8(b) which can be
thought as representin the following nonsequential but con&t-free program:

+.x:=x+2)* 11 +(x:=xfl;stop)

enotes the parallel composition operator). n this case both-sequential and

e conclusion, namely that the termination of

Concurrent systems and ineuitabilitg 303

the right-hand component of the system is inevitable. The argument in the sequential
is the same as before: the terminating instruction is continuously enabled,

hence it must eventually be executed; in our approach, the situation is changed
radically in comparison with system A, since there is now only one process (the
system itself), and the sequence (0,2,4, . . .) is not an observation anymore (it does
not dominate e.g. any state from Q = { 1,3,5, . . . }). Our argument for the inevitability
of Q is Theorem 6.3: the future of any process state is inevitable in this process; 1
is a state of the considered process, and t 1 = Q is its future.

From the above example it also follows that a property can be live in a system
(as defined by Alpem and Schneider in [l]), but not inevitable in our sense;
termination of the system C is a live property in C while it is not inevitable in our
approach.

The point, as already discussed in the introduction, is that in any sequential
approach every fairness assumption must impose some restrictions on possible
conflict resolutions, because in such approaches conflicts and concurrency have the
same effect in execution sequences. In the partial order approach, which admittedly
leads to more complex notions, the separation of these two phenomena is possible.
Thus, one can reformulate the justice assumption:

“A set of instructions cannot be continuously enabled and never executed**

to the following form adequate to the partial order approach:

“A set of instructions cannot be continuously and concurrently enabled and never
executed’*

or, in a more appropriate wording:

“A set of instructions cannot be permanently concurrent to the remaining
instructions and never completed”.

Clearly, these formulations are vague and imprecise as long as the terms they contain
are not precisely defined; defining them, however, exceeds the scope of this paper.
Anyway, they give an idea about the relationship of these two approaches.

Acknowledgment

The authors wish to thank Professor 6.
for their help and encouragement. The help and criticism of Dr. J. Engelfriet, who
was the first reader cf a preliminary version of this paper and whose re

improved it considerably, are gratefully ackno d* me authors would
thank anonymous referees for their valua

304 A. Mazurkiewicz et al.

eferences

PI
PI
l31

141

PI
161

VI

WI
PI

Cl01
rml

WI

Cl31

1141
WI

WI
1171
WI
cw

c201

w
WI

pem and F.B. Schneider, Defining liveness, Inform. Process. Len 21 (1985) 181-185.
E. Best, Fairness and conspiracies, Inform. Recess. Lett. 18 (1984) 215-220.
U. Goltz and W. Reisig, The non-sequential behaviour of Petri nets, Inform. Conk 57(2/3) (1983)
125- 147.
K. Kuratowski, Une methode d’ilimination des no.nbres transfinis des raisonnements
mathimatiques, Fund. Math. 3 (1922) 76-108.
K. Kuratowski and A. Mostowski, Set 7beory (North-Holland, Amsterdam, 1967).
D. Lehmann, A. Pnueli and A. Stavi, Impartiality, justice and fairness: The ethics of concurrent
termation, in: Rot Internat. Co@ Automata, Languages and Programming, Lecture Notes in
Computer Science 115 (Springer, Berlin, 1981) 264-277.
2. Manna and A. Pnueli, Verification of concurrent programs: Temporal proof principles, in: D.
Kozen, ed., Logic of Programs, Lecture Notes in Computer Science 154 (Springer, Berlin, 1982)
200-252.
W. Marek, Private communication (1986).
A. Mazurkiewicz, Traces, histories, graphs: Instances of a process monoid, in: M. Chyti!, ed.,
Mathematical Foundations of Compu&r Science 1984, Lecture Notes in Computer Science 176
(Springer, Berlin, 1984) 11% 133.
A. Mazurkiewicz, Complete processes and inevitaLil&, R cport 86 = Q6, University of I&den (1986).
A. Mazurkiewicz, Trace theory, in: W. Brauer, W. Reisig and G. Rozenberg, eds., Advances in Petri
Nets 2986, Part II, Lecture Notes in Computer Science 255 (Springer, Berlin, 1987) 279-324.
A. Merceron, Fair processes, in: G. Rozenberg ed., Advances in Petri Nets 2987, Lecture Notes in
Computer Science 266 (Springer, Berlin, 1987) 181-195.
M. Nielsen, G. Plot in and G. Winskel, Petri nets, event structures and domains_ uqrt 1, Theoret.
Comput. Sci 13 (1981) 85-108.
E. Ochmaiiski, Inevitability in concurrent systems, Inform. Process. Lett. 25 (1987) 221-225.
S. Owicki and L. Lamport, Proving liveness properties of concurrent programs, ACM Trans.
Programming Languages and Systems 4(3) (1982) 455-495.
W. Penczek, Inevitability in diamond-discrete systems, HCS PAS Report 598 (1986).
C.A. Petri, Non-sequential processes, GMD-ISF Report 77-05 (1977).
A. Pnaeli, The temporal semantics of concurrent programs, Theoret. Comput. Sci. 13 (1981) 45-60.
W. Reisig, Petri Nets-An Introduction, EATCS Monographs on Theoretical Computer Science
(Springer, Berlin, 1985).
M.W. Shields, Nonsequential Behaviour; Part 1, Tech. Rept. CSR-120-82 Dept. of Computer Science,
University of Edinburgh (1982).
J. Winkowski, Behaviours of concurrent systems, T%eoret. Comput. Sci. 12 (1980) 39-60.
M. Zom, A remark on method in transfinite algebra, Bull. Amer. Math. Sot. 41 (1935) 667-670.

