
D
c

M
a

b

c

a

A
R
R
A
A

K
P
D
M
A

I

p
i
d
H
a
d
s
r
e
2
o

C
s

1
h

COREView metad

onnector 
Epidemics 4 (2012) 219–226

Contents lists available at SciVerse ScienceDirect

Epidemics

j our na l ho me p age: www.elsev ier .com/ locate /ep id emics

rivers  and  consequences  of  influenza  antiviral  resistant-strain  emergence  in  a
apacity-constrained  pandemic  response

athew  P.  Dafilisa,∗,  Robert  Mossa,b,c,  Jodie  McVernona, James  McCawa

Vaccine & Immunisation Research Group, Murdoch Childrens Research Institute and Melbourne School of Population Health, The University of Melbourne, Parkville, Australia
IR4M UMR8081 CNRS, Universite Paris-Sud, Orsay, France
Institut Gustave Roussy, Villejuif, France

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 13 August 2012
eceived in revised form 6 November 2012
ccepted 17 December 2012
vailable online 25 December 2012

eywords:
andemic influenza
rug resistance
athematical model

ntivirals

a  b  s  t  r  a  c  t

Antiviral  agents  remain  a key  component  of  most  pandemic  influenza  preparedness  plans,  but  there  is
considerable  uncertainty  regarding  their  optimal  use.  In particular,  concerns  exist  regarding  the  likeli-
hood  of wide-scale  distribution  to  select  for drug-resistant  variants.  We  used  a  model  that  considers  the
influence  of  logistical  constraints  on  diagnosis  and  drug  delivery  to  consider  achievable  ‘reach’  of  alterna-
tive  antiviral  intervention  strategies  targeted  at cases  of  varying  severity,  with  or  without  pre-exposure
prophylaxis  of contacts.  To  identify  key  drivers  of  epidemic  mitigation  and  resistance  emergence,  we  used
Latin hypercube  sampling  to  explore  plausible  ranges  of parameters  describing  characteristics  of  wild
type  and  resistant  viruses,  along  with  intervention  efficacy,  target  coverage  and  distribution  capacity.
Within  our  model  framework,  ‘real  world’  constraints  substantially  reduced  achievable  drug  coverage
below  stated  targets  as the  epidemic  progressed.  In consequence,  predictions  of both  intervention  impact
and selection  for resistance  were  more  modest  than  earlier  work  that  did  not  consider  such  limitations.
Definitive  containment  of transmission  was  unlikely  but,  where  observed,  achieved  through  early  liberal
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post-exposure  prophylaxis  of known  contacts  of  treated  cases.  Predictors  of  resistant  strain  dominance
were  high  intrinsic  fitness  relative  to  the  wild type  virus,  and  early  emergence  in  the course  of  the  epi-
demic  into  a  largely  susceptible  population,  even  when  drug  use was  restricted  to severe case  treatment.
Our work  demonstrates  the  importance  of  consideration  of  ‘real  world’  constraints  in  scenario  analy-
sis modeling,  and  highlights  the  utility  of  models  to guide  surveillance  activities  in preparedness  and
response.
ntroduction

A number of novel antiviral agents against influenza are
resently in development, spurred by awareness of existing lim-

tations of current therapies, including the emergence of viable
rug-resistant influenza variants (Hayden, 2009). Notably, seasonal
1N1 influenza viruses resistant to oseltamivir, the most widely
vailable neuraminidase inhibitor (NAI), arose in Northern Europe
uring the 2007/2008 influenza season (Lackenby et al., 2008) and
pread rapidly around the globe (Hurt et al., 2009) before being
eplaced by the A(H1N1)pdm09 strain that emerged in 2009 (Blyth

t al., 2010). Since that time, reports of sporadic cases (Hurt et al.,
011a)  and community-transmitted strains (Hurt et al., 2011b)
f oseltamivir resistant H1N1pdm09 have become more frequent,
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although sustained transmission has not yet been observed. Resis-
tance to zanamivir, an alternative NAI, has to date been associated
with severely reduced viral fitness. Based on the 2007/2008 experi-
ence – and recent virological analyses indicating the acquisition of
so called ‘compensatory mutations’ which offset the negative effect
of the mutation(s) that confer resistance – there is increasing con-
cern that oseltamivir resistant H1N1pdm09 may  yet still emerge
to become the dominant circulating H1N1 strain (Kelso and Hurt,
2012). Lessons learned regarding best use of the NAI class of agents
to limit resistance will be of relevance to application of novel agents
in public health practice as they become available.

To date, outbreaks of transmissible NAI resistant viruses have
not typically arisen in settings of widespread antiviral use (Hurt
et al., 2011b). However, it is reasonable to anticipate that exten-
sive drug distribution should promote selection for such strains
(Morlighem et al., 2011). Concerns regarding development of resis-

tance prompted some clinicians to call for restricted drug use
during the 2009 H1N1 pandemic response in order to avoid a
‘nightmare scenario’ with few treatment options for severe cases
(Grayson and Johnson, 2009). In reality, drug distribution was very

https://core.ac.uk/display/81126759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
dx.doi.org/10.1016/j.epidem.2012.12.002
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imited in most settings (Leung and Nicoll, 2010), commensurate
ith a proportionate response to mild disease (Bishop et al., 2009),

ut precluding the ability to document anticipated tradeoffs of
esistance versus mitigation.

Several published models exploring optimal application of
ntiviral agents in a pandemic response have foreshadowed the
rospect of dominance of resistant strains in the context of com-
ined treatment and prophylaxis strategies (Lipsitch et al., 2007).
ith others (Wessel et al., 2011; Qiu and Feng, 2010; Handel et al.,

007) we have demonstrated that the likelihood of resistant strain
ominance in these frameworks depends critically upon mutant
train fitness and the proportion of the virus population that can
e influenced by the intervention (McCaw et al., 2008). This latter
gure depends on (i) the proportion of all infections that exhibit
ymptoms (and hence may  come to medical attention), (ii) achiev-
ble drug delivery, particularly early in the epidemic and (iii) the
uration of drug distribution which, in our model system, is con-
trained by a finite therapeutic stockpile (McCaw et al., 2008).

In light of the ‘real world’ constraints experienced during the
009 H1N1 pandemic response in Australia, we have previously
onsidered the additional limitations of finite diagnostic and drug
istribution capacity on the likely mitigating impact of alternative
roposed response measures (Moss et al., 2011). Given our finding
f considerably reduced ‘reach’ of many interventions beyond pre-
iously proposed targets, we here reconsider the possible selective
ressure of antiviral strategies focused either exclusively on case
reatment, or treatment and prophylaxis, on antiviral resistance
mergence. In addition, we seek evidence of key determinants
f intervention outcomes that might be amenable to early epi-
emiological investigation, to support resource allocation decisions
uring a pandemic response.

ethods

odel structure and capabilities

Our model is based on the classic deterministic susceptible-
xposed-infectious-recovered (SEIR) paradigm, with a stochastic
omponent to account for the emergence of a drug resistant strain.
ll individuals are assumed fully susceptible (S) at the outset of the
pidemic and vulnerable to acquiring infection upon contact with
n infectious (I) case, entering the exposed class (E). Once recovered
R), individuals are assumed to be fully resistant to reinfection.

To allow for the consideration of community based targeted
ost-exposure prophylaxis, the model incorporates a dynamic ‘con-
act’ label (McCaw and McVernon, 2007), applied to a fixed number
f individuals drawn from the whole population each time a new
nfectious case appears. We  define these contacts and parameter-
ze our model following the definition and findings of Edmunds et
l’s sociological studies (Edmunds et al., 2006): contacts are those
eople who have been sufficiently close to an infected individual to
onceivably contract infection. Only contacts of an infectious case
ay  proceed to the exposed and infectious classes, however the
ajority of contacts escape unscathed, returning to their original

tate within 72 h of exposure.

pidemic scenario analysis within the model

Model parameters are summarized and referenced in Table S1
nd described further below.
ransmissibility assumptions
Transmissibility of the wild type strain depends on both the

nitial reproduction number (R) and the mean serial interval
1/� + 1/ω), which comprises the exposed and infectious periods
cs 4 (2012) 219–226

(Roberts and Heesterbeek, 2007). The reproduction number deter-
mines the final attack rate (given our assumed homogeneously
mixing population), negligible if R < 1 and monotone increasing
with increasing R > 1. For a given R the serial interval determines
the time course of the epidemic.

Severity assumptions
A campaign of widespread antiviral distribution is only likely to

be justifiably sustained in a ‘severe’ pandemic scenario. Moreover,
the proportion of infected individuals presenting for medical care
has a substantial impact on the ability of an antiviral intervention
to exert influence on the epidemic (Moss et al., 2011). For these
reasons, we  constrain our simulations in the main text to a ‘severe’
scenario, in which 10% of infected individuals require hospitaliza-
tion (�). The corresponding proportion of all infections presenting
to hospital or community-based medical providers (˛m) is allowed
to range from 25 to 75%. Less severe scenarios are explored in the
supplementary material (Section 1).

Resistance assumptions
We allow stochastic emergence of a drug resistant strain,

modeled as a per-infection probability. Consistent with others, we
assume that case treatment selects for the emergence of drug resis-
tant influenza (�t) more strongly than post-exposure prophylaxis
(�p)(Lipsitch et al., 2007). This assumption reflects the higher viral
load upon which the drug exerts selective pressure when com-
menced during an established infection, increasing the likelihood
that a resistant strain is already present. For simplicity, we do not
allow for differences in selection between severe and mild cases,
but note that severe (hospitalized) cases may  have longer infec-
tions and so be more likely to initiate transmission of drug resistant
strains. We  further consider the possibility that a drug resistant
mutant may  emerge spontaneously (�n) in the population, param-
eterized as of lesser likelihood than under either intervention case.
With limited empirical evidence to guide parameter assignment,
the rate of emergence of drug-resistance at the population level is
varied across several orders of magnitude.

Once established, transmissibility of the resistant mutant rel-
ative to wild-type (�) determines its spread – this parameter is
considered within the range 0–1. While it is plausible that a resis-
tant virus may  exhibit fitness in excess of the wild type strain (� > 1),
it may  be intuitively supposed that such a virus will inevitably
dominate regardless of drug selective effects.

Intervention scenario analysis within the model

Presentation to health care settings
Severe cases present to hospitals and are treated in a timely way.

Non-severe (mild, moderate) infected individuals may  present to
two kinds of community health care settings; general practition-
ers or designated ‘flu clinics’. Antiviral provision in the community
is subject to diagnostic and drug delivery constraints, described
below.

Antiviral treatment and prophylaxis
Previous work has identified an optimal diagnostic strategy to

ensure efficient antiviral drug delivery, as follows (Moss et al.,
2011). In the initial stages of the epidemic where only a small
proportion of illness presentations are due to influenza, a highly
specific case diagnosis strategy based on molecular diagnosis is
used to assign treatment. We  incorporate delays to laboratory
diagnosis arising from greater logistic complexity in GP compared

with flu-clinics during this phase as a fractional reduction in inter-
vention efficacy (fGP). As the proportion of all ILI presentations
attributable to influenza increases, a transition to syndromic-based
treatment decisions becomes most efficient. In 2009 in Australia,
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his time roughly coincided with the time at which diagnostic
apacity (Dc) was exceeded, justifying the model assumption as
easonable (Moss et al., 2011). The model is flexible to consider
lternative uses of antiviral agents: treatment of severe cases only,
reatment of all ‘diagnosed’ cases, or a combination of case treat-

ent with provision of antiviral prophylaxis to the proportion of
ontacts that it is estimated can be identified within a timely man-
er (�).

ntiviral efficacy assumptions
Based on an analysis of combined clinical trials (Halloran et al.,

007) we allow for a modest reduction in transmission for cases
reated in a timely fashion (et = 10%, range 0–20%), and a substantial
eduction in susceptibility for contacts provided with timely pro-
hylaxis (es = 50%, range 20–80%). Contacts receiving prophylaxis
ho nonetheless become infected have reduced infectiousness (ei),

onservatively assumed to mirror the effect of primary treatment
10%, range 0–20%).

iagnostic capacity and drug delivery constraints
The model tracks diagnostic and drug delivery requirements

hroughout the course of the epidemic, in relation to ‘real world’
apacity constraints in the Australian context, estimated through
xpert enquiry. These constraints are observed in diagnostic capac-
ty (DC), delivery of treatment courses (MAXT) and ability to deliver
ntiviral prophylaxis (MAXP). As the epidemic grows exponentially,
hese constraints limit the actual application of interventions in
he majority of scenarios, with implications for both the achievable
evel of drug delivery in relation to aspirational targets and the over-
ll ‘selective pressure’ able to be placed on the viral population to
romote drug-resistance.

accination
Rollout of strain-specific vaccine is simulated several months

ollowing onset of the epidemic. Vaccinated individuals exhibit
educed susceptibility to infection, resulting in effective con-
ainment of transmission once sufficient coverage is achieved.
nclusion of this definitive intervention, envisaged in Australian
andemic planning (Australian Government Department of Health
nd Ageing, 2008) and hence included in previous modeling sce-
ario analyses (Moss et al., 2011; McVernon et al., 2010), allows
xamination of the likely ability of transmission constraining meas-
res to buy sufficient ‘time’ to allow mitigation of the final attack
ate.

opulation
We nominally consider a population size of 20 million (approx-

mate Australian population size), with diagnostic capacity, drug
elivery constraints and vaccine delivery set accordingly. As the
mergence of drug-resistant mutants is captured stochastically, we
lso consider smaller populations (5 × 106, 1 × 106 and 500,000) in
ection 3 of the supplementary material.

ensitivity analysis and key model outputs

It is essential that presentation of the results capture the sig-
ificant uncertainty surrounding both epidemic scenarios and
he effectiveness of interventions. To that end, we  employ a
atin–Hypercube–Sampling (LHS) technique to explore model
arameter space. LHS is a statistical sampling method for
enerating plausible collections of parameter values from multi-

imensional distributions (Hoare et al., 2008).

In this work, we specifically consider the timing of onset and
nal size of the ‘resistant’ epidemic, and the impact of resistance
mergence on the intervention’s effectiveness, within the bounds
s 4 (2012) 219–226 221

of drug delivery capacity constraints. We  use partial rank cor-
relation coefficient plots to report on the sensitivity of model
conclusions regarding the final attack rate, and the final proportion
of cases that are drug resistant, to sampled parameters.

Results

Model behavior

The capacity constraints imposed on our model are critical to its
behavior, as they impact substantially on achievable drug coverage
of the target treatment and prophylaxis population as the epidemic
progresses. This phenomenon is depicted in Fig. 1, which demon-
strates the proportion of all infections that receive antiviral drugs
over time, for a given set of epidemic and capacity assumptions,
and a range of treatment and prophylaxis intervention scenarios
(see legend for further details). Treatment of severe cases is the only
intervention that occurs at a fixed rate, without constraint. Achiev-
able community-based treatment coverage falls sharply from more
than 40% to just over 10% with exponential growth of the epi-
demic, even using a syndromic case definition, as there are simply
not enough practitioners to deliver the intervention in a timely
manner. The additional proportional coverage of the total virus pop-
ulation achieved by prophylaxis is modest, due to the fact that the
majority of contacts that receive prophylaxis have not truly been
exposed (E) at the time of identification, and would never have
developed the infection, given an R0 of <2. It is worth noting, how-
ever, that the addition of prophylaxis to the antiviral strategy delays
the exponential growth phase of the epidemic by several weeks
compared with treatment alone. Not surprisingly, increased deliv-
ery capacity for both prophylaxis and treatment are associated with
a greater ability to reduce the overall attack rate in the population
(Fig. S3, supplementary material).

Selection of informative epidemic scenarios

Fig. 2 depicts achievable reductions in attack rate for simulated
interventions compared with the base case, scanning across a plau-
sible starting range of R0 values from 1.15 to 2.5. Box plots depict
the median and interquartile ranges of simulation outputs over the
LHS samples. Few positive outcomes are observed for an assumed
R0 ≥ 1.5 (i.e. the intervention is essentially futile), with the great-
est variability in attack rate observed between the ranges 1.25 and
1.45 (i.e. the intervention is sometimes useful). Hereafter, we will
restrict our considerations to this latter range, in order to identify
additional factors associated with successful epidemic constraint,
that might support a decision to invest in a wide-scale antiviral
deployment strategy, while considering implications for resistance.

Influence of intrinsic virus properties on resistance emergence

Fig. 3a shows exemplar wild-type (blue) and resistant (red) epi-
demic curves, for a single model simulation run. The inset box
demonstrates unsuccessful seeding of a resistant strain at approx-
imately 8 weeks, followed by successful establishment of such a
variant approximately one week later. This timing, however, is too
late to allow dominance of the mutant over the wild-type strain,
making it essentially invisible on the full-scale graph (dominated
by blue). Fig. 3b depicts the intuitively logical relationship between
the time of successful seeding of the resistant epidemic (y-axis) and
probability of emergence of a resistant strain under drug treatment

(�t) (x-axis). Moreover, resistant mutants of higher intrinsic fitness
compared with wild-type (�) (shaded red) are more likely than less
fit strains (shaded blue) to arise early, at a time when the population
is still highly susceptible.
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Community treatment and prophylaxis at a maximal rate of 10000 doses per day each
Maximal treatment delivery rate of 10000 doses per day −− no prophylaxis
Treatment of severe cases only and maximal community prophylaxis delivery of 10000 doses per day
Treatment of severe cases only −− no prophylaxis
No treatment (psi = 0) with community prophylaxis at a maximal delivery rate of 10000 doses per day

Fig. 1. Proportional coverage of the total virus population achieved, under alternative intervention strategies. The proportion of all infections that receive antiviral treatment
and/or  prophylaxis is shown, in relation to all observed and unobserved infections, over the course of the epidemic. The epidemic scenario considered assumes a severity (�) of
10%,  with a presenting proportion (˛m) of 48%. The proportion of contacts traced (�) is 50%, within maximal delivery constraints for each of treatment (MAXT) and prophylaxis
(MAX ) of 10,000 doses per day. Drug efficacy assumptions include a 10% reduction in ongoing transmission from treated cases (e = 0.9) and prophylaxis ‘breakthroughs’
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ep = 0.9) and an effective reduction in susceptibility for individuals receiving prophy
ases  only; treatment of severe cases only with prophylaxis; treatment of all identi
ommunity-based) with provision of post-exposure prophylaxis.

nfluence of capacity constraints on resistance emergence

We now consider the influence of capacity constraints to miti-
ate an epidemic, evidenced by reduction in the overall attack rate,
n relation to both the timing of resistant strain emergence and
he epidemic growth rate (R0). Fig. 4a demonstrates that higher
evels of delivery capacity (shaded red) are generally associated

ith more favorable outcomes than the lower capacity case (blue).
owever, at higher assumed values of R0, an extensively applied

ntervention may  bring forward the resistant strain epidemic, with
nfavorable consequences for the final attack rate. Fig. 4b explores
he drivers of this effect further, reporting on the final proportion
f all cases that are drug resistant, relative to timing of resistance
mergence, mutant strain fitness and capacity constraints. Here we
bserve that only very early-emergent strains of near-equivalent
tness to wild-type virus become predominant (back corner of the
lot), and then usually only under high-end delivery assumptions
Fig. S4, supplementary material).

ther influences on epidemic outcomes

Fig. 5a shows a tornado plot depicting parameter values that are

ignificantly (p < 0.05) associated with the intervention’s ability to
educe the final attack rate. Bars to the right depict parameters that
re associated with higher attack rates. Bars to the left are parame-
ers that are associated with successful mitigation. Not surprisingly,
t

f 50% (es = 0.5). Interventions considered are: prophylaxis only; treatment of severe
ses (severe or community-based) only; treatment of all identified cases (severe or

epidemics with higher baseline growth rates (higher R0, shorter
serial interval (1/� + 1/ω)) are harder to control. Lower assumed
efficacy of the antiviral intervention (1 − et, 1 − es) logically also
predicts a poor intervention outcome. The importance of achiev-
able coverage for intervention success is demonstrated by inverse
attack rate correlations with the presenting case proportion (˛m),
prophylaxis uptake (�) and drug delivery capacity constraints for
treatment and prophylaxis (MAXT, MAXP).

Fig. 5b reports parameters most influential to determining the
final proportion of drug resistant cases. Consistent with Fig. 4b,
intrinsic properties of the mutant strain (�t and �), demonstrated
through early emergence in the population, are the critical determi-
nants of final outcome. Maximum treatment capacity exerts some
effect by influencing achievable selection pressure, and is more
influential than prophylaxis capacity. As may  be anticipated, a drug
that exerts little influence on ongoing transmission (1 − et) is less
likely to select for resistant virus, as mutant strains are afforded
relatively little advantage over the largely unconstrained wild-type.

Discussion

Our model incorporates ‘real world’ capacity constraints that

limit the actual reach of a case targeted antiviral intervention.
As a result, the level of treatment and prophylaxis simulated is
far lower than in many existing models of antiviral resistance
(Moghadas et al., 2009; Handel et al., 2009), falling dynamically
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rug  intervention. The box plots depict the broad range of outcomes (boxes define
rug  treatment and prophylaxis scenarios, across variable efficacy assumptions and
he  reader is referred to the web version of the article.)

uring the period of exponential growth. In consequence, stock-
iles as simulated are rarely exhausted and overall impacts of
ntiviral distribution, including resistance emergence, are more
odest than predicted by our earlier work without these con-

traints (McCaw et al., 2008). With others, we conclude that the
elative transmissibility of drug resistant mutants is an influen-
ial determinant of intervention outcomes (Moghadas et al., 2009;
andel et al., 2009), as is the timing of their emergence. Of partic-
lar note, reserving drugs for treatment alone does little to reduce
he likelihood of resistant strain dominance, compared with com-
ined treatment and prophylaxis strategies that have the potential
o more effectively constrain transmission.

We  consider the incorporation of logistic constraints based on
bservation of the 2009 pandemic response in Australia to be a
ey strength of our modeling approach, providing pragmatic upper
ounds on likely response capacity and stockpile utilization as
he epidemic evolves with clear implications for outcome. In the
bsence of such limitations, Moghadas and colleagues have pro-
osed strategic moderate use of antivirals for case treatment early

n a pandemic response to reduce selection for resistance, scaling up
hereafter during the exponential growth phase (Moghadas et al.,
008). However, as Fig. 1 demonstrates, such an approach would
e extremely challenging to implement in practice. Instead, with
andel et al. (2009),  we suggest that early liberal drug distribution
rovides the only real (if modest) prospect of effective constraint of
irus replication in the population, influencing both wild type and

esistant viruses alike, with the caveat that resistance generation is

 risk should the attempt at containment fail.
Our implementation of resistance emergence draws from gen-

ral principles consistent with many previously published model
quartile ranges bisected by medians in red, red crosses are outliers) for simulated
city constraints. (For interpretation of the references to color in this figure legend,

frameworks, but differs slightly in ways that might be predicted
to affect epidemic outcomes. For example, while mutant strains
arise stochastically, once established they are transmitted deter-
ministically (and inexorably) through the remaining susceptible
population without the prospect of reversion to wild-type (Handel
et al., 2009). On the other hand, rather than using a multi-step
model of mutant strain evolution that considers increasing fitness
due to acquisition of compensatory mutations over time (Moghadas
et al., 2008), we have chosen a simple one-step emergence event,
which may  be predicted to reduce the final size of resistant out-
breaks, when they occur (Handel et al., 2009), but is likely to have
little bearing on qualitative conclusions of the model.

Properties of the resistant strain are the key determinants of
emergence and persistence. Strains of higher intrinsic fitness are
more likely to gain sufficient selective advantage from antiviral
suppression of wild type to be preferentially transmitted, an intu-
itive outcome supported by others (Moghadas et al., 2009; Handel
et al., 2009). Mutant viruses with transmissibility in excess of the
wild type strain may  be anticipated to predominate in the absence
of drug use, justifying our decision not to include them in scenario
analyses. An example of such a virus is the oseltamivir-resistant
seasonal H1N1 variant that circulated globally prior to 2009 (Chao
et al., 2012). Mutant strains arising early in the epidemic are fur-
ther advantaged by the relatively large size of the susceptible pool,
resulting in a higher final resistant proportion (and potentially total
attack rate) as observed elsewhere (Moghadas et al., 2009).
The addition of prophylaxis to our drug delivery strategy has
clear benefits for mitigation, without a marked increase in emer-
gence of resistance, in contrast to our own  (McCaw et al., 2008) and
others’ (Moghadas et al., 2009) earlier findings. We  attribute this
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Fig. 3. Time to emergence of drug-resistant mutants. (a) The full-scale figure depicts
the overall course of the epidemic, dominated by the wild-type strain (blue). The
inset box (note change of scale) shows intermittent seeding of a resistant virus (red),
which establishes in the population without predominating. (b) The first successful
seeding of a resistant strain in the population is considered in relation to both the
probability of resistance emergence under treatment (�t) and intrinsic fitness of the
m
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Fig. 4. Influence of capacity constraints on resistance emergence. (a) Final epidemic
attack rate is plotted relative to both start time of the resistant epidemic (a proxy for
�t) and the baseline epidemic growth rate (R0). Colors depict drug delivery capac-
ity  for both treatment and prophylaxis, ranging from low (blue) to high (red). In
general, higher drug delivery is associated with reductions in the final attack rate.
However, for higher assumed values of R0, extensive drug delivery may  fuel early
emergence of resistance with negative consequences for intervention impact. (b)
The combined influences of drug delivery capacity and resistant strain properties
on the final proportion of all infections that are resistant are considered. Resistant
strains dominate under a fairly limited set of assumptions, including early time to
emergence, near-equivalent fitness with wild-type and high levels of drug deliv-
utant strain (�). As anticipated, earlier emergence is observed for higher assumed
esistant virus parameters. (For interpretation of the references to color in this figure
egend, the reader is referred to the web  version of the article.)

ifference to the reduced virus population size on which antivirals
ct in early infections (�p < �t), the inclusion of capacity constraints
nd also the very modest proportional increase in coverage of
he virus population resulting from post-exposure antiviral use
n the present model due to our ‘sociological’ approach to drug
istribution (Fig. 1). Moreover, given that our contacts are drawn
rom the whole population, an increasing proportion will be in the
ecovered class as the epidemic progresses, further reducing the
elective pressure associated with prophylaxis over time. This fea-
ure of our model structure differs substantially from most others
hat apply targeted post-exposure therapy directly to the ‘exposed’
lass, resulting in far greater influence on the virus population

n such model constructs than may  be realistically observed in
ractice (Moghadas et al., 2009).

All models are necessary simplifications of complex systems
nd there are many demonstrated features of real world settings
ery. (For interpretation of the references to color in this figure legend, the reader is
referred to the web  version of the article.)

that have been omitted from this simple framework. Heterogene-
ity of population mixing and in particular, the degree of clustering,
may  drive local resistance emergence at lower treatment thresh-
olds than estimated from homogeneous model systems (Alexander
et al., 2007). We  have considered smaller population sizes in the
supplementary material (Section 3),  with consistent findings. The
interplay between intervention timing and seasonal variation in
transmission has the potential to result in adverse outcomes of
early strategies to limit spread (Towers et al., 2011), a challeng-
ing finding to incorporate into decision making in the face of
uncertainty. Our population is considered fully susceptible at the

beginning of the epidemic with vaccination implemented as a ‘ter-
minal’ strategy, ignoring the potential interaction between host
immunity and the intervention (Qiu and Feng, 2010) that may be
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Fig. 5. Partial rank correlation coefficient plots. (a) Epidemic and intervention
parameters that are significantly (p < 0.05) associated with the epidemic outcome
are  depicted in the tornado plot. Bars to the right are associated with a higher final
attack rate, those to the left with a lower final attack rate. High baseline intrin-
sic growth rates (higher R0, shorter serial interval (1/� + ω)), and low intervention
efficacy (1 − et , 1 − es) are associated with worse outcomes. Achievable coverage of
antiviral drugs is a key determinant of the final attack rate, acting through uptake
by  cases (˛m) and contacts (�) and drug delivery constraints (MAXT, MAXP). (b) The
final proportion of cases that is resistant is largely determined by the properties of
t
s
s

a
p
p
c
w
s
w

r
n
f
a

he mutant itself, including a high likelihood of emergence under treatment pres-
ure (�t) and high fitness relative to wild type (�). Treatment delivery also exerts
ome influence (MAXT, 1 − et), in excess of selective pressure due to prophylaxis.

 feature of proposed strategies such as administration of a stock-
iled strain-matched ‘pre-pandemic’ vaccine. Of note, an increased
revalence of cross-protective antibody may  theoretically be asso-
iated with a higher rate of antiviral resistance emergence than
ould be observed in a fully naïve population, due to the acqui-

ition of complementary mutations in neuraminidase associated
ith antigenic drift in haemagglutinin (Hensley et al., 2009).

Our model demonstrates that early detection of circulating

esistant strains indicates a high likelihood of subsequent domi-
ance. Such a signal in virological surveillance may  be the trigger

or a shift in strategy to withhold treatment for severe cases
lone and/or switch to a different stockpiled agent. Others have
s 4 (2012) 219–226 225

considered ‘switching’ drug strategies and proposed that if two
agents have been stockpiled, that the one in smaller supply be
delivered first (Hansen et al., 2010). An increasing body of research
considers the likely utility of combination therapies to minimize
or overcome resistance (Perelson et al., 2012), further supporting
strategic stockpiling of more than one agent. Such approaches are
more likely to be able to be implemented in practice than our previ-
ously proposed ‘split use’ strategy of using one drug for prophylaxis
and the other for treatment (McCaw et al., 2008).

Conclusions

Our study highlights the importance of incorporating realis-
tic logistic constraints into scenario analyses for policy decision
support, resulting in more moderate predictions of intervention
outcomes including resistant strain dominance. By sampling over
a broad range of plausible epidemic and intervention assump-
tions, we  have been able to identify key drivers and signals of
resistance emergence. Such findings may  help to direct early
information gathering during a pandemic response, through mech-
anisms such as the ‘first few hundred’ project undertaken in
England in 2009 (McLean et al., 2010). They further reinforce the
crucial role of globally co-ordinated active surveillance for trans-
missible drug-resistant influenza mutants to inform public health
decision making (Hurt et al., 2012), supported by basic research to
understand the relative transmission fitness of such strains (McCaw
et al., 2011).
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