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Abstract

We construct a conformally invariant vector bundle connection such that its equation of parallel transport is a first order system
that gives a prolongation of the conformal Killing equation on differential forms. Parallel sections of this connection are related
bijectively to solutions of the conformal Killing equation. We construct other conformally invariant connections, also giving pro-
longations of the conformal Killing equation, that bijectively relate solutions of the conformal Killing equation on k-forms to a
twisting of the conformal Killing equation on (k − �)-forms for various integers �. These tools are used to develop a helicity raising
and lowering construction in the general setting and on conformally Einstein manifolds.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

On a pseudo-Riemannian n-manifold a tangent vector field v is an infinitesimal conformal automorphisms if the
Lie derivative of the metric Lvg is proportional to the metric g. This is the conformal Killing equation. Here conformal
Killing equation will also be used to mean a generalisation of this to k-forms, 1 � k � n − 1: a differential k-form
σ is a conformal Killing form if, with respect to the O(g)-decomposition of T ∗M ⊗ ΛkT ∗M , the Cartan part of the
Levi-Civita covariant derivative ∇σ is zero. Equivalently for any tangent field u we have

(1)∇uσ = ε(u)τ + ι(u)ρ
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where, on the right-hand side τ is a (k − 1)-form, ρ is a (k + 1)-form, and ε(u) and ι(u) indicate, respectively,
the exterior multiplication and the interior multiplication of g(u, ). An important property of the conformal Killing
equation (1) is that it is conformally invariant.

The main aims of this paper are: 1. to derive a conformally invariant connection which is “equivalent” to the
conformal Killing equation in that its parallel sections are naturally in one-one correspondence with solutions of the
conformal Killing equation (1), 2. to derive a conformally invariant connection ∇̃ that in a similar way relates solutions
of the conformal Killing equation on k-forms to solutions of the conformal Killing equation on (k − �)-forms (for
suitable positive and negative integers �) twisted by the connection ∇̃ , and 3. to apply these ideas to a programme of
helicity raising and lowering; here solutions of (1) are combined non-linearly to yield new solutions. For the third part
our aim is to illustrate the ideas; no attempt has been made to be complete.

Conformal Killing 2-forms were introduced by Tachibana in [28] and the generalisation to higher valence followed
shortly after [18]. Coclosed conformal Killing forms are Killing forms (or sometime called Killing–Yano forms). The
latter satisfy the equation which generalises the Killing equation on vector fields, that is (1) with τ identically 0.
This equation has been studied intensively in the physics literature in connection with its role generating quadratic
first integrals of the geodesic equation. Aside from this connection, and a role in the higher symmetries of other
equations [2], the broader geometric meaning of higher rank conformal Killing forms is still somewhat mysterious.
The issue of global existence of conformal Killing forms in the compact Riemannian setting has been pursued recently
by Semmelmann and others, see [23,24] for an indication of results and further references.

A semilinear partial differential equation is said to be of finite type [26] if there is a suitably equivalent finite di-
mensional prolonged system that is “closed” in the sense that all first partial derivatives of the dependent variables
are determined by algebraic formulae in terms of these same variables. For certain linear equations it can turn out
that the prolonged system is the equation of parallel transport for a vector bundle connection, so one immediately
gets e.g. bounds on the size of the solution space. In [23] Semmelmann explicitly constructs a prolongation and con-
nection along these lines for (1). This was vastly generalised in [3] which presents a uniform algorithm for explicitly
computing such prolongations for a wide class of geometric semilinear overdetermined partial differential equations.
This class includes the conformal Killing equation as one of the simplest cases. However neither of these treatments
addresses the conformal invariance of (1). For the case of k = 1 an equivalent conformally invariant connection was
given in [15]. (See also [7] which generalises this to an analogue for all parabolic geometries.) Ab initio, given a
conformally invariant equation one does not know whether there is a conformally invariant prolonged system along
these lines. We show that for the conformal Killing equation there is, see Theorem 3.9. The connection obtained is
described explicitly as a contorsion type modification to an exterior power (as treated in [5]) of the normal standard
tractor connection of [1,9]. The power of this is that the latter is a simple well-understood connection on a bundle of
relatively low rank (viz. n+ 2) and which respects a bundle metric. Describing things in terms of form-tractors in this
way captures succinctly what conformal invariance means for the components of the prolongation. The curvature of
the connection in Theorem 3.9 is a conformal obstruction to solutions of (1). By a simple variant of the treatment of
obstructions to conformally Einstein metrics in Section 3.3 of [17], one may proliferate other conformally invariant
local invariants which obstruct solutions.

Theorem 3.9 relates solutions of the conformal Killing equation to a twisting of the exterior derivative on func-
tions. A generalisation of this idea is this: given two suitable distinct conformally invariant equations A = 0 and
B = 0, consider obtaining a conformally connection ∇̃ so that solutions of the equation A are bijectively related (by
a prolongation) to solutions of the twisting by ∇̃ of the equation B i.e. B∇̃ = 0. (Of course there are variants of this
where we replace conformal invariance by any other notion of invariance.) In Section 4 we obtain results exactly of
this type, with the conformal Killing equation on forms of different ranks playing the roles of both A and B , see
Theorem 4.4, and also Proposition 4.3. The remarkable feature of these results is the very simple form of the twist-
ing connection—see (36) and (38). These results and their simplicity are exploited in Section 5 where we describe
explicit conformally invariant helicity raising and lowering formulae. (Cf. [6] where a related construction is outlined
in general terms.) See in particular: Theorem 5.1 which uses (almost) Einstein metrics and conformal Killing fields to
generate conformal Killing fields; Theorem 5.4 where conformal Killing forms are used to generate other conformal
Killing forms; and Theorem 5.4 where they are used to generate conformal Killing tensors, i.e. symmetric trace-free
tensors S such that the symmetric trace-free part of ∇S vanishes. This idea of combining solutions to yield solutions
of other equations is along the lines of helicity raising and lowering by Penrose’s twistors in dimension 4.
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To construct the required prolongations we develop a calculus that enables us to efficiently deal with differential
forms, form-tractors, and some related bundles of arbitrary rank. The ideas originate in [5] but significant extensions
have been developed in [25]. The idea is that as a first step in constructing the new connections we may take the normal
tractor connection to be a “first approximation”. By elementary representation theory it must agree with the required
connections in the conformally flat setting. Then, employing the form calculus mentioned, we compute explicitly the
tractor “contorsion” needed to adjust the normal connection. Eastwood’s curved translation principle (see e.g. [11])
generates conformally invariant equations from other such equations via differential splitting operators between tractor
bundles and (weighted) tensor-spinor bundles. The constructions and ideas in Sections 4 and 5 involve the refinement
where one seeks to “translate solutions” of equations rather just the equations themselves. This necessarily draws on
solutions of other equations and their equivalence to parallel (or suitably almost parallel) sections of tractor bundles.

2. Conformal geometry, tractor calculus and conformal Killing equation

2.1. Conformal geometry and tractor calculus

We summarise here some notation and background. Further details may be found in [10,16]. Let M be a smooth
manifold of dimension n � 3. Recall that a conformal structure of signature (p, q) on M is a smooth ray subbundle
Q ⊂ S2T ∗M whose fibre over x consists of conformally related signature-(p, q) metrics at the point x. Sections of
Q are metrics g on M . So we may equivalently view the conformal structure as the equivalence class [g] of these
conformally related metrics. The principal bundle π :Q → M has structure group R+, and so each representation
R+ � x �→ x−w/2 ∈ End(R) induces a natural line bundle on (M, [g]) that we term the conformal density bundle
E[w]. We shall write E[w] for the space of sections of this bundle. We write Ea for the space of sections of the
tangent bundle T M and Ea for the space of sections of T ∗M . The indices here are abstract in the sense of [21] and
we follow the usual conventions from that source. So for example Eab is the space of sections of ⊗2T ∗M . Here and
throughout, sections, tensors, and functions are always smooth. When no confusion is likely to arise, we will use the
same notation for a bundle and its section space.

We write g for the conformal metric, that is the tautological section of S2T ∗M ⊗E[2] determined by the conformal
structure. This is used to identify T M with T ∗M[2]. For many calculations we employ abstract indices in an obvious
way. Given a choice of metric g from [g], we write ∇ for the corresponding Levi-Civita connection. With these
conventions the Laplacian 
 is given by 
 = gab∇a∇b = ∇b∇b . Here we are raising indices and contracting using
the (inverse) conformal metric. Indices will be raised and lowered in this way without further comment. Note E[w] is
trivialised by a choice of metric g from the conformal class, and we also write ∇ for the connection corresponding to
this trivialisation. The coupled ∇a preserves the conformal metric.

The curvature Rab
c
d of the Levi-Civita connection (the Riemannian curvature) is given by [∇a,∇b]vc = Rab

c
dvd

([·, ·] indicates the commutator bracket). This can be decomposed into the totally trace-free Weyl curvature Cabcd and
a remaining part described by the symmetric Schouten tensor Pab , according to

(2)Rabcd = Cabcd + 2gc[aPb]d + 2gd[bPa]c,

where [· · ·] indicates antisymmetrisation over the enclosed indices. The Schouten tensor is a trace modification of the
Ricci tensor Ricab = Rca

c
b and vice versa: Ricab = (n− 2)Pab + Jgab , where we write J for the trace Pa

a of P . The
Cotton tensor is defined by Aabc := 2∇[bPc]a . Via the Bianchi identity this is related to the divergence of the Weyl
tensor as follows:

(3)(n − 3)Aabc = ∇dCdabc.

Under a conformal transformation we replace a choice of metric g by the metric ĝ = e2Υ g, where Υ is a smooth
function. We recall that, in particular, the Weyl curvature is conformally invariant Ĉabcd = Cabcd . With Υa := ∇aΥ ,
the Schouten tensor transforms according to

(4)P̂ab = Pab − ∇aΥb + ΥaΥb − 1

2
Υ cΥcgab.

Explicit formulae for the corresponding transformation of the Levi-Civita connection and its curvatures are given
in e.g. [1,16]. From these, one can easily compute the transformation for a general valence (i.e. rank) s section
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fbc···d ∈ Ebc···d [w] using the Leibniz rule:

(5)∇̂āfbc···d = ∇āfbc···d + (w − s)Υāfbc···d − Υbfāc···d · · · − Υdfbc···ā + Υ pfpc···dgbā · · · + Υ pfbc···pgdā.

We next define the standard tractor bundle over (M, [g]). It is a vector bundle of rank n + 2 defined, for each
g ∈ [g], by [EA]g = E[1] ⊕ Ea[1] ⊕ E[−1]. If ĝ = e2Υ g, we identify (α,μa, τ ) ∈ [EA]g with ( α̂, μ̂a, τ̂ ) ∈ [EA]ĝ by
the transformation

(6)

(
α̂

μ̂a

τ̂

)
=

( 1 0 0
Υa δa

b 0
− 1

2ΥcΥ
c −Υ b 1

)(
α

μb

τ

)
.

It is straightforward to verify that these identifications are consistent upon changing to a third metric from the con-
formal class, and so taking the quotient by this equivalence relation defines the standard tractor bundle EA over the
conformal manifold. (Alternatively the standard tractor bundle may be constructed as a canonical quotient of a certain
2-jet bundle or as an associated bundle to the normal conformal Cartan bundle [8].) On a conformal structure of sig-
nature (p, q), the bundle EA admits an invariant metric hAB of signature (p + 1, q + 1) and an invariant connection,
which we shall also denote by ∇a , preserving hAB . Up to isomorphism this is the unique normal conformal tractor
connection [9] and it induces a normal connection on

⊗
EA that we will also denote by ∇a and term the (normal)

tractor connection. In a conformal scale g, the metric hAB and ∇a on EA are given by

(7)hAB =
(0 0 1

0 gab 0
1 0 0

)
and ∇a

(
α

μb

τ

)
=

( ∇aα − μa

∇aμb + gabτ + Pabα

∇aτ − Pabμ
b

)
.

It is readily verified that both of these are conformally well defined, i.e., independent of the choice of a metric g ∈ [g].
Note that hAB defines a section of EAB = EA ⊗ EB , where EA is the dual bundle of EA. Hence we may use hAB and
its inverse hAB to raise or lower indices of EA, EA and their tensor products.

In computations, it is often useful to introduce the ‘projectors’ from EA to the components E[1], Ea[1] and
E[−1] which are determined by a choice of scale. They are respectively denoted by XA ∈ EA[1], ZAa ∈ EAa[1]
and YA ∈ EA[−1], where EAa[w] = EA ⊗ Ea ⊗ E[w], etc. Using the metrics hAB and gab to raise indices, we define
XA,ZAa,YA. Then we see that YAXA = 1, ZAbZ

A
c = gbc , and all other quadratic combinations that contract the

tractor index vanish. In (6) note that α̂ = α and hence XA is conformally invariant.
Given a choice of g ∈ [g], the tractor-D operator DA :EB···E[w] → EAB···E[w − 1] is defined by

(8)DAV := (n + 2w − 2)wYAV + (n + 2w − 2)ZAa∇aV − XA�V,

where �V := 
V + wJV . This is conformally invariant, as can be checked directly using the formulae above (or
alternatively there are conformally invariant constructions of D, see e.g. [12]).

The curvature Ω of the tractor connection is defined on EC by [∇a,∇b]V C = Ωab
C

EV E . Using (7) and the
formulae for the Riemannian curvature yields

(9)ΩabCE = ZC
cZE

eCabce − 2X[CZE]eAeab.

2.2. Forms and tensors

The basic tractor tools for dealing with weighted differential forms are developed in [5] and following that source
we write Ek[w] for the space of sections of (ΛkT ∗M) ⊗ E[w] (and Ek = Ek[0]). However in order to be explicit
and efficient in calculations involving bundles of possibly high rank it is necessary to introduce some further abstract
index notation. In the usual abstract index conventions one would write E[ab···c] (where there are implicitly k-indices
skewed over) for the space Ek . To simplify subsequent expressions we use the following conventions. Firstly indices
labelled with sequential superscripts which are at the same level (i.e. all contravariant or all covariant) will indicate a
completely skew set of indices. Formally we set a1 · · ·ak = [a1 · · ·ak] and so, for example, Ea1···ak is an alternative
notation for Ek while Ea1···ak−1 and Ea2···ak both denote Ek−1. Next we abbreviate this notation via multi-indices: We
will use the forms indices
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ak := a1 · · ·ak = [
a1 · · ·ak

]
, k � 0,

ȧk := a2 · · ·ak = [
a2 · · ·ak

]
, k � 1,

äk := a3 · · ·ak = [
a3 · · ·ak

]
, k � 2,

...
a k := a4 · · ·ak = [

a4 · · ·ak
]
, k � 3.

If, for example, k = 1 then ȧk simply means the index is absent, whereas if k = 1 then ä means the term containing
the index ä is absent. For example, a 3-form ϕ can have the following possible equivalent structures of indices:

ϕa1a2a3 = ϕ[
a1a2a3] = ϕa3 = ϕa1ȧ3 = ϕ[

a1ȧ3] = ϕa1a2ä3 ∈ Ea3 = E3.

We will also use gakbk (and similarly g
ȧk ḃ

k ) for ga1b1 · · ·gakbk (where all a-indices and all b-indices are skewed over)
and g denotes the conformal metric.

The corresponding notations will be used for tractor indices so e.g. the bundle of tractor k-forms E[A1···Ak] will be
denoted by EA1···Ak or EAk .

We shall demonstrate the notation by giving the conformal transformation formulae of the Levi-Civita connection
acting on conformally weighted forms. Under a rescaling g �→ ĝ = e2Υ g of the metric, and writing Υa := ∇aΥ ,
from (5) we have the following on fak ∈ Eak [w]:

∇̂a0fak = ∇a0fak + wΥa0fak ,

(10)∇̂a1
fak = ∇a1

fak + (n + w − 2k)Υ a1
fak .

We need similar results for spaces with more complicated symmetries. We shall define E(1, k) for k � 1 and E(2, k)

for k � 2 as follows:

E(1, k) := {fcak ∈ Ecak | f[cak] = 0} ⊆ Ecak ,

E(2, k) := {f̃c2ak ∈ Ec2ak | f̃[c2ak] = f̃c1[c2ak] = f̃[c2ak−1]ak = 0} ⊆ Ec2ak .

In other words, the subspaces E(1, k) and E(2, k) are defined by the condition that any skew symmetrisation of
more than k indices vanishes. The subspaces of completely trace-free tensors in E(1, k) and E(2, k) will be denoted
respectively by E(1, k)0 and E(2, k)0. Tensor products with density bundles will be denoted in an obvious way. For
example E(1, k)0[w] is a shorthand for E(1, k)0 ⊗ E[w].

We will later need the following identities

(11)fa1pȧk = 1

k
fpak and f̃a1qpȧk = 1

k
f̃pqak

for fcak ∈ E(1, k)[w] and f̃c2ak ∈ E(2, k)[w]. This follows from the skewing [pak] which vanishes in both cases. Using
the second of these we recover, for example, the well-known identities R[ab

c]d = 1
2Rac

bd and C[ab
c]d = 1

2Cac
bd .

Via (11), (5) and a short computation we obtain the transformations

∇̂a0fcak = ∇a0fcak + (w − 1)Υa0fcak + gca0Υ
pfpak ,

∇̂cfcak = ∇cfcak + (n + w − k − 1)Υ cfcak ,

(12)∇̂c1
f̃c2ak = ∇c1

f̃c2ak + (n + w − k − 3)Υ c1
f̃c2ak

for fcak ∈ E(1, k)0[w] and f̃c2ak ∈ E(2, k)0[w].

2.3. Tractor forms

It follows from the semidirect composition series of EA that the corresponding decomposition of EAk is

(13)E[A1···Ak] = EAk � Ek−1[k] +�� (
Ek[k] ⊕ Ek−2[k − 2]) +�� Ek−1[k − 2].

Given a choice of metric g from the conformal class this determines a splitting of this space into four components
(a replacement of the +�� s with ⊕s is effected) and the projectors (or splitting operators) X,Y,Z for EA determine
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corresponding projectors X,Y,Z,W for EAk+1 , k � 1 as follows:

Yk = Y
A0

a1···ak

A1···Ak = Y
A0

ak

Ak = YA0Z
a1

A1 · · ·Zak

Ak ∈ Eak

Ak+1[−k − 1],
Zk = Za1···ak

A1···Ak = Zak

Ak = Za1

A1 · · ·Zak

Ak ∈ Eak

Ak [−k],
Wk = W

A′A0
a1···ak

A1···Ak = W
A′A0

ak

Ak = X[A′YA0Z
a1

A1 · · ·Zak

Ak] ∈ Eak

Ak+2[−k],
Xk = X

A0
a1···ak

A1···Ak = X
A0

ak

Ak = XA0Z
a1

A1 · · ·Zak

Ak ∈ Eak

Ak+1 [−k + 1],
where k � 0. The superscript k in Yk , Zk , Wk and Xk shows always the corresponding tensor valence. (This is
slightly different than in [5], where k concerns the tractor valence.) Note that Y = Y0, Z = Z1 and X = X0 and
W0 = X[A′YA0]. Using these projectors a section fAk+1 ∈ EAk+1 can be written as a 4-tuple

fAk+1 =
(

σak

μa0ak ϕȧk

ρak

)
= Y

A0
ak

Ak σak + Z
a0 ak

A0Akμa0ak + W
A0

ȧk

Akϕȧk + X
A0

ak

Akρak

for forms σ,μ,ϕ,ρ of weight and valence according to the relationship given in (13).
The conformal transformation (6) yields the transformation formulae for the projectors:

̂
Y

A0
ak

Ak = Y
A0

ak

Ak − Υa0Z
a0ak

A0Ak − kΥ a1
W

A0
ȧk

Ak − 1

2
Υ kΥkXA0

ak

Ak + kΥpΥ a1
X

A0
pȧk

Ak ,

̂
Za0ak

A0Ak = Za0ak

A0Ak + (k + 1)Υ a0
X

A0
ak

Ak ,

̂
W

A0
ȧk

Ak = W
A0

ȧk

Ak − Υa1X
A0

ak

Ak ,

(14)̂
X

A0
ak

Ak = X
A0

ak

Ak

for metrics ĝ and g from the conformal class. The normal tractor connection on (k + 1)-form-tractors is

(15)∇p

(
σak

μa0ak ϕȧk

ρak

)
=

⎛⎜⎜⎜⎝
∇pσak − (k + 1)μpak − gpa1ϕȧk{ ∇pμ

a0ak

+P
pa0σak +g

pa0ρak

} { ∇pϕȧk

+kP a1
p σak −kδa1

p ρak

}
∇pρak − (k + 1)Pp

a0
μa0ak + Ppa1ϕȧk

⎞⎟⎟⎟⎠
or equivalently

∇pY
A0

ak

Ak = Ppa0Z
a0ak

A0Ak + kPp
a1

W
A0

ȧk

Ak ,

∇pZa0ak

A0Ak = −(k + 1)δa0

p Y
A0

ak

Ak − (k + 1)Pp
a0

X
A0

ak

Ak ,

∇pW
A0

ȧk

Ak = −gpa1Y
A0

ak

Ak + Ppa1X
A0

a1ȧk

Ak ,

∇pX
A0

ak

Ak = gpa0Z
a0ak

A0Ak − kδa1

p W
A0

ȧk

Ak .

2.4. The conformal Killing equation on forms

The space Ecak = Ec ⊗ Ea1···ak is completely reducible for 1 � k � n and we have the O(g)-decomposition
Ecak [w] ∼= E[cak][w] ⊕ E{cak}0

[w] ⊕ Eak−1 [w − 2] where the bundle E{cak}0
[w] consists of rank k + 1 trace-free tensors

Tcak (of conformal weight w) that are skew on the indices a1 · · ·ak and have the property that T[ca1···ak] = 0. (Note
that the three spaces on the right-hand side are SO(g)-irreducible if k /∈ {n/2, n/2 ± 1}.) On the space Ecak [w] there
is a projection P{cak}0

to the component E{cak}0
[w] and we will use the notation

Tcak
{cak}0= Scak or Tcak={cak}0

Scak

to mean that P{cak} (T ) =P{cak} (S). We will also use the projection P{cak} to E(1, k)[w] =: E{cak}[w].

0 0
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Each metric from the conformal class determines a corresponding Levi-Civita connection ∇ and for 1 � k � n − 1
and σak ∈ Ek[k + 1], we may form ∇cσak . This is not conformally invariant. However it is straightforward to verify
that its projection P{cak}0

(∇σ) is conformally invariant. That is, this is independent of the choice of metric (and
corresponding Levi-Civita connection) from the conformal class. Thus the equation

(CKE)∇{cσak}0
= 0, 1 � k � n − 1

called the (form) conformal Killing equation, is conformally invariant. This is exactly Eq. (1) from the introduction.
Suppose ∇̃ is a connection on another vector bundle (or space of sections thereof) E•. For this connection coupled

with the Levi-Civita connection let us also write ∇̃ . Since it is a first order equation (CKE) is strongly invariant
(cf. [11,13]) in the sense that if now σak ∈ Eak•[k + 1] = Eak [k + 1] ⊗ E• then ∇̃{cσak}0

= 0 is also conformally
invariant. We will also call any such equation a conformal Killing equation (or sometimes for emphasis a coupled
conformal Killing equation).

On oriented conformal manifolds the conformal Hodge-� operator (see e.g. [5]) gives a mapping � :Ek[k + 1] →
En−k[n − k + 1], and from elementary classical SO(n)-representation theory it follows easily that σ ∈ Ek[k + 1]
solves (CKE) for k-forms if and only if �σ solves the version of (CKE) for (n − k)-forms. Since the redundancy on
oriented manifolds does us no harm, we shall ignore this and in the following simply treat the equation on k-forms for
1 � k � n − 1.

3. Invariant prolongation for conformal Killing forms

Throughout this section, and in much of the subsequent work, we will write fa (rather than fak ) to denote a section
in Eak [k + 1]. That is, the superscript of the form index a will be omitted but can be taken to be k (or otherwise if clear
from the context).

Before we start with the construction of the prolongation, we will introduce some notation for certain algebraic
actions of the curvature on tensors. Let us write � (which we will term hash) for the natural action of sections A of
End(T M) on tensors. For example, on a covariant 2-tensor Tab , we have A�Tab = −Ac

aTcb − Ac
bTac . If A is skew

for a metric g, then at each point, A is so(g)-valued. The hash action thus commutes with the raising and lowering
of indices and preserves the SO(g)-decomposition of tensors. For example the Riemann tensor may be viewed as an
End(T M)-valued 2-form Rab and in this notation, for an arbitrary tensor T , we have [∇a,∇b]T = Rab�T . Similarly
we have Cab�T for the Weyl curvature. As a section of the tensor square of the g-skew bundle endomorphisms of
T M , the Weyl curvature also has a double hash action that we denote C��T .

We need some more involved actions of the Weyl tensor on Eak [w] for k � 2. These are given by

(C�f )cȧ := k − 2

k

(
Cca2

pqfpqä + Ca3a2
pqfpqc

...
a
) ∈ Ecȧk [w − 2],

(16)(C♦f )ca := Cc1c2a1
pfpȧ + Ca1a2c1

pfpc2ä + k

n − k
gc1a1(C�f )c2ȧ ∈ Ec2ak [w],

where c = c2 and fa ∈ Eak [w]. Note that C♦f vanishes for k = n − 1 since E(2, n − 1)0 is trivial. For the sake of
complete clarity we have given these explicit formulae but note that, up to a multiple, the first of these is simply
C�f ∈ Ec2ak followed by projection to E(1, k − 1)[w − 2] (the projection involves a trace), while the second is C�f

followed by projection to E(2, k)0[w]. This is clear except for the final projection in each case, which we now verify.

3.1. Lemma. Let us suppose k � 2. Then

(i) (C�f )cȧ = C{ca2
pqf|pq|ä}0 ∈ E(1, k − 1)0[w − 2],

(ii) (C♦f )ca ∈ E(2, k)0[w].

Proof. (i) It follows from (16) and the Bianchi identity that (C�f )cȧ is trace-free. Moreover

(17)C{ca2
pqf|pq|ä} = Cca2

pqfpqä − C[ca2
pqf|pq|ä] = (C�f )cȧ,

where the first equality is just the definition of the projection {..} and the second follows from re-expressing of the
skew symmetrisation [cȧ] in the last display.
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(ii) According to the definition of E(2, k)0, we are required to show that (C♦f )c1[c2a] = (C♦f )[cȧ]ak+1 = 0 (note
(C♦f )[ca] = 0 is obvious from (16)) and also that C♦f is trace-free. Both skew symmetrisations [c2a] and [cȧ] kill
the last term of C♦f in (16), because (C�f )[cȧ] = 0 according to the lemma (i). Applying the symmetrisation [c2a] to
the first two terms in (16) and using the Bianchi identity yields Cc1[c2a1

pf|p|ȧ] + 1
2C[a1a2|c1

pfp|c2ä], where the indices

c1c2 are not skewed over. This is zero because Cc1[c2a1]p = − 1
2Cc2a1c1

p . The second skew symmetrisation [cȧ] is
similar.

It remains to prove gc1a1
(C♦f )ca = 0. Tracing the last term in (16) yields k

n−k
gc1a1

gc1a1(C�f )c2ȧ =
1
2 (C�f )c2ȧ after a short computation. Further computations reveal gc1a1

Cc1c2a1
pfpȧ = − k−1

2k
Cc2a2

pqfpqä and

gc1a1
Ca1a2c1

pfpc2ä = − k−2
2k

Ca3a2
pqfpqc2...

a + 1
2k

Cc2a2
pqfpqä. Summing the last three equations, the lemma part

(ii) follows from (16) for C�f . �
Introducing new variables, the equation (CKE) may be re-expressed in the form ∇cσa = μca + gca1νȧ, where

μa0a ∈ Ea0ak [k + 1] and νȧ ∈ Eȧk [k − 1]. These capture some of the 1-jet information: we have μa0a = ∇a0σa, and
νȧ = k

n−k+1∇pσpȧ. We need a further set of variables to complete (CKE) to a first order closed system. There is some

choice here, but, for the purposes of studying conformal invariance, ρa := − 1
k
∇a1νȧ + 1

nk
∇p∇{pσa}0 − Pa1

pσpȧ is a
judicious choice. We then have the following result.

3.2. Proposition. Solutions of the conformal Killing equation (CKE), for 1 � k � n − 1, are in 1–1 correspondence
with solutions of the following system on σa ∈ Eak [k + 1], μa0a ∈ Ea0ak [k + 1], νȧ ∈ Eȧk [k − 1] and ρa ∈ Eak [k − 1]:

∇cσa = μca + gca1νȧ;
∇cμa0a = (k + 1)

[
gca0ρa − Pca0σa − 1

2
Ca0a1c

pσpȧ

]
;

∇cνȧ = −k[ρcȧ + Pc
pσpȧ] + k(k − 1)

2(n − k)
(C�σ)cȧ;

∇cρa = Pca1νȧ − Pc
pμpa + 1

2
Ap

a1a2σpcä − Ap
ca1σpȧ + 1

2
Ca1a2c

pνpä − k

2(n − k)
∇

a1(C�σ)cȧ for k � 2;
(18)∇cρa1 = Pca1ν − Pc

pμpa1 + Aa1pcσ
p for k = 1.

The mapping from solutions σa of (CKE) to solutions (σa,μa0a, νȧ, ρa) of the system above is

(19)σa �→
(

σa,∇a0σa,
k

n − k + 1
∇pσpȧ,

1

nk
∇p∇{pσa}0 − 1

n − k + 1
∇a1∇pσpȧ − Pa1

pσpȧ

)
.

Proof. The first equation ∇cσa = μca +gca1νȧ is simply a restatement of the conformal Killing equation (CKE). This
gives μa0a and νȧ in terms of derivatives of σa. Thus the proposition is clear except that we should verify that if σa
solves (CKE) then we have the second, third and fourth equations of (18).

For the second equation, let us observe (k + 2)∇[c∇a0σa] = ∇c∇a0σa − (k + 1)∇a1∇[a0σcȧ], and that the left-hand
side vanishes due to the Bianchi identity. The first term on the right-hand side is ∇cμa0a thus

∇cμa0a = (k + 1)∇a1μa0cȧ = (k + 1)∇a1(∇a0σcȧ − ga0[cνȧ])

= (k + 1)

(
1

2
Ra1a0c

pσpȧ − 1

k
gca0∇a1νȧ

)
,

where the second equality follows from the first equation in (18) and the third equality from the Bianchi identity. Now
the equation for ∇cμa0a in (18) follows from the last display using (2) and the relation ρa = − 1

k
∇a1νȧ − Pa1

pσpȧ,
which we have for solutions.

The third equation in (18) concerns ∇cνȧ = k
n−k+1∇c∇pσpȧ. Commuting the covariant derivatives we get ∇c∇p =

Rc
p� + ∇p∇c where, recall, � captures the action of the Riemann curvature tensor R. Therefore
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(n − k + 1)∇cνȧ = k
[
Rc

p
p

qσqȧ + (k − 1)Rc
p

a2
qσpqä + ∇p(μcpȧ + gc[pνȧ])

]
= k

[
−Ricc

pσpȧ + 1

2
(k − 1)Rca2

pqσpqä − ∇pμpcȧ + 1

k
∇cνȧ

]
,

where we have used ∇pνpä = k
n−k+1∇p∇qσqpä = 0. Note that the last term here is a multiple of the left-hand side.

We consider the other terms on the right-hand side. Recall that (2) gives Ricab = (n − 2)Pab + Jgab . Using (2) also
for the second term on the right-hand side, and the equation for ∇cμa0a in (18) for the third, a computation yields

−Ricc
pσpȧ = −(n − 2)Pc

pσpȧ − Jσcȧ,

1

2
(k − 1)Rca2

pqσpqä = 1

2
(k − 1)Cca2

pqσpqä + 2(k − 1)δp[cPa2]qσpqä

= 1

2
(k − 1)Cca2

pqσpqä − (k − 1)(Pa2
pσpcä − Pc

pσpȧ),

−∇pμpcȧ = −(n − k)ρcȧ + Jσcȧ − kP[cpσ|p|ȧ] − 1

2
(k − 1)C[a2c

qpσ|pq|ä].

Hence the last but one display says that n−k
k

∇cνȧ is equal to the sum of the right-hand sides of the last display. Now
using the relation −kP[cpσ|p|ȧ] = −Pc

pσpȧ + (k − 1)Pa2
pσpcä and (17) we obtain immediately the third equation

in (18).
For the last equation we first make an observation about its skew-symmetric part ∇[cρa]. Using the definition of ρ

and the Bianchi identity, we have ∇[cρa] = −∇[cPa1
pσ|p|ȧ]. Using the Leibniz rule and the first equation in (18) for

the right-hand side, we obtain

(20)∇[cρa] = −1

2
Ap[ca1σ|p|ȧ] − P[cpμ|p|a],

since the term Pa1
pgc[pνȧ] vanishes after the skew symmetrisation [ca]. Now to compute the full section ∇cρa, we

shall start with the equation for ∇cνȧ from (18). We apply ∇a1 to both sides of this equation and skew over all
a-indices. Commuting the covariant derivatives on the left-hand side, we obtain ∇a1∇c = ∇c∇a1 + Ra1c�. The first
term on the right-hand side is −k∇a1ρcȧ = (k + 1)∇[cρa] − ∇cρa. Through these observations, and using (20), we
obtain

∇c∇a1νȧ + (k − 1)Ra1ca2
pνpä = −(k + 1)

(
1

2
Ap[ca1σ|p|ȧ] + P[cpμ|p|a]

)
− ∇cρa − k∇

a1Pc
pσpȧ + k(k − 1)

2(n − k)
∇a1(C�σ)cȧ.

Many terms can be simplified and we shall start with the first term on the left-hand side. We have ∇c∇a1νȧ =
−k(∇cρa + ∇cPa1

pσ|p|ȧ) which follows from the equation for ∇cνȧ in (18). Combining the last two displays we
obtain

−(k − 1)∇cρa = 2k∇[cPa1]pσpȧ − (k + 1)

(
1

2
Ap[ca1σ|p|ȧ] + P[cpμ|p|a]

)
− 1

2
(k − 1)Ra1a2c

pνpä + k(k − 1)

2(n − k)
∇a1(C�σ)cȧ,

where we have also used Ra1ca2
p = 1

2Ra1a2c
p . Note that for the case of (the rank of σ being) k = 1 both sides of the

equality above vanish and we get no information. Now we simplify terms on the right-hand side: the first term using
the Leibniz rule and the equation for ∇cσa, the next two terms re-expressing the skew symmetrisation [ca] and the
first curvature term using the decomposition (2). This yields

2k∇[cPa1]pσpȧ = kAp
ca1σpȧ + 2kP[a1

pμc]pȧ + 2kP[a1
pgc][pνȧ]

= kAp
ca1σpȧ + kPa1

pμcpȧ − kPc
pμa1pȧ + (k − 1)gca1Pa2

pνpä,

−1
(k + 1)Ap[ca1σ|p|ȧ] = −Ap

ca1σpȧ + 1
(k − 1)Ap

a2a1σpcä,

2 2
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−(k + 1)P[cpμ|p|a] = −Pc
pμpa + kPa1

pμpcȧ,

−1

2
(k − 1)Ra1a2c

pνpä = −1

2
(k − 1)[Ca1a2c

pνpä + 2gca1Pa2
pνpä + 2Pca1νȧ].

Substituting these in the previous display, the proposition for k � 2 follows. The case k = 1 can be checked directly
by tracing 1

2Rc0c1�μa0a1 = ∇c0∇c1μa0a1 = ∇c0[2gc1a0ρa1 − 2Pc1a0σa1 − Ca0a1c1
pσp]. �

Remark. There is a variant of the derivation for the k � 2 cases, as in the proof above, which generalises the treatment
of k = 1 that we give there. However this breaks down for k = n − 1. Dually the proof we give for k � 2 breaks down
at k = 1. Our proof of the k = 1 agrees with a treatment of that case distributed privately by Mike Eastwood during
the preparation of [3] and his notation and conventions influenced our treatment. Earlier alternative treatments of that
case have been known to the first author for some time (see [15]).

3.3. Lemma. Let us fix k � 2. If σa ∈ Eak [k + 1] is a solution of (CKE) then (C♦σ)ca = 0.

Proof. We shall prove the lemma using the prolongation (18). Applying ∇c1 to both sides of the equation for
∇c2σa, we obtain ∇c1∇c2σa = ∇c1μc2a + gc2a1∇c1νȧ. The left-hand side is equal to k

2Rc1c2a1
pσpȧ = k

2Cc1c2a1
pσpȧ +

kg
c1a1Pc2

pσpȧ + kPc1a1σc2ȧ, according to (2). On the other hand, from (18) the right-hand side is equal to(
−kgc1a1ρc2ȧ + kPc1a1σc1ȧ − 1

2

(
2Cc2a1c1

pσpȧ − (k − 1)Ca2a1c1
pσpc2ä

))
+ gc2a1

(
−kρc1ȧ − kPc1

pσpȧ + k(k − 1)

2(n − k)
(C�σ)c1ȧ

)
.

Now equating these two displays and using Cc2a1c1
p = − 1

2Cc1c2a1
p we obtain an identity which holds for solutions.

Comparing the expression with the definition of (C♦σ) in (16), we see the identity is (k − 1)(C♦σ) = 0. �
Note that a curvature condition, equivalent to that in Lemma 3.3, is in [18]. There the identity for solutions is stated

in terms of the Riemann tensor R, rather than in terms of the Weyl tensor C. In this form it has also been derived
in [22] (although we could not find the necessary restriction k � 2 in that source). Expressing the identity via the Weyl
curvature, as we do, emphasises that this is a conformally invariant condition.

Next we observe that (19) defines a conformally invariant differential splitting operator. We define a differential
operator D on Eak [k + 1] by

(21)σa �→ σA0A := Y
A0

a
Aσa + 1

k + 1
Za0a

A0Aμa0a + W
A0A1

ȧ
Ȧ
νȧ − X

A0
a
Aρa,

where σa, μa0a, νȧ and ρa are given by (19). Then we have the following.

3.4. Lemma. For 1 � k � n − 1, D is a conformally invariant operator D :Eak [k + 1] → EA0Ak .

Proof. Consider D for σ ∈ Eak [k+1]. Let μ, ν and ρ be given in terms of σ as in (19). In these formulae ∇ is the Levi-
Civita connection for some choice of metric g from the conformal class. So μ, ν and ρ depend on the metric. If we
conformally rescale the metric g �→ ĝ = e2Υ g then it is easy to calculate (using e.g. the transformation formulae given
in [16]) that the sections μ̂ and ν̂ for the metric ĝ are given by μ̂a0a = μa0a + (k + 1)Υa0σa and ν̂ȧ = νȧ + kΥ pσpȧ,
where Υa = ∇aΥ . To compute ρ̂a = − 1

k
∇̂a1 ν̂ȧ − P̂a1

pσpȧ + 1
nk

∇̂p∇̂{pσa}0 we use the transformations

∇̂a1 ν̂ȧ = ∇̂a1(νȧ + kΥ pσpȧ) = (∇a1 + (k − 1)Υa1

)
(νȧ + kΥ pσpȧ)

= ∇a1νȧ + (k − 1)Υa1νȧ + k(∇a1Υ
p)σpȧ + kΥ p∇a1σpȧ + k(k − 1)Υa1Υ

pσpȧ,

P̂a1
pσpȧ = Pa1

pσpȧ − (∇a1Υ
p)σpȧ + Υa1Υ

pσpȧ − 1

2
Υ pΥpσa,

∇̂p∇̂{pσa}0 = ∇̂p∇{pσa}0 = ∇p∇{pσa}0 + nΥ p∇{pσa}0 .
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See (10) for the first of these, (4) for the second and (12) for the last. Summing the right-hand sides with the coefficients
from (19) we get,

ρ̂a = ρa − k − 1

k
Υa1νȧ − Υ p∇a1σpȧ − kΥa1Υ

pσpȧ + 1

2
Υ pΥpσa + 1

k
Υ p∇{pσa}0 .

Recall 1
k
Υ p∇{pσa}0 = Υ p∇{a1σpȧ}0 using (11) therefore −Υ p∇a1σpȧ + 1

k
Υ p∇{pσa}0 = −Υ p(μa1pȧ + ga1[pνȧ]).

From this and the previous display we obtain ρ̂a = ρa + Υ pμpa − Υa1νȧ + 1
2Υ pΥpσa − kΥa1Υ pσpȧ. Using this and

the transformation properties from (14), a short computation shows that D(σ ) is a section of EA0Ak that does not
depend on the choice of the metric from the conformal class. �
Remarks. 1. For k = 1, D is just the w = 1 and special case of the operator Dβa from Section 5.1 of [4].

2. Note that the operator D is not unique as an invariant differential operator “putting” σa ∈ Eak [k + 1] into the

top slot of FA0A ∈ EA0Ak (i.e. a differential splitting operator with left inverse FA0A �→ (k + 1)XA0A
aF

A0A
). D can be

obviously modified by any multiple of X
A0

a
ACa1a2

pqσpqä.

Assume k � 2. We define a 1st order differential operator Φc :EA0Ak −→ EcA0Ak for our later calculations. Given a
section FA0A ∈ E[A0Ak] which, for g ∈ [g], is convenient to take to be in the form

(22)FA0A = YA0
a
Aσa + 1

k + 1
Za0

A0
a
Aμa0a + W

A0A1
ȧ
Ȧ
νȧ − X

A0
a
Aρa,

we set

Φc

(
FA0A

) := −1

2
Za0

A0
a
ACa0a1c

pσpȧ + k(k − 1)

2(n − k)
W

A0A1
ȧ
Ȧ
(C�σ)cȧ

(23)+ X
A0

a
A

[
Ap

ca1σpȧ − 1

2
Ap

a1a2σpcä − 1

2
Ca1a2c

pνpä + k

2(n − k)
∇a1(C�σ)cȧ

]
.

Our aim is to construct a connection k∇ on EA0Ak such that solutions σa of (CKE) correspond to sections of EA0Ak

that are parallel according to k∇ . Let us start with the normal tractor connection ∇ . Using the previous proposition,
it is a short and straightforward calculation to show that if σa is a solution of (CKE), k � 2 then ∇cD(σ )A0A =
Φc(D(σ )A0A). Also, it is easy to verify (or see [15]) that for k = 1, if σa1 is a solution of (CKE) then ∇cD(σ )A0A1 =
ΩpcA0A1σp . This leads us to the following.

3.5. Lemma. (i) Given a metric g ∈ [g], the mapping

σa �→ D(σ )A0A, with inverse FA0A �→ (k + 1)XA0 A
a FA0A,

gives a bijective mapping between sections of σa ∈ Eak [k + 1] satisfying (CKE) and sections FA0A ∈ EA0Ak satisfying

∇cFA0A = Φc(FA0A), k � 2,

∇cFA0A1 = 1

2
ΩpcA0A1σ

p, k = 1.

(ii) Upon a conformal change g �→ ĝ = e2Υ g, Φc transforms to

Φ̂c

(
FA0A

) = Φc(FA0A) − X
A0

a
AΥ p(C♦σ)pca

where Υa = ∇aΥ and σa = (k + 1)XA0 A
a FA0A.

Proof. We have already observed that ∇cD(σ )A0A = Φc(D(σ )A0A) for solutions σ of (CKE) for k � 2, and also the
corresponding statement for k = 1. On the other hand, looking at the coefficients of Y on both sides of ∇cFA0A =
Φc(FA0A) we see this relation implies that the “top slot” σa := (k + 1)XA0 A

a FA0A of F is a solution of (CKE). Thus
the claimed bijective correspondence follows.
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It remains to prove (ii). Let us consider FA0A of the form (22) and a rescaling g �→ ĝ as above. Collecting together
the conformal transformation formulae we have:

μ̂aa = μaa + (k + 1)Υa0σa, ν̂ȧ = νȧ + kΥ pσpȧ,

Ẑa0

A0
a
A = Za0

A0
a
A + (k + 1)Υ a0

X
A0

a
A,

Ŵ
A0A1

ȧ
Ȧ

= W
A0A1

ȧ
Ȧ

− Υa1X
A0

a
A,

Âab1b2 = Aab1b2 + Υ pCpab1b2 ,

(24)∇̂a1(C�σ)cȧ = ∇a1(C�σ)cȧ + (k − 2)Υa1(C�σ)cȧ + gca1Υ
r(C�σ)r ȧ.

The first two transformations are immediate from (14) since FA0A is (assumed to be) conformally invariant. The
next two formulae are directly the properties of Z- and X-tractors from (14). The last but one is a simple calculation
using the conformal transformation formulae from for example [16], and the last follows from Lemma 3.1(i) and (12).
Applying (24) to the formula (22) for Φc, we obtain

Φ̂c(FA0A) − Φc(FA0A) = X
A0

a
A

[
−k + 1

2
Υ a0

Ca0a1c
pσpȧ

− k(k − 1)

2(n − k)
Υa1(C�σ)cȧ + Υ qCq

p
ca1σpȧ − 1

2
Υ qCq

p
a1a2σpcä

− k

2
Ca1a2c

pΥ qσqpä + k(k − 2)

2(n − k)
Υa1(C�σ)cȧ + k

2(n − k)
gca1Υ

r(C�σ)r ȧ

]
.

It is straightforward to verify that sum of the three terms involving C�σ is equal to

(25)− k

n − k
Υ rga1[r (C�σ)c]ȧ.

Summing the remaining terms on the right-hand side yields(
−Υ qCqa1c

pσpȧ + k − 1

2
Υ qCa2a1c

pσpqä

)
+ Υ qCca1q

pσpȧ − 1

2
Υ qCa1a2q

pσpcä + k

2
Υ qCa1a2c

pσpqä

(26)= −Υ r [Crca1
pσpȧ + Ca1a2[rpσ|p|c]ä].

Now summing the last two displays and comparing the result with the definition of C♦σ in (16), the lemma (ii)
follows. �

We have shown that, in contrast to ΩpcA0A1σp , Φc for k � 2 is not conformally invariant. Also note that it is not
algebraic but is rather a first order differential operator. We would like to replace Φc with an operator which, in a
suitable sense, has the same essential properties (including linearity) and yet is conformally invariant and algebraic.
We deal with invariance first. For k � 2, we define the 1st order differential operator Ψc :E[A0Ak] −→ Ec[A0Ak], for a
given choice g ∈ [g] of the metric and a section FA0A ∈ E[A0Ak] (taken to be of the form (22)), by

(27)Ψc

(
FA0A

) := Φc

(
FA0A

) + 1

n − 2
X

A0
a
A∇p(C♦σ)pca.

Recall that (C♦σ)[pq]a ∈ E(2, k)0[k + 1] and is by construction conformally invariant. Hence we have the conformal
transformation ∇̂p(C♦σ)pca = ∇p(C♦σ)pca + (n − 2)Υ p(C♦σ)pca, according to (12). From this and the previous
lemma (ii) it follows that Ψc is conformally invariant.

Now recall we have proved in Lemma 3.3 that C♦σ = 0 for σ satisfying (CKE). Therefore Φc = Ψc in this case
and we have

3.6. Lemma. Lemma 3.5 part (i) holds if we replace the operator Φc by Ψc therein.

Now we replace the operator Ψc with an algebraic alternative in the following way. From (27) and the formulae
(23) for Φc , it is clear that in the operator Ψc, applied to FA0A in the form (22), only the coefficient of X contains terms
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of the first order. Recall that we have the decomposition Ecak [k + 1] ∼= E[cak][k + 1] ⊕ E{cak}0
[k + 1] ⊕ Eak−1 [k − 1].

If σa = (k + 1)XA0 A
a F

A0A
is a solution of (CKE), the parts of ∇cσa that lie in E[cak][k + 1] and Eak−1 [k − 1] may be

replaced by, respectively, μa0a ∈ Ea0ak [k + 1] and νȧ ∈ Eȧk [k − 1], according to Proposition 3.2. Moreover, it is clear
that in fact this replacement is conformally invariant for any F

A0A
. Thus if we remove, from the X-slot of the formulae

for Ψc , all the terms depending on ∇{cσa}0 , then the resulting operator Ψ̃c will be algebraic, conformally invariant and
will satisfy Lemma 3.6 (with Ψ̃c replacing Ψc therein). We now describe Ψ̃c explicitly.

3.7. Proposition. The mapping

σa �→ D(σ )A0A, with inverse FA0A �→ (k + 1)XA0 A
a FA0A,

gives a conformally invariant bijective mapping between sections of σa ∈ EAk [k + 1] satisfying (CKE) and sections
FA0A ∈ EA0Ak satisfying,

∇cFA0A = Ψ̃c(FA0A), 1 � k � n − 1.

For choice g ∈ [g] of a metric from the conformal class and a section FA0A ∈ EA0Ak , expressed in the form (22),
the conformally invariant algebraic operator Ψ̃c :EA0Ak → EcA0Ak is given by the formula

Ψ̃c(FA0A) = −1

2
Za0

A0
a
ACa0a1c

pσpȧ + k(k − 1)

2(n − k)
W

A0A1
ȧ
Ȧ
(C�σ)cȧ

(28)+ X
A0

a
A

[
Aa1c

pσpȧ + k − 1

2(n − k)
T (σ )ca

]
,

where

T (σ )ca = 1

2
(∇cCa1a2

pq)σpqä + 2Ap
ca1σpȧ − Ap

a1a2σpcä − gca1Aa2
pqσpqä

− (Cca1
pqμpqä + Ca2a1

pqμpqc
...
a ) − n − k − 1

k
Ca1a2c

pνpä ∈ E(1, k)[k − 1].

Proof. The case k = 1 is just reformulation of Lemma 3.5. Given Lemma 3.6, for the cases k � 2 this boils down
to simply checking the formula for Ψ̃ . This is a direct computation of the formula (27) for Ψc and then in this
formula, formally replacing each instance of ∇cσa by μca +gca1νȧ. We need to compute only the non-algebraic terms
∇a1(C�σ)cȧ from (23) and ∇q(C♦σ)qca from (27). The latter is the subject of Lemma 3.8 below, while the former
is dealt with during the proof of that same lemma, see (30). Combining these results with (23) and collecting terms
yields the formula (28). �

It remains then to calculate ∇q(C♦σ)qca as required in the proof of the proposition above. For this we will need
the following identities. They follow from the (second) Bianchi identity ∇[aRbc]de = 0 after a short computation.

∇a1Cca2b1b2 = 1

2
∇cCa1a2b1b2 − gcb1Ab2a1a2 + 2ga1b1Ab2ca2 ,

(29)∇a1Ca2a3b1b2 = 2ga1b1Ab2a2a3 .

3.8. Lemma. Assume 2 � k � n − 1. If the σa ∈ Eak [k + 1] then, up to the addition of (conformally invariant) terms
involving the Weyl curvature contracted into ∇{cσa}0 , ∇q(C♦σ)qca ∈ E(1, k)0[k − 1] is given by the formula

n − 2

2(n − k)

[
1

2
(∇cCa1a2

pq)σpqä − (Cca1
pqσpqä + Ca2a1

pqσpqc
...
a )

+ (n − k − 1)(Ap
a1a2σpcä + 2Ap

a1cσpȧ) + (n − k + 1)

k
Ca1a2c

pνpä

+ (k − 2)

k
g

ca1Ca2a3
pqνpq

...
a − (k − 1)gca1Aa2

pqσpqä

]
+ (n − 2)Aa1c

pσpȧ.
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Proof. Here we simply expand ∇q(C♦σ)qca via the Leibniz rule and in the process we will formally replace each
∇cσa by μca + gca1νȧ. We shall start with ∇a1(C�σ)cȧ. Recall (C�σ)cȧ was given in (16) as a sum of two terms.
Applying ∇a1 to these, we obtain

∇
a1Cca2

pqσpqä = 1

2
(∇cCa1a2

pq)σpqä − Aq
a1a2σcqä + 2Aq

ca2σa1qä + Cca2
pq(μa1pqä + ga1[pνqä]),

∇a1Ca3a2
pqσpqc

...
a = 2Aq

a3a2σa1qc
...
a + Ca3a2

pq(μa1pqc
...
a + ga1[pνqc

...
a ]),

where we have also used (29). Now summing of the right-hand sides of the last displays yields

∇a1(C�σ)cȧ = k − 2

k

[
1

2
(∇cCa1a2

pq)σpqä − Ap
a1a2σpcä + 2Ap

ca1σpȧ

(30)− (Cca1
pqμpqȧ + Ca2a1

pqμpqcä) + 1

k
Ca1a2c

pνpä − 1

k
gca1Ca2a3

pqνpq
...
a

]
where we used 2

k
Cca2a1

q = 1
k
Ca1a2c

q . Note ∇a1(C�σ)cȧ ∈ E(1, k)[k − 1].
Now we shall compute the formula for ∇q(C♦σ)qca. According to (16), (C♦σ) is defined as sum of three terms.

Applying ∇q to the first of these, and using (3), we obtain ∇qCqca1
pσpȧ = (n − 3)Aca1

pσpȧ + Cq
ca1

p(μqpȧ +
gq[pνȧ]). Similarly for the second term, we obtain

∇qCa1a2[qpσ|p|c]ä = 1

2
(n − 3)Ap

a1a2σpcä + 1

2
Ca1a2

qp(μqpcä + gq[pνcä])

− 1

2
(∇qCc

p
a1a2)σpqä + n − k + 1

2k
Ca1a2c

pνpä,

where we have used ∇qσqȧ = n−k+1
k

νȧ. Summing the right-hand sides of the last two displays with the third term
k

n−k
∇qga1[q(C�σ)c]ȧ yields

∇q(C♦σ)qca = 1

2
(∇pCc

q
a1a2)σpqä − 1

2
(Cca1

pqμpqȧ + Ca2a1
pqμpqcä)

+ (n − 3)

[
Aca1

pσpȧ + 1

2
Ap

a1a2σpcä

]
+ n − 1

2k
Ca1a2c

pνpä

(31)+ k

2(n − k)
∇a1(C�σ)cȧ − k

2(n − k)
gca1∇q(C�σ)qȧ

where we have used C[q
ca1

p] = − 1
2Cca1

qp . In the last display, we need the term ∇p(C�σ)pȧ. Using the definition (16)
and applying the Leibniz rule for ∇p , we obtain

∇p(C�σ)pȧ = k − 2

k

[
(n − 3)Aa2

pqσpqä + Cr
a2

pqgr[pνqä]

+ (∇rCpq
a3a2)σpqr

...
a − n − k + 1

k
Ca2a3

pqνpq
...
a

]
(32)= (k − 2)(n − 1)

k

[
Aa2

pqσpqä − 1

k
Ca2a3

pqνpq
...
a

]
using (29). We will also need the identity

1

2

(∇pCc
q
a1a2

)
σpqä = +1

4
(∇cC

pq
a1a2)σpqä − 1

2
gca1Aa2

pqσpqä + Aa1c
pσpȧ

which uses (29). Now we are ready to simplify (31) using (30), (32) and the last display. Collecting terms the result is

∇q(C♦σ)qca = n − 2

4(n − k)

[
(∇cCa1a2

pq)σpqä − 2(Cca1
pqμpqȧ + Ca2a1

pqμpqcä)

+ 2(n − k − 1)Ap
a1a2σpcä + 2(n − k + 1)

Ca1a2c
pνpä
k



258 A.R. Gover, J. Šilhan / Differential Geometry and its Applications 26 (2008) 244–266
+ 2(k − 2)

k
gca1Ca2a3

pqνpq
...
a − 2(k − 1)gca1Aa2

pqσpqä

]
+ 1

(n − k)

[
(n − k)Aa1c

p + (k − 2)Ap
ca1 + (n − 3)(n − k)Aca1

p
]
σpȧ.

Now the final step is to simplify the last line using the relation Aca1
p = Ap

a1c + Aa1c
p which follows directly

from the definition Apa1c := 2∇[a1Pc]p . A short computation reveals that the last line is equal to (n − 2)Aa1c
p +

(n − 2)n−k−1
n−k

Ap
a1c. The lemma now follows from the last two displays. �

Summarising our results we have the following.

3.9. Theorem. For 1 � k � n − 1, the mapping Eak [k + 1] → EA0Ak given by σ �→ D(σ ) defined by (21) is a con-
formally invariant differential operator. Upon restriction it gives a bijective mapping from solutions of the conformal
Killing equation (CKE) onto sections of EA0Ak that are parallel with respect to the connection k∇c := ∇c − Ψ̃c where
∇c is the normal tractor connection and Ψ̃c is given by (28). The connection k∇c is a conformally invariant connection
on the form-tractor bundle EA0Ak . The inverting map from sections of EA0Ak , parallel for k∇c , to solutions of (CKE)

is FA0A �→ (k + 1)XA0 A
a FA0A.

Sections of EA0Ak which are parallel for the normal tractor connection ∇c are mapped injectively to solutions of
(CKE) by

FA0A �→ (k + 1)XA0 A
a FA0A,

and Ψ̃c ◦ D annihilates the range of this map.

Proof. Everything has been established in the previous lemmas except for the last claim. That parallel sections are
mapped injectively to conformal Killing forms is an immediate consequence of the formula (15) for the normal tractor
connection on form-tractors. (Note that the equation from the first slot of ∇cFA0A = 0 is ∇cσak − (k + 1)μcak +
gca1ϕȧk = 0. This is the same equation as from the first slot for a (k + 1)-form-tractor parallel for k∇c , as Ψ̃c does not
affect this top slot—the coefficient of Y.) Next it is an elementary exercise using the formula (15) to verify that if FA0A

is parallel for the normal tractor connection, then necessarily FA0A = D(σ ) where σa = (k + 1)XA0 A
a FA0A. On the

other hand from the first part of the theorem it follows that D(σ ) is parallel for k∇ . So Ψ̃c(σ ) vanishes everywhere. �
Remark. Let us say (as suggested in [20]) that a conformal Killing form σ is normal if it has the property that D(σ )

is parallel for the normal tractor connection. It follows immediately from the theorem that the operator Ψ̃c detects
exactly the failure of conformal Killing forms to be normal; a conformal Killing form is normal if and only if Ψ̃c(σ )

is zero.

If σ ∈ Ek[k + 1] vanishes on an open set then note that D(σ ) vanishes on the same open set since D factors through
the universal jet operator j2. On the other hand if σ is a conformal Killing form then, from the theorem D(σ ) is
parallel for the connection k∇ . So the following holds.

3.10. Corollary. On connected manifolds M a non-trivial conformal Killing form is non-vanishing on an open dense
subspace.

4. Coupled conformal Killing equations

In this section we show that solutions σ ∈ Ek[k + 1] of the original equation (CKE) are in bijective correspondence
with solutions of the coupled conformal Killing equation ∇̃(aσ b)0Bk−1 = 0 on EaBk−1[2] for a certain conformally

invariant connection ∇̃ . Along the way we obtain some related preliminary results that should be of independent
interest.

First let us observe that for any form σ ∈ Ek[k + 1], 1 � k � n − 1, we may form the tractor-valued forms

(33)σ ak−lBl = Mak−l,l

l σak and σ ak+lBl = M ak,lBl σak ,
B
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where the invariant differential splitting operators M and M are defined by the formulae, for 1 � l � k,

Mak−l,l

Bl :Eak [k + 1] −→ Eak−lBl [k − l + 1],
Mak−l,l

Bl σak = (n − k + 1)Zbl

Bl σak−lbl − lX ḃ
l

B1Ḃ
l∇b1

σak−lbl ,

and, for 1 � l � n − k,

M ak,lBl :Eak [k + 1] −→ Eak+lBl [k + l + 1],
M ak,lBl σak = (k + 1)Zbl

Blgblak,l σak − lX
B1

ḃ
l

ḃ
lgḃ

l
ȧk,l∇ak+1σak .

Here we use multi-indices

ak,l = [
ak+1 · · ·ak+l

]
and ȧk,l = [

ak+2 · · ·ak+l
]
.

The conformal invariance of M and M may be verified directly via the formulae (14).
Although σ ak−lBl and σ ak+lBl , as defined in (33), are invariant for the stated ranges of l, in the sequel we shall

only need the tensor valence of σ and σ to be in the interval [1, n − 1]. Therefore we shall henceforth assume that for
σ ak−lBl we have 1 � l � k − 1 and for σ ak+lBl we have 1 � l � n − k − 1, respectively.

Let us next describe ∇{cσ ak−l}0Bl and ∇{cσ ak+l}0Bl when σ is a solution of (CKE). (Recall that ∇ denotes the
coupled Levi-Civita-normal tractor connection.) This is explicitly formulated in the proposition below. First we need
the following lemma.

4.1. Lemma. Let us suppose that σ is a solution of (CKE). Then

(a) ∇c∇pσak−lpḃl

{cak−l}0= (n − k + 1)

[
− k − 1

n − k
Cc

p[a1
qσ|p|ȧk−l |q|ḃl ] − Pc

pσȧk−lpḃl

]
.

(b) ∇c∇ak+1σak
{cak+1}0= (k + 1)[Ccak+1a1

pσpȧk − Pcak+1σak ].

In reading (b) here recall the convention that sequentially labelled indices (at a given level) are assumed to be
skewed over.

Proof. First let us note that the trace part in the first case, and skew-symmetrisation [cak+1] in the second case, is
zero on both sides. In the subsequent discussion we use Proposition 3.2 and the notation therein.

The left-hand side of (a) is equal to n−k+1
k

∇cνak−l ḃ
l up to the sign (−1)k−l . Now (a) follows using Cc

[p
a1

q] =
1
2Cca1

pq and the equation for ∇cνak−l ḃ
l in (18) where (C�σ)

cak−l ḃ
l is given by Lemma 3.1(i). Note that the pro-

jection {..} over indices in the latter lemma exactly removes the completely skew-symmetric part of Cca2
pqσpqä

(see (17)). Since the projection {cak−l}0 annihilates the completely skew-symmetric part C[ca2
pqσ|pq|ä] we have

(C�σ)
cak−l ḃ

l ={cak−l}0
Cca1

pqσpqȧk−l ḃ. The part (b) follows similarly from the expression for ∇cμak+1ak in (18). �
4.2. Proposition. The form σ ∈ Ek[k + 1], 1 � k � n − 1 is a solution of (CKE) if and only if either of the following
conditions is satisfied:

∇cσ ak−lBl
{cak−l}0= l(k − 1)(n − k + 1)

n − k
X

B1
ḃl

Ḃl
Cc

p[a1
qσ|p|ȧk−l |q|ḃl ],

∇cσ ak+lBl

{cak+l}0= −l(k + 1)X
B1

ḃl

Ḃl Cc[ak+1a1
pσ|p|ȧkgȧk,l ]ḃl .

Proof. The expressions on the left-hand side can be computed by directly differentiating the expressions (33) defining
σ and σ and expanding in terms of the X, Y, W, Z splitting operators introduced in Section 2.3. The resulting “Y-slot”
(i.e. the coefficient of Y) on the left-hand side is zero order, as an operator on σ , and is killed by the symmetrisation
{cak−l} in the case of ∇cσ ak−lBl and by taking the trace-free part in the case of ∇cσ ak+lBl . Essentially the same
argument shows (in both cases) that also the operator in the W-slot vanishes. The Z-slot is of the first order as an
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operator on σ . To show this vanishes requires some computation. We will need the relation

(34)kgc[a1∇pσ|p|ȧk−lbl ] = (k − l)gca1∇pσ|p|ȧk−lbl + lg
cb1∇pσak−lpḃl .

(Recall our convention that all sequentially labelled indices are implicitly skewed over. So the b-indices are skewed
and also the a-indices are skewed.) To prove this first observe the projection to the completely skew part of the right-
hand side obviously yields exactly the left-hand side. On the other hand the right-hand side is manifestly skew over
the b-indices and also over the a-indices. It is easily verified that it is also skew-symmetric in the index pair a1b1 and
so the result follows.

Using (18) for ∇cσa, one computes the Z-slot of ∇cσ ak−lBl is

(n − k + 1)∇[cσak−lbl ] + kgc[a1∇pσ|p|ȧk−lbl ] − lgcb1∇pσak−lpḃl .

The first term is killed by the projection P{cak−l} and the remaining part is in the trace part over {cak−l} (i.e. in
particular is annihilated by P{cak−l}0

) due to (34). The Z-slot of ∇cσ ak+lBl is

gblak,l∇[cσak] − lgcb1g
ḃ

l
ȧk,l∇ak+1σak + k(k + 1)

n − k + 1
gca1gblak,l∇pσpȧk

(also using (18)). The last term is killed by taking the trace-free part and it is easy to show the sum of the first two
terms is gblak,l∇cσak (up to a scalar multiple) which vanishes after the symmetrisation {cak+l}.

At this point it is worthwhile noting that if the projection P{cak−l}0
kills ∇cσ ak−lBl or the projection P{cak+l}0

kills
∇cσ ak+lBl then σ is a solution of (CKE); the vanishing of the Z-slots implies ∇cσa = μca + gca1νȧ in (18) since
P{cak}0

◦P{cak−l}0
is a non-zero multiple of P{cak}0

.
It remains to evaluate the X-slots. This can be done easily using the rules for ∇cW and ∇cX from Section 2.3. We

get

−lX
B1

ḃl

Ḃl

[
(n − k + 1)Pc

pσak−lpḃl + ∇c∇pσak−lpḃl

]
− lX

B1
ḃl

Ḃl

[
(k + 1)Pc[ak+1σak gȧk,l ]ḃl + ∇c∇[ak+1σak gȧk,l ]ḃl

]
for ∇cσ ak−lBl and ∇cσ ak+lBl , respectively. Now the proposition follows using Lemma 4.1. �

For our next construction we will especially need the first case of the proposition above for l = k − 1, that is for
σa1Ḃk . We will construct a connection ∇̃ on E

a1Ḃ
k such that the equation ∇̃(cσ a1)0Ḃ

k = 0 is equivalent to Eq. (CKE).

Reformulating the proposition for σa1Ḃk , we get that σ is a solution of (CKE) if and only if

(35)∇(cσ a1)0Ḃ
k = (k − 1)(k − 2)(n − k + 1)

n − k
X

B2
b̈

k

B̈
kCb3

p
(c

qσ
a1)0pq

...
b

k .

This shows that ∇(cσ a1)0Ḃ
k = 0 is equivalent to (CKE) in the flat case. In the curved case we modify the connection

∇ in the following way. Let us consider the tensor-tractor field

κcE0E1F 0F 1 := X
E0

e1

E1Ωce1F 0F 1

= X
E0

e1

E1Z
f 0f 1

F 0F 1Cce1f 0f 1 − 2X
E0

e1

E1XF 0
f 1

F 1Af 1ce1 ,

where Ωce1F 0F 1 is the curvature of the normal tractor connection. By construction this is conformally invariant. We
will show that the required connection ∇̃ can be written in the form ∇̃c = ∇c + xκc��, x ∈ R where (via the tractor
metric) we view κcE0E1F 0F 1 as a 1-form taking values in End(EA) ⊗ End(EA) and � indicates the usual action of
tractor-bundle endomorphisms (i.e. it is the tractor-bundle analogue of the End(T M) action defined in Section 3 and
we use the same notation as for that case). To determine the parameter x ∈ R, let us compute the double action:

κc��(σ a1Ḃ
k ) = Xe1

Zf 0f 1
Cce1f 0f 1��

[
(n − k + 1)Zḃ

k

Ḃ
k σ

k

a1ḃ
k

]
= (k − 1)(n − k + 1)Xe1

�Zḃ
k

Ḃ
kCce1b2

qσ
a1qb̈

k

= −1
(k − 1)(k − 2)(n − k + 1)X

B2
b̈

k

kCc
p

b3
qσ

a1qp
...
b k .
2 B̈
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The form of the right-hand side shows that ∇̃ is the required connection for a suitable parameter x ∈ R, and comparing
with (35) yields the explicit value for x. The resulting connection is

(36)∇̃c = ∇c + 2

n − k
κc��,

where on the right-hand side ∇ is the normal tractor connection. Note that this connection is obviously conformally
invariant (since both κ and the tractor connection are conformally invariant). This might seem inevitable, since from
its derivation (or otherwise) it is clear that Eq. (35) is conformally invariant. However (36) is an invariant connection
which may turn out to have applications in other circumstances. We summarise the last result.

4.3. Proposition. A weighted k-form σ ∈ Ek[k + 1] is a conformal Killing k-form (i.e. solution of (CKE)) if and only
if

(37)∇̃(aσ b)0 = 0

where ∇̃ is the Levi-Civita connection coupled with (36) and σ is the conformally invariant tractor extension of σ

given by (33) with l = k − 1.

The last result generalises. First observe that as well as the action κc�� used in (36), we can consider also the action
ωc�� where we view the tensor-tractor field ωcE0E1f 0f 1 := X

E0
e1

E1Cce1f 0f 1 as a one form taking values in End(EA)⊗
End(Ea) and � indicates the usual action of tensor/tractor-bundle endomorphisms. Now for any real parameter x we
obtain a connection on tensor tractor fields via the formula,

(38)∇x
c = ∇c + x(ωc�� + κc��)

where ∇ indicates the usual coupled tractor-Levi-Civita connection.

4.4. Theorem. A weighted k-form σ ∈ Ek[k + 1] is a conformal Killing k-form if and only if either of the following
conditions hold:

∇x{cσ ak−l}0Bl = 0 or ∇y
{cσ ak+l}0Bl = 0

where x = 2
n−k

and y = 2
k

, and σ , σ are the conformally invariant tractor extensions of σ given by (33).

Proof. First let us compute the actions ωc�� and κc�� on σ and σ . The result is

ωc��σ ak−lBl = −1

2
l(k − l)(n − k + 1)X

B1
ḃ

l

Ḃ
l Cc

p
a1

qσpȧk−lqḃl ,

κc��σ ak−lBl = −1

2
l(l − 1)(n − k + 1)X

B1
ḃl

Ḃl Cc
p

b2
qσak−lqpb̈l ,

ωc��σ ak+lBl = 1

2
l(k + 1)X ḃl

B1Ḃl

[
(l − 1)Ccak+2b2ak+1gäk,l b̈l σak + kCcak+1a1

pgȧk,l ḃl σpȧk

]
,

κc��σ ak+lBl = −1

2
l(l − 1)(k + 1)X

B1
ḃl

Ḃl Ccak+2b2ak+1gäk,l b̈l σak .

Now the value y = 2
k

follows immediately from Proposition 4.2. In the case of σ , we can reformulate Proposition 4.2
in the following way: σ is a solution of (CKE) if and only if

∇cσ ak−lBl
{cak−l}0= l(n − k + 1)

n − k
X

B1
ḃl

Ḃl

[
(k − l)Cc

p
a1

qσpȧk−lqḃl + (l − 1)Cc
p

b2
qσak−lqpḃl

]
,

cf. (34). Thus the value x = 2
n−k

follows. �
Remark. Note that the connections (38) preserve the SO(p, q) symmetry type (over tensor indices) and SO(p + 1,

q + 1) symmetry type of the any tensor-tractor field they act on. The coupled tractor-Levi-Civita connection ∇ has
this property. Then the ωc�� action preserves these symmetries since ωc is a 1-form taking values in the tensor product
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of orthogonal tractor endomorphisms tensor with orthogonal tensor endomorphisms. Similarly κc is a 1-form taking
values in the tensor square of orthogonal tractor endomorphisms.

Note also that the action Cab� of the Weyl tensor on tensors may in a natural way be viewed as a conformal action
of the tractor curvature Ωab� on tensors. (For example contract each tensor index “c” into a ZC

c and then apply the
usual action of Ωab� on these tractor indices. Finally remove each the new tractor index by contracting with ZC

e. The
result is conformally invariant since Ωab

C
DXD = 0.) If we extend the action Ωab� to tensors in this way, then the

connections ∇x and ∇y become ∇x
c = ∇c + xκc�� and ∇y

c = ∇c + yκc�� with x and y as above.

5. Applications: Helicity raising and lowering and almost Einstein manifolds

In the first part here we will assume the structure is almost Einstein in the sense of [14]. This is a manifold with a
conformal structure and a section α ∈ E[1] satisfying [∇(a∇b)0 +P(ab)0 ]α = 0. Equivalently there is a standard tractor
IA that is parallel with respect to the normal tractor connection ∇ . It follows that IA := 1

n
DAα = YAα + Za

A∇aα −
1
n
XA(
 + P)α, for some section α ∈ E[1], and so XAIA = α is non-vanishing on an open dense subset of M and on

this subset g = α−2g is an Einstein metric (where, recall g is the conformal metric). In particular any conformally
Einstein manifold is almost Einstein.

In this setting we immediately have the theorem which follows. Recall that in a particular choice of metric a k-form
σ is a Killing form if it is a solution of (1) with τ identically 0. Let us term a k-form σ a dual-Killing form if it is
a solution of (1) where instead ρ is identically 0 (since on oriented manifolds the Hodge dual of a Killing form is a
dual-Killing form and vice versa).

5.1. Theorem. Let us consider a k-form σak ∈ Ek[k + 1]. Then, for k ∈ {1, . . . , n},
σ ak−1 := α∇pσak−1p − (n − k + 1)(∇pα)σak−1p ∈ Ek−1[k]

is conformally invariant. For k ∈ {0, . . . , n − 1},
σ

ak+1 := α∇ak+1σak − (k + 1)(∇ak+1α)σak ∈ Ek+1[k + 2]
is conformally invariant. If σ is a solution of (CKE) then we have the following equivalences:

∇{cσ ak−1}0
= 0 ⇐⇒ Cca1

pqσȧk−1pq

{cak−1}0= 0,

(39)∇{cσ ak+1}0
= 0 ⇐⇒ Ccak+1a1

pσȧkp

{cak+1}0= 0

for 2 � k � n − 1 and 1 � k � n − 2, respectively. In the case that the first curvature condition is satisfied then the
corresponding conformal Killing form σ ak−1 is a Killing form away from the zero set of α, and in the Einstein scale
g = α−2g. In the case that the second curvature condition is satisfied then the corresponding conformal Killing form
σ

ak−1 is a dual-Killing form away from the zero set of α, and in the Einstein scale g = α−2g.

Proof. The first part of the proposition follows from relations σ ak−1 = IBσ ak−1B and σ
ak+1 = IBσ ak+1B where the

forms σ ak−1B and σ ak+1B are defined by (33) in Section 4. The result (39) follows from Proposition 4.2 and continuity,
since the tractor IB is parallel and IBXB is non-vanishing on an open dense set in the manifold. For the final points
note that, from the formulae for σ ak−1 and σ

ak+1 given in the first part of the theorem, it is clear that these are,

respectively, coclosed and closed in the Einstein scale g = α−1g given off the zero set of α. �
Remarks. 1. Note that the first curvature condition on the right-hand side of (39) is that (C�σ) = 0. That is that the
projection of C�σ to E(1, k − 1)[k − 1] should vanish everywhere. Similarly the second is simply that the (unique
up to a multiple) projection of C�σ to E(1, k + 1)0[k + 1] should vanish everywhere. Note that in the case that the
manifold is oriented then the second curvature condition is exactly that the Hodge dual of σ satisfies the first condition
(as applied to (n − k)-form solutions of (CKE)).

2. Note that on an almost Einstein manifold with a conformal Killing k-form such that (C�σ) = 0 then, according
to the theorem, on the open dense set where α is non-vanishing there is a scale so that σ is a Killing form. But the
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section α does not necessarily give a global metric whereas the form σ is a globally defined conformal Killing form.
A similar comment applies to σ .

5.2. Corollary. If σab is a conformal Killing 2-form then

σa = α∇pσap − (n − 1)(∇pα)σap

is a conformal Killing vector field. If σ ′
an−2 is a conformal Killing (n − 2)-form then

σ ′
an−1 := α∇an−1σ

′
an−2 − (n − 1)(∇an−1α)σ ′

an−2 ∈ En−1[n]
is a conformal Killing (n − 1)-form. Away from the zero set of α, σa is a Killing vector for the Einstein metric
g = α−2g, while in this scale σ ′

an−1 is a dual-Killing form.

Proof. This is just the theorem above for k = 2. The condition C(ab)0
pqσpq is trivially satisfied, and, hence, so too is

the dual condition (cf. point 1. of the remark above). �
Note that a weaker form of the first part of the corollary has been proved (by a direct computation) in [22, 7.2].

Remark. Note that according to the Corollary, on Einstein 4-manifolds a non-parallel conformal Killing 2-form
implies the existence of either a non-trivial Killing vector field or a non-trivial dual-Killing 3-form. Thus if the 4-
manifold is also oriented then, in any case, a non-parallel conformal Killing 2-form determines a non-trivial Killing
vector field.

The first part of the theorem is valid also for k = 1 in the sense, that if σa satisfies (CKE) then σ := α∇pσp −
n(∇pα)σp is (conformally invariant and) another almost Einstein scale. This is easily seen as follows. Let us write
σCD := Da

CDσa , where D was defined for Lemma 3.4. Then by Lemma 3.5 we have

(40)∇aσCD = 1

2
Ωp

aCDσp.

Note that IDσCD is parallel with respect to the normal tractor connection ∇ since ∇aI
DDa

CDσa = (∇aσCD)ID =
1
2σpΩpaCDID = 0. Then the result follows from Theorem 3.1 of [17] since σ = XCIDσCD .

Some related results follow. Following [17] we term a metric (or conformal structure) weakly generic if the Weyl
curvature is injective as bundle map T M → ⊗3T M .

5.3. Proposition. (i) If σa is a non-homothetic conformal Killing vector field (i.e. a solution of (CKE) with non-
constant ∇aσ

a) on an Einstein manifold then there exists a non-trivial solution σ̃a of (CKE) which is exact for the
Einstein scale (i.e. a conformal gradient field).

(ii) If a weakly generic conformally Einstein manifold M admits a conformal Killing vector field σa , then σa is a
homothety for any Einstein metric in the conformal class.

Proof. Let us write I 1
D := ID and I 2

C := σCP IP , where σCP = Da
CP σa . These parallel tractors determine a parallel

tractor 2-form tractor I 1[CI 2
D]. Let us write σ̃a := 1

2XCD
a I 1[CI 2

D]. (Note that from the last part of Theorem 3.9 it follows

immediately that σ̃a is a conformal Killing field hence Ω
p
aCDσ̃p = 0 by (40). Thus Cabc

pσ̃p = 0.)
Since I 1

D and I 2
C are parallel and the top slot of I 2

C is σ = XCIDσCD it follows (Theorem 3.1 of [17]) that I 2
C =

1
n
DCσ . To compute σ̃a let us write explicitly

I 1
D = YDα + Zd

D∇dα − 1

n
XD(
 + J )α,

I 2
C = YCσ + Zc

C∇cσ − 1

n
XC(
 + J )σ .
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Here we have used the formula (8) for the tractor D operator. Now it follows easily that σ̃a is (∇aα)σ − α(∇aσ ) up
to a (non-zero) scalar multiple. (From this formula, it is also easy to verify by a direct computation that σ̃a satisfies
(CKE).) In the Einstein scale α we have ∇α = 0, whence σ̃a = −∇a(ασ) = −∇a(α

2∇pσp).
(ii) This is an immediate consequence of part (i) since it is well known (and an easy exercise to verify) that any

conformal gradient field σ̃ a necessarily satisfies Cab
c
pσ̃ p = 0. �

One can easily access further results along these lines, but manifolds admitting a conformal gradient field are rather
well understood and there are many classification results due to, for example, H.W. Brinkman, J.P. Bourguignon,
D.V. Alekseevskii and others. For some recent progress and indication of the state of art see [19].

Theorem 5.1 exploited the standard tractor IA which (corresponds to an almost Einstein scale α and) is parallel
with respect to the normal tractor connection ∇ . Here we drop the assumption that the manifold is almost Einstein and
assume instead that the manifold is equipped with a conformal Killing field σa . Then we use the tractor σAB := D

p
ABσp

(given by (21)) provided by the conformal Killing form σa . This is not, in general, parallel with respect to the normal
tractor connection ∇ . Rather, we obtained (40) in Lemma 3.5.

5.4. Theorem. For each pair σ ∈ E1[2] and τ ∈ Ek[k + 1]
τ̌ ak−2 := 2σp∇qτak−2pq + (n − k + 1)(∇pσq)τak−2pq, k ∈ {2, . . . , n}

is a conformally invariant section of Ek−2[k − 1], and

τ̌ ak+2 := 2σak+1∇ak+2τak + (k + 1)(∇ak+1σak+2)τak , k ∈ {0, . . . , n − 2}
is a conformally invariant section of Ek+2[k + 3]. If σ and τ are solutions of (CKE) then the following is satisfied:
for 3 � k � n − 1 τ̌ ak−2 , is a solution of (CKE) if and only if

(n − k + 1)Cr
c
pqτak−2pqσr + (k − 2)Cca1

pqτpȧk−2qrσ
r {cak−2}0= 0

and, for 1 � k � n − 3, τ̌ ak+2 , is a solution of (CKE) if and only if

2Ccak+1a1
pτpȧk σak+2 − C

p

cak+1ak+2τak σp
{cak+2}0= 0.

Proof. The first part of the proposition follows from relations τ̌ ak−2 = 2τ ak−2RSσRS and τ̌ ak+2 = 2τ ak+2RSσRS . The
second part is a result of a direct computation. Using Proposition 4.2 and (40) we obtain the following:

2∇cτ ak−2RSσRS {cak−2}0= 2(∇cτ ak−2RS)σRS + 2τ ak−2RS∇cσ
RS

{cak−2}0= 4(n − k + 1)

n − k
XRS

s
[
(k − 2)Cc

p
a1

qτpȧk−2qs − Cc
p

s
qτpȧk−2qa1

]
σRS + τ ak−2RSΩp

c
RSσp

{cak−2}0= n − k + 1

n − k

[
(n − k + 1)Cs

c
pqτak−2pqσs + (k − 2)Cca1

pqτpȧk−2qsσ
s
]
,

2∇cτ ak+2RSσRS {cak+2}0= 2(∇cτ ak+2RS)σRS + 2τ ak+2RS∇cσ
RS

{cak+2}0= −4(k + 1)XR
s
SC

p

cak+1a1τpȧkgak+2sσ
RS + τ ak+2RSΩp

c
RSσp

{cak+2}0= −(k + 1)[2C
p

cak+1a1τpȧk σak+2 − Ccak+1ak+2p
τak σp]. �

Note for the cases of a conformal Killing 3-form τ the first curvature condition of the theorem is satisfied by any
conformal gradient vector field σ .

Now it is obvious how to obtain more general results for couples of conformal Killing forms σ ∈ E l[l + 1] and
τ ∈ Ek[k + 1] where 1 � k, l � n − 1. We set σAl+1 := Dσ and define τ̌ ak−l−1 := τ ak−l−1Al+1σ Al+1

and τ̌ ak+l+1 :=
τ ak+l+1Al+1σ Al+1

for 0 � k − l − 1 � n and 0 � k + l + 1 � n, respectively. The case l = 1 is described in the previous
Theorem and in general, the obstructions for τ̌ ak−l−1 and τ̌ ak+l+1 to be solutions of (CKE) are very similar to the cases
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l = 1. (In the proof of these new cases, we replace ∇cσ
RS by ∇cσ

Al+1
. The latter is, in general quite complicated but

we actually need only ‘Z-slot’ and ‘Y-slot’ which are similar to the case l = 1.)

5.5. Corollary. Let σa ∈ Ea[2] be a solution of (CKE) and write μbc := ∇[bσc] (in a choice of scale). Then the section

σa0μa1a2 · · ·μa2p−1a2p ∈ E2p+1[2p + 2], p �
⌊

n − 2

2

⌋
is conformally invariant. If σa0Ca1a2c

dσd = 0 then it is a solution of (CKE) for any 1 � p � �n−2
2 �.

Proof. For p = 1, this is Theorem 5.4 applied to τ := σ ∈ E1[2]. If the curvature condition is satisfied then it is easily
checked that applying the same theorem to σa and τ := σa0μa1a2 , we obtain the case p = 2. Repeating this procedure,
the general case follows. �

Let us note there are several results in [23] related to those in this section, see Propositions 3.4 and 3.5 in [23].
These concern a special case satisfying that ∇cμa0a1 is pure trace (which implies that σa is an eigensection for the
Schouten tensor viewed as a section of End(T M)). This immediately yields σa0Ca1a2c

pσp = 0 using (18).
Our last application concerns conformal Killing m-tensors. These are valence m symmetric trace-free tensors

tb···c ∈ E(b···c)0 [2m] which are solutions of the conformally invariant equation ∇(atb···c)0 = 0. Obviously, any conformal
Killing form σa ∈ Ea[2] yields a conformal Killing tensor σ(a · · ·σb)0 . Note that generalising the m = 2 version of
this observation we have the following. If σa ∈ Eak [k + 1] is conformal Killing form then σ(a

ċσb)0ċ ∈ E(ab)0 [4], is a
conformal Killing 2-tensor. (The special case of this where σ is a conformal Killing 2-form appeared in [27, 4.1(4)].)
This follows from (18) by a direct computation or from the relation σ(a

ėσb)0ė = 1
(n−k+1)2 σ (a

Ėσb)0Ė (which holds

since XA and ZA
a are orthogonal), and Propositions 4.2 and 4.3. The point here is that one applies the normal tractor

∇c connection to σ (a
Ėσ

b)0Ė
to obtain 2σ (a

Ė∇bσ
c)0Ė

after the projection to E(abc)0 [4]. Then from Proposition 4.2 and

again the orthogonality of XA and ZA
a we may replace ∇ by ∇̃ to obtain 2σ (a

Ė∇̃b σ c)0Ė. But then by Proposition 4.3
the last expression vanishes. It is clear this example generalises and so we have the following theorem.

5.6. Theorem. Suppose σ 1, . . . , σm is a collection of conformal Killing forms of respective ranks r1, . . . , rm where
(
∑m

ri) − m is an even number. Then σ 1
(a · σ 2

b · · ·σm
c)0

is a conformal Killing m-tensor. Here σ 1
a · σ 2

b · · ·σm
c indicates

any contraction of the collection σ 1, . . . , σm over the suppressed indices.

Of course it will often be the case that a given contraction σ 1
a · σ 2

b · · ·σm
c vanishes upon projection to the trace-free

part. However it is easy to proliferate non-trivial examples.
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