JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 65, 44-55 (1978)

Reflection Principles for Harmonic and Polyharmonic Functions

D. H. Armitage

Queen's University, Belfast, BT7 1NN, Northern Ireland Submitted by L. Mirsky

1. INTRODUCTION

An arbitrary point of the Euclidean space \mathbb{R}^{n+1} $(n \ge 1)$ is represented by M = (X, y), where $X \in \mathbb{R}^n$ and $y \in \mathbb{R}$. The mirror image of M in the hyperplane $\mathbb{R}^n \times \{0\}$ and the projection of M onto this hyperplane are denoted by $M^* = (X, -y)$ and $M_0 = (X, 0)$, respectively. Throughout this paper Ω is an open subset of \mathbb{R}^{n+1} which is symmetric in the sense that $M^* \in \Omega$ whenever $M \in \Omega$. We write

$$\Omega^+ = \{ M \in \Omega \colon y > 0 \}, \qquad \Omega^0 = \{ M \in \Omega \colon y = 0 \}, \qquad \Omega^- = \{ M \in \Omega \colon y < 0 \}$$

and assume throughout that Ω^0 is nonempty.

We are concerned with extending to the whole of Ω a polyharmonic function in Ω^+ which has certain partial derivatives "vanishing" on Ω^0 . Here we explain the sense in which these derivatives will be required to "vanish." Let $|\cdot|$ be Euclidean norm on \mathbb{R}^{n+1} and let σ denote *n*-dimensional surface-area measure. If $P \in \mathbb{R}^n \times \{0\}$ and *a* and *r* are positive numbers, we put

$$\tau(P, a, r) = \{ M \in \mathbf{R}^{n+1} : y = a, |M_0 - P| < r \}.$$

A function $f: \Omega^+ \to \mathbb{R}$ will be said to be locally convergent in mean (l.c.i.m.) to 0 on Ω^0 if for each point P of Ω^0 there is a positive number r such that

$$\int_{\tau(P,a,r)} |f(M)| \, d\sigma(M) \to 0 \qquad (a \to 0+).$$

In view of the results that follow, it is worthwhile to observe that if f is continuous in Ω^+ and has the properties

(i) each point (X, 0) of Ω^0 has a neighborhood $\mathscr{N}_{(X,0)}$ such that f is bounded in $\Omega^+ \cap \mathscr{N}_{(X,0)}$,

(ii) for each point (X, 0) of Ω^0

$$\lim_{y\to 0+}f(X,y)=0,$$

then f is l.c.i.m. to 0 on Ω^{0} . This follows from Lebesgue's bounded convergence theorem.

In [2] we proved

THEOREM A. If h is harmonic in Ω^+ and is l.c.i.m. to 0 on Ω^0 , then h has a harmonic continuation h^* to Ω such that $h^*(M) = -h^*(M^*)$ for each M in Ω .

This improves the classical reflection principle for harmonic functions. In this paper we prove several generalizations of Theorem A.

Let p be a positive integer. As usual, we say that a function w is p-harmonic in Ω if w is real-analytic and $\Delta^p w \equiv 0$ in Ω , where Δ^p is the pth iterated Laplacian operator on n + 1 variables. By strengthening the conditions on Ω , we can prove a general existence theorem for polyharmonic continuations. We say that Ω is cylindrical if $(X, y_2) \in \Omega$ whenever $y_1 \leq y_2 \leq y_3$ and (X, y_1) , $(X, y_3) \in \Omega$. For brevity, we write $\partial^{\alpha} = \partial^{\alpha}/\partial y^{\alpha}$ ($\alpha = 0, 1, 2, ...$).

THEOREM 1. Let Ω be cylindrical, and let w be p-harmonic in Ω^+ . If there exist p distinct nonnegative integers $\alpha_1, ..., \alpha_p$ such that $\partial^{\alpha_j} w$ is l.c.i.m to 0 on Ω^0 for each j = 1, ..., p, then w has a unique p-harmonic continuation to Ω .

For certain values of $\alpha_1, ..., \alpha_p$ we can give explicit formulas for the continuation. In particular, when p = 1 (the harmonic case) we can give such a formula for any value of α_1 .

THEOREM 2. Let Ω be cylindrical, and let h be harmonic in Ω^+ . If there is a nonnegative integer α such that $\partial^{\alpha}h$ is l.c.i.m. to 0 on Ω^0 , then, for each nonnegative integer β , $\partial^{\beta}h$ has a continuous extension $(\partial^{\beta}h)_*$ to $\Omega^+ \cup \Omega^0$. Further, if h' is defined in Ω by

$$h'(M) = 0 \qquad (\alpha = 0, 1)$$

= $\sum_{k=0}^{4\alpha-1} \{(2k)!\}^{-1} y^{2k} (\partial^{2k}h)_* (M_0) \qquad (\alpha = 2, 4, 6, ...)$
 $\frac{4}{(\alpha-3)}$

$$=\sum_{k=0}^{4\sqrt{\alpha-3}} \{(2k+1)!\}^{-1} y^{2k+1} (\partial^{2k+1}h)_* (M_0) \qquad (\alpha=3, 5, 7, ...)$$

then the function h^* , defined in Ω by

=

$$h^{*}(M) = h(M) \qquad (M \in \Omega^{+})$$

= $(\partial^{0}h)_{*}(M) \qquad (M \in \Omega^{0}) \qquad (1)$
= $(-1)^{\alpha+1}h(M^{*}) + 2h'(M) \qquad (M \in \Omega^{-}),$

is harmonic in Ω .

In the case $\alpha = 0$, 1, the condition that Ω is cylindrical may be dropped. With this weaker hypothesis, the case $\alpha = 0$ reduces to Theorem A.

THEOREM 3. Let w be p-harmonic in Ω^+ . If $\partial^{2j}w$ is l.c.i.m. to 0 on Ω^0 for each j = 0, ..., p - 1, then the p-harmonic continuation w^* of w to Ω satisfies $w^*(M) = -w^*(M^*)$ for each M in Ω .

THEOREM 4. Let w be p-harmonic in Ω^+ . If $\partial^{2j+1}w$ is l.c.i.m. to 0 on Ω^0 for each j = 0, ..., p - 1, then the p-harmonic continuation w^* of w to Ω satisfies $w^*(M) = w^*(M^*)$ for each M in Ω .

THEOREM 5. Let w be p-harmonic in Ω^+ . If $\partial^j w$ is l.c.i.m. to 0 on Ω^0 for each j = 0, ..., p - 1, then the p-harmonic continuation w^* of w to Ω is defined by

$$w^{*}(M) = w(M) \qquad (M \in \Omega^{+})$$

= 0 $(M \in \Omega^{0})$
= $\sum_{k=0}^{p-1} y^{p+k} (k!)^{-2} \Delta^{k} \{ (-y)^{k-p} w(M^{*}) \} \qquad (M \in \Omega^{-}).$ (2)

Theorem 5 will follow from Theorem 1 and the known

THEOREM B. If w is p-harmonic in Ω^+ and

$$\lim_{M\to P} y^{1-p}w(M) = 0 \qquad (P\in \Omega^0),$$

then the function w^* , defined in Ω by (2), is p-harmonic in Ω .

Theorem B is due in its full generality to Huber [6]. The case n = p = 2 is due to Duffin [4].

2. Proof of Theorem 2

We require some preliminary results. The closure of a subset ω of \mathbb{R}^{n+1} is denoted by $\bar{\omega}$.

LEMMA 1. Let ω be an open, symmetric, cylindrical subset of \mathbb{R}^{n+1} such that $\bar{\omega} \subset \Omega$ and ω^0 is bounded. If h is harmonic in Ω^+ (resp. Ω), then there exists a harmonic function H in ω^+ (resp. ω) such that $\partial^1 H = h$ in ω^+ (resp. ω).

A weak form of this lemma has been proved in the case n = 2 by Duffin [4]. Our proof is modeled on his. Let a be a positive number such that the closure of the set

$$\Gamma = \{ (X, a) \colon (X, 0) \in \omega \}$$

is contained in Ω . Define K in $\Gamma \times \Gamma$ by

$$\begin{split} K(M, P) &= -\frac{1}{2} | M - P | & (n = 1) \\ &= -(2\pi)^{-1} \log | M - P | & (n = 2) \\ &= \{ (n-2) \, s_n \}^{-1} | M - P |^{2-n} & (n \ge 3), \end{split}$$

where s_n is the surface area of the unit sphere in \mathbb{R}^n , and given a bounded, continuous function $f: \Gamma \to \mathbb{R}$, define $U_f: \Gamma \to \mathbb{R}$ by

$$U_f(M) = \int_{\Gamma} K(M, P) f(P) \, d\sigma(P).$$

Now, identifying Γ with a bounded open subset of \mathbb{R}^n in the obvious way, writing $\Delta' = \Delta - \partial^2$, and using a familiar technique of differentiation (see, e.g., Helms [5, pp. 122–124] for the cases $n \ge 2$ or Wermer [9, Sect. 3] for the case n = 3), we have in Γ

$$\Delta' U_f(M) = -f(M).$$

Define H in ω^+ by

$$H(M) = \int_{a}^{y} h(X, t) dt + U_{\partial^{1} h}(X, a).$$
(4)

Then $\partial^1 H = h$ in ω^+ and

$$egin{aligned} & \Delta H(M) = \partial^1 h(M) + \int_a^y \Delta' h(X,t) \, dt - \Delta' U_{\partial^1 h}(X,a) \ & = \partial^1 h(M) - \int_a^y \partial^2 h(X,t) \, dt - \partial^1 h(X,a) = 0. \end{aligned}$$

The passage of Δ' under the first integral sign in (4) is justified by the fact that h and all its derivatives are locally bounded in ω^+ .

The above proof remains valid when Ω^+ and ω^+ are replaced by Ω and ω .

LEMMA 2. Let Ω be cylindrical. If h harmonic in Ω^+ and for some nonnegative integer α , $\partial^{\alpha}h$ has a harmonic continuation to Ω , then so also has h.

The proof is by induction on α . The case $\alpha = 0$ is trivial. Suppose that $\alpha \ge 1$ and that the result holds for $\alpha - 1$. Let $(\partial^{\alpha} h)^*$ be the harmonic continuation of

D. H. ARMITAGE

 $\partial^{\alpha} h$ to Ω , and let ω satisfy the hypotheses of Lemma 1. By Lemma 1, there is a harmonic function H in ω such that $\partial^{1}H = (\partial^{\alpha}h)^{*}$ in ω . Hence $\partial^{1}(H - \partial^{\alpha-1}h) = 0$ in ω^{+} , so that $H = \partial^{\alpha-1}h + H'$ in ω^{+} , where H' is a harmonic function in ω and is independent of y. It follows that H - H' is a harmonic continuation of $\partial^{\alpha-1}h$ to ω . Letting ω vary and using the fact that harmonic continuations are unique, we see that $\partial^{\alpha-1}h$ has a harmonic continuation to Ω . By the induction hypothesis, h has the required continuation.

LEMMA 3. Let Ω be cylindrical. If h is harmonic in Ω and there exists an integer $\alpha > 1$ such that $\partial^{\alpha} h = 0$ on Ω^{0} , then the function h', defined in Ω by

$$h'(M) = \sum_{k=0}^{\frac{1}{\alpha}-1} \{(2k)!\}^{-1} y^{2k} \partial^{2k} h(M_0) \qquad (\alpha = 2, 4, 6, ...)$$
$$= \sum_{k=0}^{\frac{1}{\alpha}(\alpha-3)} \{(2k+1)!\}^{-1} y^{2k+1} \partial^{2k+1} h(M_0) \qquad (\alpha = 3, 5, 7, ...),$$

is harmonic in Ω . Further, if β is a nonnegative integer, then $\partial^{\beta}h' = \partial^{\beta}h$ on Ω^{0} when $\alpha - \beta = 2, 4, 6, ..., and <math>\partial^{\beta}h' = 0$ on Ω^{0} otherwise.

We give a proof only for $\alpha = 2, 4, 6,...$; the proof for $\alpha = 3, 5, 7,...$ is similar. Suppose that $\alpha = 2m$ and that $\partial^{2m}h = 0$ on Ω^0 . Then h' is given by

$$h'(M) = \sum_{k=0}^{m-1} \{(2k)!\}^{-1} y^{2k} \partial^{2k} h(M_0),$$

so that

$$\Delta h'(M) = \sum_{k=1}^{m-1} \{ (2k-2)! \}^{-1} y^{2k-2} \partial^{2k} h(M_0) + \sum_{k=0}^{m-1} \{ (2k)! \}^{-1} y^{2k} \Delta' \partial^{2k} h(M_0).$$

Since $\Delta' \partial^{2k} h = -\partial^{2k+2} h$ for each k, it now follows that

$$\Delta h'(M) = -\{(2m-2)!\}^{-1} y^{2m-2} \partial^{2m} h(M_0) = 0.$$

Clearly, if $\beta > 2m - 2$, then $\partial^{\beta} h' \equiv 0$ in Ω . If $0 \leq \beta \leq 2m - 2$, then

$$\partial^{\beta} h'(M) = \sum_{k=\lfloor \frac{1}{2}\beta + \frac{1}{2} \rfloor}^{m-1} \{ (2k - \beta)! \}^{-1} y^{2k-\beta} \partial^{2k} h(M_0).$$

If β is odd, then each term in this sum vanishes on Ω^0 . If β is even, then each term except the first vanishes on Ω^0 , and this term agrees with $\partial^{\beta}h$ on Ω^0 .

We can now prove Theorem 2. By Theorem A, $\partial^{\alpha}h$ has a harmonic continuation to Ω . Hence, by Lemma 2, h has such a continuation h_* , say. For each β , define $(\partial^{\beta}h)_*$ in Ω by $(\partial^{\beta}h)_* = \partial^{\beta}h_*$. We now have somewhat more than the first part of the theorem.

In proving the second part, we work first with even values of α . Since h has a

harmonic continuation h_* to Ω and $(\partial^{\beta}h)_* = \partial^{\beta}h_*$ in Ω , it follows from Lemma 3 that h - h' is harmonic in Ω^+ and vanishes on Ω^0 . Hence, by the classical reflection principle, h - h' has a harmonic continuation $(h - h')^*$ to Ω satisfying $(h - h')^* (M) = -(h - h')^* (M^*)$ for each M in Ω . It follows that $(h - h')^* + h'$ is harmonic in Ω and agrees with h in Ω^+ . Since $h' = h = (\partial^0 h)_*$ on Ω^0 and $h'(M) = h'(M^*)$ for each M in Ω , the function $(h - h')^* + h'$ is equal to the function h^* defined by (1).

Next we work with $\alpha = 1$. It is enough to show that if $P \in \Omega^0$, then there is a neighborhood of P in which the function h^* , defined by (1) (with $\alpha = 1$) is harmonic. By Theorem A, $\partial^1 h$ has a harmonic continuation $(\partial^1 h)^*$ to Ω satisfying $(\partial^1 h)^* (M) = -(\partial^1 h)^* (M^*)$ for each M in Ω . Let c be a positive number such that the closure of the cylinder

$$C = \{ M \in \mathbf{R}^{n+1} \colon | M_0 - P | < c, | y | < c \}$$
(5)

is contained in Ω . Then the function h^* of (1) satisfies

$$h(M) = h(X, c) + \int_{c}^{y} (\partial^{1}h)^{*} (X, t) dt$$
(6)

in C. Since $(\partial^1 h)^*$ and all its derivatives are bounded in C, we may differentiate under the integral sign in (6), to obtain

$$egin{aligned} &\Delta\hbar(M)=\Delta'h(X,c)+\partial^1(\partial^1h)^*\,(M)+\int_c^y\Delta'(\partial^1h)^*\,(X,t)\,dt\ &=-\partial^2h(X,c)+\partial^1(\partial^1h)^*\,(M)-\int_c^y\partial^2(\partial^1h)^*\,(X,t)\,dt=0. \end{aligned}$$

Finally suppose that h satisfies the hypotheses of the theorem for some $\alpha = 3, 5, 7,...$ Since h has a harmonic continuation h_* to Ω and $(\partial^{\beta}h)_* = \partial^{\beta}h_*$ in Ω , it follows from Lemma 3 that h - h' is harmonic in Ω^+ and that $\partial^1(h - h')$ vanishes on Ω^0 . By the result for $\alpha = 1, h - h'$ has a harmonic continuation $(h - h')^*$ to Ω satisfying $(h - h')^* (M) = (h - h')^* (M^*)$ for each M in Ω . It follows that $(h - h')^* + h'$ is harmonic in Ω and agrees with h in Ω^+ . Since $h'(M) = -h'(M^*)$ for each M in Ω , $(h - h')^* + h'$ is equal to the function h^* defined in (1).

3. Proof of Theorem 1

Again, we require some preliminary results.

LEMMA A. Let Ω be cylindrical. If w is p-harmonic in Ω^+ , then there exist harmonic functions h_0, \ldots, h_{p-1} in Ω^+ such that

$$w(M) = \sum_{i=0}^{p-1} y^i h_i(M).$$
(7)

A proof may be found in Kraft [7]. It is easy to show, conversely, that any sum of the form (7) is *p*-harmonic in Ω^+ .

The main result preparatory to the proof of Theorem 1 is the

PROPOSITION. Let Ω be cylindrical. Suppose that w is p-harmonic in Ω^+ and is given by (7). If w is l.c.i.m. to 0 on Ω^0 , then so also is h_0 .

To prove the proposition, we need some more notations and results. Let B(M, r) denote the open ball of center M and radius r. If $f: \Omega \to \mathbf{R}$ is continuous on Ω and $\overline{B}(M, r) \subset \Omega$, let A(f; M, r) be the volume mean of f over B(M, r), i.e.,

$$A(f; M, r) = (v(r))^{-1} \int_{B(M, r)} f(N) \, dN,$$

where v(r) is the volume of B(M, r). Then, for fixed r, $A(f; \cdot, r)$ is defined on a subset of Ω and is continuous there. Hence, we can define recursively a sequence of iterated means $(A_i(f; \cdot, r))$ by

$$A_0(f;\cdot,r)=f, \qquad A_j(f;M,r)=A(A_{j-1}(f;\cdot,r);M,r) \qquad (j\geqslant 1).$$

Of course, as j increases, the domain of definition of $A_j(f; \cdot, r)$ contracts.

LEMMA B. Let w be p-harmonic in Ω^+ . If r > 0, $M \in \Omega^+$ and dist $(M, \mathbb{R}^{n+1} \setminus \Omega^+) > (p-1)r$, then

$$r^{2p-2} \Delta^{p-1} w(M) = (2n+6)^{p-1} \sum_{j=0}^{p-1} (-1)^{p-1-j} {p-1 \choose j} A_j(w; M, r).$$

A proof of the corresponding result for a polyharmonic function in \mathbb{R}^n may be found in [1, Theorem 2].

LEMMA 4. Let $f: \Omega^+ \to \mathbf{R}$ be continuous in Ω^+ . Suppose that $P \in \Omega^0$, that $\epsilon > 0$ and that there exist numbers a and r with 0 < a < r such that

$$\int_{ au(P,b,r)} |f(M)| \, d\sigma(M) < \epsilon$$

whenever 0 < b < a. Then

$$\int_{\tau(P,b,o)} |A_j(f;M,c)| \, d\sigma(M) < \epsilon \qquad (j = 0, 1, 2, ...)$$

whenever 0 < (j + 1) b < a, 0 < c, jc < b, and $0 < \rho < r - aj/(j + 1)$.

The proof is by induction on j. When j = 0 there is nothing to prove. Suppose that the result holds for some j. Denote by O the origin of \mathbb{R}^{n+1} and by η the

(n + 1)th coordinate of a point Q. If 0 < (j + 2) b < a, 0 < (j + 1) c < b, and $0 < \rho < r - a(j + 1)/(j + 2)$, then

$$\begin{aligned} v(c) \int_{\tau(P,b,\rho)} |A_{j+1}(f;M,c)| \, d\sigma(M) &\leq \int_{\tau(P,b,\rho)} \int_{\mathcal{B}(M,c)} |A_j(f;Q,c)| \, dQ \, d\sigma(M) \\ &= \int_{\tau(P,b,\rho)} \int_{\mathcal{B}(O,c)} |A_j(f;M+Q,c)| \, dQ \, d\sigma(M) \, dQ \\ &= \int_{\mathcal{B}(O,c)} \int_{\tau(P,b,\rho)} |A_j(f;M+Q,c)| \, d\sigma(M) \, dQ \\ &= \int_{\mathcal{B}(O,c)} \int_{\tau(P,b+\eta,c+\rho)} |A_j(f;M,c)| \, d\sigma(M) \, dQ. \end{aligned}$$

The change of order of integration is justified by the local boundedness of $A_j(f; \cdot, c)$. Now $c + \rho < b/(j+1) + \rho < r - a(j+2)^{-1} (\{j+1) - (j+1)^{-1}\} = r - aj/(j+1)$. Further, for each Q in B(O, c), we have $\Box b + \eta > b - c > jc$ and $b + \eta < b + c < b(j+2)/(j+1) < a/(j+1)$. Hence, by the induction hypothesis, for each such Q, the inner integral in (8) is less than ϵ . The result for j+1 follows, and the proof of the lemma is complete.

We proceed to the proof of the proposition. This is by induction on p. When p = 1 there is nothing to prove. Suppose that p > 1 and that the result is true for p - 1. Let w satisfy the hypotheses of the proposition. Suppose that $P \in \Omega^0$ and that $\epsilon > 0$. Then there exist numbers a and r with 0 < a < r such that

$$\int_{\tau(P,b,r)} |w(M)| \, d\sigma(M) < \epsilon$$

whenever 0 < b < a. A particular consequence of Lemma 4 is that

$$\int_{\tau(P,b,\tau_0)} |A_j(w; M, b/p)| \, d\sigma(M) < \epsilon \qquad (j = 0, 1, ..., p - 1), \tag{9}$$

where $r_0 = \frac{1}{2}r - \frac{1}{2}a$, whenever 0 < b < a/p. A simple calculation gives $\Delta^{p-1}w = 2^{p-1}(p-1)! \partial^{p-1}h_{p-1}$, so that, by Lemma B and (9), whenever 0 < b < a/p

$$b^{2p-2} \int_{ au(P,b,r_0)} |\partial^{p-1}h_{p-1}(M)| \, d\sigma(M) \leqslant K \sum_{j=0}^{p-1} \int_{ au(P,b,r_0)} |A_j(w;M,b|p)| \, d\sigma(M)$$

where K is a number depending only on n and p. Hence

$$b^{2p-2}\int_{\tau(P,b,r_0)} |\partial^{p-1}h_{p-1}(M)| d\sigma(M) \to 0 \qquad (b \to 0+).$$

From this and the equation

$$\partial^{p-2}h_{p-1}(M) = \partial^{p-2}h_{p-1}(X, a|p) + \int_{a/p}^{y} \partial^{p-1}h_{p-1}(X, t) dt$$

it follows easily that

$$b^{2p-3}\int_{\tau(P,b,r_0)} |\partial^{p-2}h_{p-1}(M)| d\sigma(M) \to 0 \qquad (b \to 0+).$$

Repeating this argument a further p-2 times, we arrive eventually at the relation

$$b^{p-1} \int_{\tau(P,b,r_0)} |h_{p-1}(M)| \, d\sigma(M) \to 0 \qquad (b \to 0+).$$
 (10)

Let u denote the sum of the first p-1 terms in (7). Then $w(M) = u(M) + y^{p-1}h_{p-1}(M)$. From (10) and the fact that w is l.c.i.m. to 0 on Ω^0 it follows that u is l.c.i.m. to 0 on Ω^0 . Now u is (p-1)-harmonic, so, by the induction hypothesis, h_0 is l.c.i.m. to 0 on Ω^0 . The proof of the proposition is complete.

We can now prove Theorem 1. Let w be given in Ω^+ by (7). If $\gamma_j = \min(\alpha_j, p-1)$, then, by Leibniz's theorem, in Ω^+

$$\partial^{\alpha_{j}}w(M) = \sum_{i=0}^{\nu_{j}} \alpha_{j} \left\{ (\alpha_{j} - i) \right\}^{-1} \partial^{\alpha_{j} - 1}h_{i}(M) + \sum_{k=1}^{p-1} y^{k} U_{k}(M), \quad (11)$$

where $U_1, ..., U_{p-1}$ are harmonic in Ω^+ . Now define harmonic functions H_j , V_j in Ω^+ by

$$H_j = \sum_{i=0}^{\gamma_j} \alpha_j ! \{ (\alpha_j - i)! \}^{-1} \partial^{p-1-i} h_i , \qquad V_j = \sum_{i=0}^{\gamma_j} \alpha_j ! \{ (\alpha_j - i)! \}^{-1} \partial^{\alpha_j - i} h_i .$$

Since $\partial^{\alpha_j w}$ is l.c.i.m. to 0 on Ω^0 , by (11) and the proposition, V_j is l.c.i.m. to 0 on Ω^0 . By Theorem A, V_j has a harmonic continuation to Ω . If $\alpha_j \ge p - 1$, then $V_j = \partial^{\alpha_j - p + 1} H_j$, and therefore, by Lemma 2, H_j has a harmonic continuation to Ω ; if $\alpha_j , then <math>H_j = \partial^{p-1+\alpha_j} V_j$, and again H_j has a harmonic continuation to Ω . Now the coefficient of $\partial^{p-1-i}h_i$ in H_j is 1 if i = 0 and is $\alpha_j(\alpha_j - 1) \cdots (\alpha_j - i + 1)$ otherwise. Hence, to prove that $\partial^{p-1-i}h_i$ can be expressed as a linear combination of the H_j , it is enough to show that the $p \times p$ determinant D, whose *j*th row is

$$1_{\Box} \alpha_{j\Box} \alpha_{j} (\alpha_{j} - 1) \dots \alpha_{j} (\alpha_{j} - 1) \dots (\alpha_{j} - p + 2)$$

is nonzero. Now it is easy to show that D is equal to the determinant whose (j, i)th entry is α_j^{i-1} , and since the α_j are distinct, this determinant is nonzero (see, e.g. [3, p. 303]). Hence $\partial^{p-1-i}h_i$ (i = 0, 1, ..., p - 1) can be expressed as a linear combination of the H_j (j = 1, ..., p). Since each H_j has a harmonic continuation to Ω , so also has each $\partial^{p-1-i}h_i$. By Lemma 2, each h_i has such a continuation h_i^* . The *p*-harmonic continuation w^* which we seek is given in Ω by

$$w^*(M) = \sum_{i=0}^{p-1} y^i h_i^*(M).$$

The uniqueness of the continuation follows from the fact that p-harmonic functions are real-analytic.

4. Proof of Theorems 3 and 4

These theorems are proved simultaneously by induction. The case p = 1 of Theorem 3 is Theorem A, and the case p = 1 of Theorem 4 is Theorem 2 with $\alpha = 1$. Now suppose that p > 1 and that both theorems holds for p - 1.

We show first that, under these assumptions, Theorem 3 holds for p. Let w satisfy the hypotheses of Theorem 3. Then, by Lemma A and the subsequent remark, we may write

$$w(M) = h(M) + y \sum_{i=1}^{p-1} y^{i-1} h_i(M) = h(M) + yv(M),$$
 say,

in Ω^+ , where $h, h_1, ..., h_{p-1}$ are harmonic and v is (p-1)-harmonic in Ω^+ . As in the proof of Theorem 1, each h_i has a harmonic continuation to Ω . Hence v has a (p-1)-harmonic continuation to Ω , and it follows that

$$\lim_{M \to P} y \,\partial^{\alpha} v(M) = 0 \qquad (\alpha = 0, 1, 2, ...)$$
(12)

for each P on Ω^0 . By the proposition, h is l.c.i.m. to 0 on Ω^0 , and therefore, by Theorem A, h has a harmonic continuation h^* to Ω satisfying $h^*(M) = h^*(M^*)$ for each M in Ω . Hence

$$\lim_{M \to P} \partial^{\alpha} h(M) = 0 \qquad (\alpha = 0, 2, 4, ...)$$
(13)

for each P on Ω^0 . Now, in Ω^+

$$\partial^{\alpha} w(M) = \partial^{\alpha} h(M) + \alpha \partial^{\alpha-1} v(M) + y \partial^{\alpha} v(M) \qquad (\alpha = 1, 2, 3, ...).$$
(14)

From (12)-(14) and the hypotheses on w it follows that $\partial^{\alpha-1}v$ is l.c.i.m. to 0 on Ω^{0}

for $\alpha = 2, 4, ..., 2p - 2$. By the induction hypothesis, v has a (p - 1)-harmonic continuation v^* to Ω satisfying $v^*(M) = v^*(M^*)$ for each M in Ω . The required continuation w^* is given by $w^*(M) = h^*(M) + yv^*(M)$.

Next we show that, under the same assumptions as above, Theorem 4 holds for p. Let w now satisfy the hypotheses of Theorem 4. Then $\partial^1 w$ satisfies the hypotheses of Theorem 3, and, by the result of the last paragraph, has a p-harmonic continuation $(\partial^1 w)^*$ to Ω satisfying $(\partial^1 w)^* (M) = -(\partial^1 w)^* (M^*)$ for each M in Ω . Suppose that $P \in \Omega^0$, and let C be the cylinder given by (5). Define w^* in C by

$$w^*(M) = w(X, c) + \int_c^y (\partial^1 w)^* (X, t) dt.$$

Then it is easy to verify that $w^*(M) = w^*(M^*)$ for each M in C. Also

$$\Delta^p = \sum_{k=0}^p {p \choose k} \Delta'^k \partial^{2p-2k},$$

so that, since $(\partial^1 w)$ and all its derivatives are bounded in C, we have when $M \in C$

$$\begin{split} \Delta^{p} w^{*}(M) &= \Delta'^{p} w(X,c) + \sum_{k=0}^{p-1} {p \choose k} \Delta'^{k} \partial^{2p-2k-1} (\partial^{1} w)^{*} (M) + \int_{c}^{y} \Delta'^{p} (\partial^{1} w)^{*} (X,t) dt \\ &= \sum_{k=0}^{p-1} {p \choose k} \Delta'^{k} \partial^{2p-2k+1} w(X,c) + \sum_{k=0}^{p-1} {p \choose k} \Delta'^{k} \partial^{2p-2k-1} (\partial^{1} w)^{*} (M) \\ &- \int_{c}^{y} \sum_{k=0}^{p-1} {p \choose k} \Delta'^{k} \partial^{2p-2k} (\partial^{1} w)^{*} (X,t) dt = 0. \end{split}$$

Hence w^* is *p*-harmonic in *C*. It follows that w has a continuation of the required type into some neighborhood of each point of Ω^0 , and therefore w has such a continuation into Ω . The induction is complete.

5. Proof of Theorem 5

By Theorem 1, w has a *p*-harmonic continuation to Ω . In particular, this implies that $\partial^{\alpha}w$ has a continuous extension $(\partial^{\alpha}w)_{*}$ to $\Omega^{+} \cup \Omega^{0}$ for each non-negative α . Since, when $\alpha = 0, 1, ..., p - 1$, $\partial^{\alpha}w$ is l.c.i.m. to 0 on Ω^{0} , we have for such α , $(\partial^{\alpha}w)_{*} = 0$ on Ω^{0} , i.e.,

$$\lim_{M\to P}\partial^{\alpha}w(M)=0\qquad (\alpha=0,\,1,...,\,p-1)$$

for each $P \in \Omega^0$. From this it follows easily that (3) holds, and hence, by Theorem B, that w has the continuation w^* given by (2).

REFLECTION PRINCIPLES

References

- D. H. ARMITAGE, A polyharmonic generalization of a theorem on harmonic functions, J. London Math. Soc. (2) 7 (1973), 251-258.
- 2. D. H. ARMITAGE, A note on the reflection principle for harmonic functions, *Proc. Roy. Irish Acad.* **76** (1976), 11–14.
- 3. G. BIRKHOFF AND S. MACLANE, "A Survey of Modern Algebra," Macmillan Co., New York, 1963.
- 4. R. J. DUFFIN, Continuation of biharmonic functions by reflection, *Duke Math. J.* 22 (1955), 313-324.
- 5. L. L. HELMS, "Introduction to Potential Theory," Wiley-Interscience, New York, 1969.
- 6. A. HUBER, The reflection principle for polyharmonic functions, *Pacific J. Math.* 5 (1955), 433-439; Erratum, 7 (1957), 1731.
- 7. S. R. KRAFT, "Sufficient Conditions for the Analytic Continuation of Polyharmonic Functions," Ph.D. Thesis, University of Maryland, September 1961.
- 8. S. R. KRAFT, Reflection of polyharmonic functions, J. Math. Anal. Appl. 22 (1968), 670-678.
- 9. L. WERMER, "Potential Theory," Lecture Notes in Mathematics No. 408, Springer-Verlag, Berlin/Heidelberg/New York, 1974.