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a b s t r a c t

Let (X, d) be a metric space and F : X ; X be a set valued mapping. We obtain sufficient
conditions for the existence of a fixed point of themapping F in themetric spaceX endowed
with a graph G such that the set V (G) of vertices of G coincides with X and the set of edges
of G is E(G) = {(x, y) : (x, y) ∈ X × X}.
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1. Introduction

Fixed point theorems formonotone single-valuedmappings in ametric space endowedwith a partial ordering have been
widely investigated. These theorems are hybrids of the two most fundamental and useful theorems in fixed point theory:
Banach’s contraction principle [1, Theorem 2.1] and Tarski’s fixed point theorem [2,3]. Generalizing the Banach contraction
principle for set valued mapping to metric spaces, Nadler [4] obtained the following result:

Theorem 1.1 ([4]). Let (X, d) be a complete metric space and F : X ; X be a set valued mapping such that F(x) is a nonempty
closed bounded subset of X. If there exists a κ ∈ (0, 1) such that

D(F(x), F(y)) ≤ κd(x, y), for all x, y ∈ X,

where D is the Hausdorff metric on CB(X), then F has a fixed point in X.

A number of extensions/generalizations of Nadler’s theorem were obtained by different authors; see for instance [5–13]
and references cited therein. The Tarski theorem was extended to set valued mapping by different authors; see [14–16].
Investigation of the existence of fixed points for single-valued mappings in partially ordered metric spaces was initially

considered by Ran and Reurings in [17] and they proved the following result:

Theorem 1.2 ([17]). Let (X,�) be a partially ordered set such that every pair x, y ∈ X has an upper and lower bound. Let d be
a metric on X such that (X, d) is a complete metric space. Let f : X → X be a continuous monotone (either order preserving or
order reversing) mapping. Suppose that the following conditions hold:
1. There exists a κ ∈ (0, 1) with

d(f (x), f (y)) ≤ κd(x, y) for all x � y.
2. There exists an x0 ∈ X with x0 � f (x0) or x0 � f (x0).
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Then f is a Picard Operator (PO), that is f has a unique fixed point x∗ ∈ X and for each x ∈ X,

lim
n→∞

f n(x) = x∗.

After this, different authors considered the problem of existence of a fixed point for contraction mappings in partially
ordered sets; see [18–31] and references cited therein. Nieto and Rodríguez-López in [28], proved the following:

Theorem 1.3 ([28]). Let (X, d) be a complete metric space endowed with a partial ordering �. Let f : X → X be an order
preserving mapping such that there exists a κ ∈ (0, 1) with

d(f (x), f (y)) ≤ κd(x, y) for all x � y.

Assume that one of the following conditions holds:

1. f is continuous and there exists an x0 ∈ X with x0 � f (x0) or x0 � f (x0);
2. (X, d,�) is such that for any nondecreasing (xn)n∈N , if xn → x, then xn � x for n ∈ N, and there exists an x0 ∈ X with
x0 � fx0;

3. (X, d,�) is such that for any nonincreasing (xn)n∈N , if xn → x, then xn � x for n ∈ N, and there exists an x0 ∈ X with
x0 � fx0.

Then f has a fixed point. Moreover if (X,�) is such that every pair of elements of X has an upper or a lower bound, then
f is a PO.
Recently Jachymski et al. [32,33] established a result which generalized the results of [23,27–31] to single-valued

mapping in metric spaces with a graph instead of partial ordering. They proved the following:

Theorem 1.4 ([32]). Let (X, d) be a complete metric space, and let the triple (X, d,G) have the following property:
For any (xn)n∈N in X, if xn → x and (xn, xn+1) ∈ E(G) for n ∈ N, then there is a subsequence (xkn)n∈N with (xkn , x) ∈ E(G)

for n ∈ N.
Let f : X → X be a G-contraction, Xf := {x ∈ X : (x, f (x)) ∈ E(G)}. Then the following statements hold:

1. cardFixf = card{[x]̃G : x ∈ Xf }.
2. Fix f 6= ∅ if and only if Xf 6= ∅.
3. f has a unique fixed point if and only if there exists an x0 ∈ Xf such that Xf ⊆ [x0 ]̃G.
4. For any x ∈ Xf , f |[x]̃G is a PO.
5. If Xf 6= ∅ and G is weakly connected, then f is a PO.

The aim of this paper is to study the existence of fixed points for set valued mappings in metric spaces endowed with a
graph G by defining the G-contraction.

2. Preliminaries

Let (X, d) be a complete metric space and CB(X) be the class of all nonempty closed and bounded subsets of X . For
A, B ∈ CB(X), let

D(A, B) := max
{
sup
b∈B
d(b, A), sup

a∈A
d(a, B)

}
,

where

d(a, B) := inf
b∈B
d(a, b).

Mapping D is said to be a Hausdorff metric induced by d.
Let F : X ; X be a set valued mapping i.e., X 3 x 7→ Fx is a subset of X .

Definition 2.1. A point x ∈ X is said to be a fixed point of the set valued mapping F if x ∈ F(x).

Let Fix F := {x ∈ X : x ∈ F(x)} denote the set of fixed points of the mapping F and ∆ := {(x, x) : x ∈ X} denote the
diagonal of the cartesian product X × X .
Consider a directed graph G such that the set of its vertices coincides with X (i.e., V (G) = X) and where the set of its

edges E(G) is such that∆ ⊆ E(G). We assume that G has no parallel edges and obtain a weighted graph by assigning to each
edge the distance between the vertices. We can identify G as (V (G), E(G)). G−1 denotes the conversion of a graph G, the
graph obtained from G by reversing the direction of its edges. G̃ denotes the undirected graph obtained from G by ignoring
the directions of the edges of G. We consider G as a directed graph whose set of edges is symmetric; thus we have

E (̃G) := E(G) ∪ E(G−1).

Definition 2.2. A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G).
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Fig. 1. A graph with parallel edges.
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Fig. 2. A weighted graph and a digraph.
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Fig. 3. H is the conversion and K is the undirected graph obtained from digraph G.

G

H-1 H-4H-3H-2

Fig. 4. H-1, H-2, H-3, H-4 are subgraphs of graph G.
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Fig. 5. ‘a’ to ‘e’ is a path of length 3.

Fig. 6. Connected digraphs.
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Fig. 7. A digraph having three components, each of which is a subgraph.

Definition 2.3. Let x and y be vertices in a graph G. A path in G from x to y of length n (n ∈ N ∪ {0}) is a sequence (xi)ni=0 of
n+ 1 distinct vertices such that x0 = x, xn = y and (xi−1, xi) ∈ E(G) for i = 1, 2, . . . , n.

Definition 2.4. The number of edges in G constituting the path is called the length of the path.

Definition 2.5. A graph G is connected if there is a path between any two vertices of G.

If a graph G is not connected then it is called disconnected and its different paths are called the components of G. Every
component of G is a subgraph of it. Moreover G is weakly connected if G̃ is connected.
Let Gx be the component of G, consisting of all edges and vertices which are contained in some path in G beginning at x.

Assume that G is such that E(G) is symmetric; then the equivalence class [x]G defined on V (G) by the rule R (xRy if there is
a path from x to y) is such that V (Gx) = [x]G (see Figs. 1–7).
For details regarding the above definitions from graph theory we refer the reader to Diestel [34].

Definition 2.6. Let F : X ; X be a set valued mapping with nonempty closed and bounded values. The mapping F is said
to be a G-contraction if there exists a κ ∈ (0, 1) such that

D(Fx, Fy) ≤ κd(x, y) for all (x, y) ∈ E(G)
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and if u ∈ F(x) and v ∈ F(y) are such that

d(u, v) ≤ κd(x, y)+ α, for each α > 0

then (u, v) ∈ E(G).

Proposition 2.7. If F : X ; X is a G-contraction then F is also a G−1-contraction.

Proof. It follows easily by the symmetry of D and d. �

Definition 2.8. A partial order relation is a binary relation� on X which satisfies the following conditions:
(i) x � x (reflexivity),
(ii) if x � y and y � x then x = y (antisymmetry),
(iii) if x � y and y � z then x � z (transitivity),

for all x, y and z in X .

A set with a partial order� is called a partially ordered set.

Definition 2.9. Let (X,�) be a partially ordered set and suppose x, y ∈ X . Points x and y are said to be comparable elements
of X if either x � y or x � y.

Lemma 2.10 ([35]). If A, B ∈ CB(X) and a ∈ A then for each positive number α there exists a b ∈ B such that d(a, b) ≤
D(A, B)+ α.

Lemma 2.11 ([35]). Let {An} be a sequence in CB(X) and limn→∞ D(An, A) = 0 for A ∈ CB(X). If xn ∈ An and limn→∞ d(xn, x) =
0, then x ∈ A.

Property A ([32, Remark 3.1]). For any sequence (xn)n∈N in X, if xn → x and (xn, xn+1) ∈ E(G) for n ∈ N, then (xn, x) ∈ E(G).

3. Main results

We begin with the following theorem that gives the existence of a fixed point for set valued mappings (not necessarily
unique) in metric spaces endowed with a graph.

Theorem 3.1. Let (X, d) be a complete metric space and suppose that the triple (X, d,G) has the Property A. Let F : X ; X be a
G-contraction and XF := {x ∈ X : (x, u) ∈ E(G) for some u ∈ F(x)}.

Then the following statements hold:

1. For any x ∈ XF , F |[x]̃G has a fixed point.
2. If XF 6= ∅ and G is weakly connected, then F has a fixed point in X .
3. If X ′ := ∪{[x]̃G : x ∈ XF }, then F |X ′ has a fixed point.
4. If F ⊆ E(G) then F has a fixed point.
5. Fix F 6= ∅ if and only if XF 6= ∅.

Proof. 1. Let x0 ∈ XF ; then there exists an x1 ∈ F(x0) such that (x0, x1) ∈ E(G). Since F is a G-contraction, we have

D(F(x0), F(x1)) ≤ κd(x0, x1).

Using Lemma 2.10, we have the existence of an x2 ∈ F(x1) such that

d(x1, x2) ≤ D(F(x0), F(x1))+ κ ≤ κd(x0, x1)+ κ. (1)

Again because of F is a G-contraction (x1, x2) ∈ E(G), we have

D(F(x1), F(x2)) ≤ κd(x1, x2),

and Lemma 2.10 gives the existence of an x3 ∈ F(x2) such that

d(x2, x3) ≤ D(F(x1), F(x2))+ κ2. (2)

Using inequality (1) in (2) we have

d(x2, x3) ≤ κ2d(x0, x1)+ 2κ2. (3)

Continuing in this way we have xn+1 ∈ F(xn) such that (xn, xn+1) ∈ E(G) and

d(xn, xn+1) ≤ κnd(x0, x1)+ nκn. (4)
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Next we will show that (xn) is a Cauchy sequence in X .
∞∑
n=0

d(xn, xn+1) ≤ d(x0, x1)
∞∑
n=0

κn +

∞∑
n=0

nκn <∞.

Thus (xn) is a Cauchy sequence and hence converges to some point (say) x in the complete metric space X .
Nowwe show that x is a fixed point of the mapping F . By using the Property A and the fact of F being a G-contraction, we

have

D(F(xn), F(x)) ≤ κd(xn, x).

Since xn+1 ∈ F(xn) and xn → x, then by Lemma 2.11, x ∈ F(x). Next, as (xn, x) ∈ E(G), for n ∈ N , we infer that
(x0, x1, . . . .xn, x) is a path in G and so x ∈ [x0 ]̃G.
2. Since XF 6= ∅, there exists an x0 ∈ XF , and since G is weakly connected, then [x0 ]̃G = X and by 1, mapping F has a fixed

point.
3. It follows easily from 1 and 2.
4. F ⊆ E(G) implies that all x ∈ X are such that there exists some u ∈ F(x)with (x, u) ∈ E(G); so XF = X and by 2 and 3,

F has a fixed point.
5. Let Fix F 6= ∅; this implies that there exists an x ∈ Fix F such that x ∈ F(x). ∆ ⊆ E(G); therefore (x, x) ∈ E(G) which

implies that x ∈ XF . So XF 6= ∅. Conversely if XF 6= ∅ then Fix F 6= ∅ follows from 2 and 3. �

Remark 3.2. If we assume G is such that E(G) := X × X then clearly G is connected and our Theorem 3.1 gives Nadler’s
theorem. Moreover if F is single valued then we get the Banach contraction theorem.

The following is a direct consequence of Theorem 3.1.

Corollary 3.3. Let (X, d) be a complete metric space and the triple (X, d,G) have the Property A. If G is weakly connected then
every G-contraction F : X ; X such that (x0, x1) ∈ E(G) for some x1 ∈ F(x0) has a fixed point.

Remark 3.4. Let G be such that E(G) := {(x, y) : x � y ∨ x � y}. In this case the G-contraction is defined as follows:
If there exists a κ ∈ (0, 1) such that

D(Fx, Fy) ≤ κd(x, y) for all (x, y) ∈ E(G)with x � y or x � y

and if u ∈ F(x) and v ∈ F(y) are such that

d(u, v) ≤ κd(x, y)+ α, for each α > 0

then (u, v) ∈ E(G)with u � v or v � u.

If F is a single-valuedmapping then Theorem3.1 partially generalizes the result of Ran andReurings, Nieto andRodríguez-
López, and Jachymski [17,28,32].

Example 3.5. Let X = {(0, 0), (0, 0.1), (0.1, 0.1)} := V (G) be a subset of R2 and E(G) := {((0.1, 0.1), (0, 0)), ((0, 0.1),
(0.1, 0.1))} be such that∆ ⊆ E(G).

Let d be the Euclidean metric on X defined as
d((x1, y1), (x2, y2)) =

√
(x1 − x2)2 + (y1 − y2)2,

so that (X, d) is a complete metric space. Let
F : X ; X

be a set valued mapping defined as

F(x) =

{
{(0, 0)} if x = (0, 0)
X if x = (0, 0.1)
∅ if x = (0.1, 0.1).

Now for all (x, y) ∈ E(G), F is a G-contraction. Also all other assumptions of Theorem 3.1 are satisfied and F has a fixed
point.

Example 3.6. Consider X = {(0, 1), (1, 0)} := V (G) as a subset of R2 with the Euclidean metric defined as in the above
example so that (X, d) is a complete metric space and E(G) := ∆.
Let

F : X ; X

be a set valued mapping defined as

F(x) =
{
{(1, 0), (0, 1)} if x = (1, 0)
{(1, 0)} if x = (0, 1).
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Since (1, 0) ∈ X is such that there exists (1, 0) ∈ F(1, 0)with ((1, 0), (1, 0)) ∈ E(G), then XF 6= ∅. Also F is a G-contraction
and the other assumptions of Theorem 3.1 are satisfied, and F has a fixed point.
The following example shows a case where although Property A is satisfied, F has no fixed point. In fact F has a fixed

point if in addition to the other assumptions of Theorem 3.1, F is a G-contraction.

Example 3.7. Consider X = {0, 0.5, 1} := V (G) to be a subset of R with the usual metric defined as d(x, y) =| x − y |, so
that (X, d) is a complete metric space and E(G) := {(1, 0.5), (0, 1)} is such that∆ ⊆ E(G).

Define F : X ; X as

F(x) =

{
{1, 0.5} if x = 0
{0, 1} if x = 0.5
{0} if x = 1.

Now since (1, 0.5) ∈ E(G) and D(F(1), F(0.5)) = 1, d((1, 0.5)) = 0.5, then for all elements of E(G) the contraction
condition is not satisfied. Although XF 6= ∅ and the other assumptions of Theorem 3.1 are satisfied, yet F has no fixed
point.
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