
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 65, 44-55 (1978) 

Reflection Principles for Harmonic and Polyharmonic Functions 

D. H. ARMITAGE 

Queen’s University, Belfast, BT7 INN, Northern Ireland 

Submitted by L. Mirsky 

1. INTRODUC-~I~N 

An arbitrary point of the Euclidean space Rnfl (n > 1) is represented by 
M = (X, y), where X E R” and y E R. The mirror image of M in the hyperplane 
R” x {0} and the projection of M onto this hyperplane are denoted by M* :== 
(X, -y) and M,, = (X, 0), respectively. Throughout this paper Q is an open 
subset of Rn+l which is symmetric in the sense that MC ED whenever ME b2. 
We write 

L’+ ={M~li’:y > 0}, Q” = {MEQ:~ = 0}, a- ={M~Ji’n:y <O) 

and assume throughout that Go is nonempty. 
We are concerned with extending to the whole of Q a polyharmonic function 

in 52+ which has certain partial derivatives “vanishing” on Go. Here we explain 
the sense in which these derivatives will be required to “vanish.” Let / ( be 
Euclidean norm on Rn+l and let (T denote n-dimensional surface-area measure. 
If P E Rfl x (0) and a and r are positive numbers, we put 

T(P, a, r) = {ME Rn+l: y = a, I MO - P I < r}. 

A function f: sZ+ -+ R will be said to be locally convergent in mean (1.c.i.m.) 
to 0 on Szo if for each point P of 0 there is a positive number T such that 

-T(P n T) If(M)/ WV-0 c (u 4 oi-). > . 
In view of the results that follow, it is worthwhile to observe that iffis continuous 
in O+ and has the properties 

(i) each point (X, 0) of Go has a neighborhood Jyix,o) such that f is 
bounded in Q+ n M;,,,, , 

(ii) for each point (X, 0) of Q” 

lim f(X, y) = 0, 
!J+o+ 
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thenfis 1.c.i.m. to 0 on 520. This follows from Lebesgue’s bounded convergence 
theorem. 

In [2] we proved 

THEOREM A. If h is harmonic in sZ+ and is 1.c.i.m. to 0 on Szo, then h has a 
harmonic continuation h* to 52 such that h*(M) = -h*(M*) for each M in Q. 

This improves the classical reflection principle for harmonic functions. In this 
paper we prove several generalizations of Theorem A. 

Let p be a positive integer. As usual, we say that a function w is p-harmonic 
in Q if w is real-analytic and d”w = 0 in Sz, where dp is the pth iterated Lapla- 
cian operator on n + 1 variables. By strengthening the conditions on Q, we can 
prove a general existence theorem for polyharmonic continuations. We say that 
Q is cylindrical if (X, ya) E D whenever yi < yZ ,( ya and (X, yi), (X, ya) E 9. 
For brevity, we write au = CP/8yU (a = 0, 1, 2 ,... ). 

THEOREM 1. Let .Q be cylindrical, and let w be p-harmonic in D+. If there exist 
p distinct nonnegative integers CY~ ,..., 01~ such that Pjw is 1.c.i.m to 0 on Q” for each 
j = I,..., p, then w has a unique p-harmonic continuation to 9. 

For certain values of 01~ ,..., 01~ we can give explicit formulas for the continua- 
tion. In particular, when p = 1 (the harmonic case) we can give such a formula 
for any value of 01~ . 

THEOREM 2. Let .Q be cylindrical, and let h be harmonic in .Q+. If there is a 
nonnegative integer 01 such that 3h is 1.c.i.m. to 0 on Go, then, for each nonnegative 
integer p, Ph has a continuous extension (aah).+ to Q+ U Go. Further, if h’ is defined 
in Q by 

h’(M) = 0 

fol-1 

(cd = 0, 1) 

= z. GWY y2Vzkh), (MO) 

*(ar--3) 

(a = 2, 4, 6,...) 

= z. ((2k + 1)!}-1y2”+1(a2k+1h), (MO) (CY = 3, 5, 7,...), 

then the function h*, defined in 52 by 

h*(M) = h(M) (ME 52+) 

= Po4* CM) (ME Q”) (1) 

= (-lp+l h(M*) + 2h’(M) (M E -Q-h 

is harmonic in Q. 
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In the case ol = 0, 1, the condition that Q is cylindrical may be dropped. With 
this weaker hypothesis, the case 01 = 0 reduces to Theorem A. 

THEOREM 3. Let w be p-harmonic in Sz +. If Pw is 1.c.i.m. to 0 on Q0 for each 
j = O,...,p - 1, then thep-harmonic continuation w* of w to Q satisjies w*(M) = 
-w*(M*) for each M in Q. 

THEOREM 4. Let w be p-harmonic in Q+. If P+lw is 1.c.i.m. to 0 on Q” for each 
j = O,..., p - 1, then thep-harmonic continuation w* of w to Q satis$es w*(M) = 
w*(M*) for each M in D. 

THEOREM 5. Let w be p-harmonic in Q+. If ajw is 1.c.i.m. to 0 on .Q” for each 
j = O,..., p - 1, then the p-harmonic continuation w* of w to Q is defined by 

w*(M) = w(M) (ME Q+) 

= 0 (ME Go) 
(2) 

D-l 
= z. yp+yh!)-2 ~k{(-y)~-~ w(M*)) 

(M E 52-j. 

Theorem 5 will follow from Theorem 1 and the known 

THEOREM B. If w is p-harmonic in W and 

liyliyl-pw(M) = 0 (P E QO), 

then the function w*, defined in Q by (2), is p-harmonic in Q. 

Theorem B is due in its full generality to Huber [6]. The case n = p = 2 is due 
to Duffin [4]. 

2. PROOF OF THEOREM 2 

We require some preliminary results. The closure of a subset w of Rn+l is 
denoted by 6. 

LEMMA 1. Let w be an open, symmetric, cylindrical subset of Rnfl such that 
6 C Q and w” is bounded. If h is harmonic in B+ (resp. Q), then there exists a harmo- 
nic function H in w+ (resp. w) such that #II = h in w+ (resp. w). 

A weak form of this lemma has been proved in the case n = 2 by Duffin [4]. 
Our proof is modeled on his. 
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Let a be a positive number such that the closure of the set 

is contained in Sz. Define Kin r x r by 

K(M,P)=-+IM--PI (n = 1) 

= -(27r-l log 1 M - P 1 (72 = 2) 

= {(n - 2) s,}-l j M - P 12--% (n 3 3), 

where s, is the surface area of the unit sphere in R”, and given a bounded, 
continuous function f : r-t R, define U,: r+ R by 

U,(M) = s, WW Plf U’> WY. 

Now, identifying r with a bounded open subset of Rn in the obvious way, 
writing A’ = d - ?, and using a familiar technique of differentiation (see, e.g., 
Helms [5, pp. 122-1241 for the cases n > 2 or Wermer [9, Sect. 31 for the case 
n = 3), we have in r 

O’&(M) = -f(M). 

Define H in w+ by 

HP’) = iy h(X, t) dt + u&x, a). 
a 

(4) 

Then SH = h in UJ+ and 

WW = al&W + Jy A’h(X, t) dt - d’ualh(x, a) n 

= 8h(M) - 1’ a2h(X, t) dt - Sh(X, a) = 0. 
cl 

The passage of A’ under the first integral sign in (4) is justified by the fact that h 
and all its derivatives are locally bounded in w+. 

The above proof remains valid when sZ+ and W+ are replaced by Q and W. 

LEMMA 2. Let Q be cylindrical. If h h armonic in Q+ and for some nonnegative 
integer 01, aah has a harmonic continuation to Q, then so also has h. 

The proof is by induction on a!. The case 01 = 0 is trivial. Suppose that 01 > 1 
and that the result holds for a - 1. Let (@h)* be the harmonic continuation of 
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M to Q, and let w satisfy the hypotheses of Lemma 1. By Lemma 1, there is a 
harmonic function H in w such that SH = (Sh)* in w. Hence S(H - @lh) = 
0 in w+, so that H = %lh + H’ in w+, where H’ is a harmonic function in w 
and is independent of y. It follows that H - H’ is a harmonic continuation of 
a”-lh to w. Letting w vary and using the fact that harmonic continuations are 
unique, we see that aa-lh has a harmonic continuation to Sz. By the induction 
hypothesis, h has the required continuation. 

LEMMA 3. Let Q be cylindrical. If h is harmonic in Q and there exists an integer 
01 > 1 such that @h = 0 on P, then the function h’, defined in Q by 

h’(M) = c {(2h)!}-’ yzkPh(M,) 
k=O 

(a = 2, 4, 6,...) 

= z. ((2h + 1)!)-‘y2k+1a2k+‘h(Mo) (a = 3, 5, 7,...), 

is harmonic in Q. Further, if p is a nonnegative integer, then Ph’ = aeh on G’ when 
01 - ,6 = 2, 4, 6 ,..., and aeh’ = 0 on Q” otherwise. 

We give a proof only for (u=2,4, 6 ,...; the proof for ol = 3, 5, 7 ,... is similar. 
Suppose that 01 = 2m and that a2”h = 0 on Go. Then h’ is given by 

m-1 

h’(M) = c {(~Iz)!)-~ y2”a2”h(Mo), 
k=O 

so that 
m-1 m-1 

Ah’(M) = c ((2h - 2)!}-l y2k-2~2kh(Mo) + c {(2h)!}-l y2kd’a2kh(Mo). 
k=l k=O 

Since A’Ph = -T-k+zh for each lz, it now follows that 

Ah’(M) = -((2m - 2)!}-1y”“-2a2”h(Mo) = 0. 

Clearly, if /3 > 2m - 2, then Ph’ = 0 in Q. If 0 < /3 < 2m - 2, then 

m-1 

@h’(M) = C ((2k - fi)!}-1y2k-ea2kh(MO). 
k=ttfJ+il 

If ,!I is odd, then each term in this sum vanishes on Go. If j3 is even, then each 
term except the first vanishes on P, and this term agrees with @h on Do. 

We can now prove Theorem 2. By Theorem A, Sh has a harmonic continua- 
tion to Q. Hence, by Lemma 2, h has such a continuation h, , say. For each /3, 
define (ash), in 52 by (ash), = Sh, . We now have somewhat more than the 
first part of the theorem. 

In proving the second part, we work first with even values of ol. Since h has a 
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harmonic continuation h * to Q and ( Wz) * = 8% .+ in Sz, it follows from Lemma 3 
that h - h’ is harmonic in Q+ and vanishes on Go. Hence, by the classical 
reflection principle, h - h’ has a harmonic continuation (h - h’)* to Q satisfying 
(h - h’)” (M) = -(h - h’)* (M*) for each MinQ.It follows that @--‘)*+A 
is harmonic in Sz and agrees with h in Q+. Since h’ = h = (Ph), on P and 
h’(M) = h’(M*) for each M in Q, the function (h - h’)* + h’ is equal to the 
function h* defined by (1). * 

Next we work with (Y = 1. It is enough to show that if P E Go, then there is a 
neighborhood of P in which the function h*, defined by (1) (with 01 = 1) is 
harmonic. By Theorem A, 8% has a harmonic continuation (P/z)* to Sz satisfying 
(8h)* (M) = -(Sh)* (M*) f or each M in Q. Let c be a positive number such 
that the closure of the cylinder 

C = {ME Rn+l: /MO--P<cc,l~l<4 (5) 

is contained in Q. Then the function h* of (1) satisfies 

h(M) = h(X, c) + 1’ (8h)* (X, t) dt 
c 

(6) 

in C. Since (a%)* and all its derivatives are bounded in C, we may differentiate 
under the integral sign in (6), to obtain 

Ah(M) = d’h(X, c) + 8(8h)* (M) + I’d’(alh)* (X, t) dt 
c 

= -a2h(X, c) + S(Sh)* (M) - sy a2(8h)* (X, t) dt = 0. 
e 

Finally suppose that h satisfies the hypotheses of the theorem for some 01 = 
3 ) 5) I). . . . Since h has a harmonic continuation h, to Q and (Wz)* = a%, in Q, 
it follows from Lemma 3 that h - h’ is harmonic in SZ+ and that #(h - h’) 
vanishes on Q”. By the result for OL = 1, h - h’ has a harmonic continuation 
(h - h’)* to Sz satisfying (h - h’)* (M) = (h - h’)* (M*) for each M in Q. 
It follows that (h - h’)* + h’ is harmonic in Q and agrees with h in sZ+. Since 
h’(M) = -h’(M*) for each M in 52, (h - h’)* + h’ is equal to the function h* 
defined in (1). 

3. PROOF OF THEOREM I 

Again, we require some preliminary results. 

LEMMA A. Let l2 be cylindrical. If w is p-harmonic in sZ+, then there exist 
harmonic functions ho ,..., h,-, in Q+ such that 

9-l 

w(M) = c yihi(M). 
i=O 

(7) 
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A proof may be found in Kraft [7]. It is easy to show, conversely, that any 
sum of the form (7) is p-harmonic in Q+. 

The main result preparatory to the proof of Theorem 1 is the 

PROPOSITION. Let l2 be cylindrical. Suppose that w is p-harmonic in sZ+ and is 
given by (7). If w is 1.c.i.m. to 0 on Go, then so also is ho . 

To prove the proposition, we need some more notations and results. Let 
B(M, r) denote the open ball of center M and radius Y. Iff: Q - R is continuous 
on Q and B(M, Y) C Q, let A(f; M, r) be the volume mean off over B(M, Y), i.e., 

where v(r) is the volume of B(M, r). Then, for fixed Y, A(f, ., r) is defined on a 
subset of Q and is continuous there. Hence, we can define recursively a sequence 
of iterated means (A,(f; ., r)) by 

&(A .Y 7) =h A,(f; M, r) = A(&l(f; ., y); M, y) (j 2 1). 

Of course, as j increases, the domain of definition of A,(f; ., Y) contracts. 

LEMMA B. Let w bep-harmonic in Q+. If r > 0, M E Q+ and dist(M, Rn+l\Q+) 
>(p- l)r, then 

~~P-~AP--~w(M) = (2n + 6)p-l If: (-l)p-l-j (” J ‘) A~(w; M, r). 

A proof of the corresponding result for a polyharmonic function in Rn may be 
found in [l, Theorem 21. 

LEMMA 4. Letf : l2+ + R be continuous in Q+. Suppose that P E Q”, that E > 0 
and that there exist numbers a and r with 0 < a < r such that 

s ~(p b r) IfW)l d4W < E . * 
whenever 0 < b < a. Then 

s I 4th M c)l 4M) < E (j = 0, 1, 2,...) 
7W.b.d 

whenever 0 < (j + 1) b < a, 0 < c, jc < b, and 0 < p < r - aj/(j + 1). 

The proof is by induction on j. When j = 0 there is nothing to prove. Suppose 
that the result holds for some j. Denote by 0 the origin of Rn+l and by 7 the 
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(n + 1)th coordinate of a point Q. If 0 < (j + 2) 6 < a, 0 < (j + 1) c < 6, 
andO<p<v-a(j+ l)/(j+2), then 

=I s T(P.0.d B(O,e) 
I Aj(f; M + Q, C)I dQ da(M) 

=s s B(O,c) dP,b,d 
I 4f; M + Q, 4 du(M) dQ 

=s s B(0.c) T(P+O~,b+n,d 
I A,(f; M, 41 WW dQ 

The change of order of integration is justified by the local boundedness of 
Aj(f;.,c). Nowc+p<b/(j+ l)+p<r-~(j+2)-~({j+l)-(j+1)-~}= 
r - aj/( j + 1). Further, for each Q in B(0, c), we have 0 6 + 17 > 6 - c > jc 
and 6 + 7 < 6 + c < 6( j + 2)/( j + 1) < a/( j + 1). Hence, by the induction 
hypothesis, for each such Q, the inner integral in (8) is less than E. The result for 
j + 1 follows, and the proof of the lemma is complete. 

We proceed to the proof of the proposition. This is by induction on p. When 
p = 1 there is nothing to prove. Suppose that p > 1 and that the result is true 
for p - 1. Let w satisfy the hypotheses of the proposition. Suppose that P E Q” 
and that E > 0. Then there exist numbers a and Y with 0 < a < Y such that 

I r(P,b,d 
I 4WI WV -=c c 

whenever 0 < 6 < a. A particular consequence of Lemma 4 is that 

I dP.b,rJ 
I 4~; M, b/p)1 do(M) < E (j=O, l,..., p- l), (9) 

where Y,, = &Y - &a, whenever 0 < 6 < u/p. A simple calculation gives 
dP-‘w = 2P-1(p - I)! @-‘6,-r , SO that, by Lemma B and (9), whenever 
O<b<a/p 
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where K is a number depending only on n and p. Hence 

b2”-2 s dP,b.q,) 
1 aP-lh,-l(M)I da(M) 4 0 (6 + O+). 

From this and the equation 

ad-,-, = aP-2h,-l(X, u/p) + sy W’h,-,(X, t) dt 
aill 

it follows easily that 

b2”-3 

s dP.b.r”) 
I 8-2h,-l(M)l da(M) + 0 V+O+). 

Repeating this argument a further p - 2 times, we arrive eventually at the 
relation 

Let u denote the sum of the first p - 1 terms in (7). Then w(M) = u(M) + 
y+%,-,(M). From (10) and the fact that w is 1.c.i.m. to 0 on Gino it follows that u 
is 1.c.i.m. to 0 on KY. Now u is (p - 1)-harmonic, so, by the induction hypo- 
thesis, ho is 1.c.i.m. to 0 on P. The proof of the proposition is complete. 

We can now prove Theorem 1. Let w be given in sZ+ by (7). If 3/f = rnin(cLi , 
p - l), then, by Leibniz’s theorem, in Q+ 

a*jw(M) = 5 cij!{(“j - i)!}-’ Wh@) + y ykU,(M), 
i=O k=l 

(11) 

where U, ,..., U,-r are harmonic in G+. Now define harmonic functions Hj , 
Vj in Q+ by 

Hj = 2 aj!{(aj - ;)I}-’ ap-l-ihi, vj = z aj!{(aj - iy>-’ a”rilzhi . 
i=O i=O 

Since %w is 1.c.i.m. to 0 on Q”, by (11) and the proposition, Vj is 1.c.i.m. to 0 
on 520. By Theorem A, Vi has a harmonic continuation to Q. If ai > p - 1, 
then Vj = &--P+lHj, and therefore, by Lemma 2, Hj has a harmonic continua- 
tion to Q; if olj < p - 1, then Hi = a P - ‘farjVj , and again Hi has a harmonic 
continuation to Q. Now the coefficient of ap-l-ihi in Hi is 1 if i = 0 and 
is aj(aj - 1) ... (aj - i + 1) otherwise. Hence, to prove that iP-rhi can be 
expressed as a linear combination of the Hj , it is enough to show that the p x p 
determinant D, whose jth row is 

10°ljOolj(~j - 1) .a.a. aj(lj(aj - 1) . . . (012 -9 + 2) 
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is nonzero. Now it is easy to show that D is equal to the determinant whose 
(j, i)th entry is $-I, and since the c+ are distinct, this determinant is nonzero 
(see, e.g. [3, p. 3031). Hence 8-1-ihi (; = 0, l,..., p - 1) can be expressed as a 
linear combination of the Hi ( j = l,..., p). Since each Hj has a harmonic 
continuation to Q, so also has each P-Vzi . By Lemma 2, each hi has such a 
continuation hi* . The p-harmonic continuation w* which we seek is given in .Q 

bY 

9-l 
w*(M) = c yihi*(M). 

i=O 

The uniqueness of the continuation follows from the fact that p-harmonic 
functions are real-analytic. 

4. PROOF OF THEOREMS 3 AND 4 

These theorems are proved simultaneously by induction. The case p = 1 
of Theorem 3 is Theorem A, and the case p = 1 of Theorem 4 is Theorem 2 
with 01 = 1. Now suppose that p > 1 and that both theorems holds for p - 1. 

We show first that, under these assumptions, Theorem 3 holds for p. Let w 
satisfy the hypotheses of Theorem 3. Then, by Lemma A and the subsequent 
remark, we may write 

P-l 

w(M) = h(M) + y c P%(M) = h(M) + y$M), 
i=l 

say, 

in !G+, where h, h, ,..., hspl are harmonic and z, is (p - 1)-harmonic in sZ+. As in 
the proof of Theorem 1, each hi has a harmonic continuation to 9. Hence z, has a 
(p - I)-harmonic continuation to .R, and it follows that 

liypy Pw(M) = 0 (a = 0, 1, 2,...) (12) 

for each P on Q”. By the proposition, h is 1.c.i.m. to 0 on Q”, and therefore, by 
Theorem A, h has a harmonic continuation h* to Sz satisfying h*(M) = h*(M*) 
for each M in 9. Hence 

lim @h(M) = 0 
M-P 

(cd = 0, 2, 4,...) (13) 

for each P on Q”. Now, in Q+ 

SW(M) = @h(M) + a%%(M) + ~&J(M) (a! = 1, 2, 3 )... ). (14) 

From (12)-(14) and the hypotheses on w it follows that aa-% is 1.c.i.m. to 0 on Szo 
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for 01 = 2, 4,..., 2p - 2. By the induction hypothesis, ZJ has a (p - 1)-harmonic 
continuation v* to .Q satisfying v*(M) = v*(M*) for each M in Q. The required 
continuation w* is given by w*(M) = h*(M) + yv*(M). 

Next we show that, under the same assumptions as above, Theorem 4 holds 
for p. Let w now satisfy the hypotheses of Theorem 4. Then 8w satisfies the 
hypotheses of Theorem 3, and, by the result of the last paragraph, has a p-har- 
monic continuation (aiw)* to Q satisfying (aiw)* (M) = -(Zw)* (M*) for each 
M in Q. Suppose that P E Go, and let C be the cylinder given by (5). Define w* 
in C by 

w”(M) = w(X, c) + IY (al”)” (X, t) dt. 
c 

Then it is easy to verify that w*(M) = w*(M*) for each M in C. Also 

so that, since (8~) and all its derivatives are bounded in C, we have when ME C 

dpw*(M) 

= ~‘P4-F 4 + g; (i) A’ka2p-2k-‘(8w)* (M) + j-‘d’“(Sw)* (X, t) dt 
G 

= “t’ (;) ~‘“a2~-2k+l~(X, c) + “c’ (3 ~‘Q2~-2M(3~)* (M) 

k=O k=O 

-I,“gei LI’“PP-~~(~w)* (X, t) dt = 0. 

Hence w * is p-harmonic in C. It follows that w has a continuation of the required 
type into some neighborhood of each point of Go, and therefore w has such a 
continuation into Q. The induction is complete. 

5. PROOF OF THEOREM 5 

By Theorem 1, w has a p-harmonic continuation to Q. In particular, this 
implies that 8w has a continuous extension (saw)* to Q+ u Go for each non- 
negative 01. Since, when 01 = 0, l,..., p - 1, %w is 1.c.i.m. to 0 on .@, we have 
for such a, (a=w), = 0 on Go, i.e., 

lim @w(M) = 0 
M+P 

(a = 0, l,...,p - 1) 

for each P E Q”. From this it follows easily that (3) holds, and hence, by Theo- 
rem B, that w has the continuation w* given by (2). 
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