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Oxidized low-density lipoprotein (ox-LDL) binding to lectin-like
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increases production of intracellular reactive oxygen species (ROS)
resulting in the activation of NF-xB
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Summary

Objective: To examine the effect of oxidized low-density lipoprotein (ox-LDL) on the intracellular production of reactive oxygen species (ROS)
in bovine articular chondrocytes (BACs) and to investigate whether this increase occurs through binding to the receptor lectin-like ox-LDL
receptor-1 (LOX-1). Furthermore, to ascertain whether the binding of ox-LDL to LOX-1 results in NF-xB activation.

Design: BACs were preincubated with 2',7’-dichlorofluorescin diacetate (DCFH-DA), a dye that allows the monitoring of intracellular ROS
production for DCF by spectrofluorometry. BACs were incubated with native LDL and ox-LDL (10, 50, and 100 pg/ml) for 5 min at 37°C and
DCF formation was observed. BACs were also preincubated with anti-LOX-1 mAb (40 pg/ml) or ascorbic acid (10 uM). Nuclear extracts from
BACs treated for the indicated periods with 50 ug/ml ox-LDL, and preincubated with anti-LOX-1 mAb or ascorbic acid, were prepared and
analyzed by electrophoretic mobility shift assay (EMSA).

Results: ox-LDL induced a significant dose-dependent increase in ROS production after 5-min incubation with BACs (P <0.001). ROS
formation was markedly reduced in BACs preincubated with anti-LOX-1 mAb and ascorbic acid (P <0.001). Activation in BACs of the
transcription factor NF-kB was evident after 5-min incubation with ox-LDL and was attenuated by anti-LOX-1 mAb and ascorbic acid.

Conclusion: ox-LDL binding to LOX-1 in BACs increased the production of intracellular ROS and activated NF-kB. Reduction of NF-xB
activation by ascorbic acid indicates that the activation, at least in part, is ROS-dependent. These observations support the hypothesis that
hypercholesterolemia is one of several risk factors for arthritis, and that lipid peroxidation products such as ox-LDL are involved in cartilage
matrix degradation.

© 2004 OsteoArthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
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Introduction a lipid-lowering diet decreases the incidence of joint

. ) ) ) . involvement2. The Framingham Knee Osteoarthritis Cohort
Epidemiological and experimental studies have suggested Study has demonstrated that a medium to high intake of
the involvement of lipid peroxidation in the pathogenesis of antioxidants, such as ascorbic acid, -carotene, and vitamin
articular cartilage degradation. Both hypercholesterolemia E, also reduces the risk of progressive knee OAS3. In
and hypertension have been reported to be associated with addition, it has been shown that the content of neutral lipids
the risk of knee osteoarthritis (OA), independent of obesity". including cholesterol and triglycerides in the superficial
Articular manlfegtathns are freqL_Jent in familial hypercho- layer of articular cartilage increases with aging®5. In vitro
lesterolemia, which is characterized by a decreased re- studies have shown that lipid peroxidation by reactive
moval of low-density lipoprotein (LDL), and treatment with oxygen species (ROS) generated by chondrocytes medi-

ates cartilage matrix protein degradation. However, the
studies also indicated that degradation of the extracellular
matrix is inhibited by the lipid peroxidation inhibitors
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fluid from rheumatoid arthritis (RA) patients®19. In OA and
RA joints, inflammation accelerates vascular porosity,
which can facilitate the invasion of various inflammatory
cells and the permeation of biological mediators into the
synovial fluid, including ox-LDL that has been oxidatively
modified extra-articularly. Inflammatory cells that have
invaded the synovium and synovial fluid, activated endo-
thelial cells in the inflamed synovium, and activated
chondrocytes in degraded cartilage can all release ROS
and increase intra-articular oxidative stress™!, which could
lead to local oxidative modification of native LDL (n-LDL) to
ox-LDL'2. Collectively, these facts and speculations sug-
gest that ox-LDL plays some role in the degradation of
cartilage in OA and RA.

Recently, a novel receptor for ox-LDL, designated lectin-
like ox-LDL receptor-1 (LOX-1) was cloned from cultured
bovine aortic endothelial cells'3. It has a type Il membrane
protein structure with a short N-terminal cytosolic domain
and a long C-terminal extracellular domain, but is distinct
from the type 1 and 2 scavenger receptors, CD36 and
CD68. Although the potential roles of this receptor in
atherogenesis are not yet fully understood, it has been
suggested that ox-LDL uptake through this receptor ex-
pressed on the surface of vascular endothelium may be
involved in endothelial activation or dysfunction in athero-
genesis'3. More recently, Nakagawa et al. reported LOX-1
expression in articular cartilage cells in rat zymosan-
induced arthritis and the presence of ox-LDL in the articular
cartilage*. Furthermore, they showed LOX-1 expression in
cultured rat chondrocytes, which was detectable in basal
culture conditions and enhanced by the treatment with
ox-LDL and interleukin-1B. In addition, ox-LDL dose-
dependently reduced chondrocyte viability, inducing non-
apoptotic cell death'>. These observations suggest that
ox-LDL and its receptor LOX-1 may be significant regulating
factors not only for endothelial dysfunction, but also for
cartilage degradation.

In the current study, we investigated the effect of ox-LDL
on the intracellular production of ROS in cultures of bovine
articular chondrocytes (BACs), and whether the intracellular
increase of ROS induced by ox-LDL is mediated specifically
by binding to LOX-1. Furthermore, since NF-«B is well
known as an oxidative stress-sensitive nuclear transcription
factor and because intracellular ROS plays a major role in
the translocation of NF-kB16:17, this study also aimed to
ascertain whether binding of ox-LDL to LOX-1 is associated
with NF-«kB activation in cultured BACs.

Materials and methods
PRIMARY BAC CULTURE

Articular cartilage slices were taken from the condyles of
the metacarpophalangeal joints of freshly slaughtered
calves aged about 10 months. Care was taken to exclude
underlying bone marrow. Chondrocytes were obtained by
sequential enzymatic dissociation at 37°C with 0.1% EDTA/
phosphate buffered saline (PBS; pH 7.4) for 20 min, and
2 mg/ml collagenase for 10 h. After filtration through nylon
mesh to remove debris, cells were seeded on culture plates
and grown in Dulbecco’s modified Eagle’s medium (DMEM,
Gibco, Gaithersburg, MD) supplemented with 200 U/ml
penicillin, 40 ng/ml streptomycin, and 10% FBS at 37°C in
a humidified atmosphere of 5% CO. in air. After reaching
confluence, cells were grown in the serum-free culture
medium for 24 h.

PREPARATION OF N-LDL AND OX-LDL

Human LDL (density 1.019—1.063) was isolated from
fresh plasma by sequential ultracentrifugation as described
previously'3. LDL was oxidized at a concentration of 3 mg
protein/ml by exposure to 7.5 pM CuSQO, for 20 h at 37°C.
Oxidation was monitored by measuring the amount of
thiobarbituric acid-reactive substances (10.7 nmol/mg pro-
tein) produced, and their greater mobilities due to increased
negative charges on agarose gel electrophoresis were
compared with n-LDL (relative electrophoretic mobility was
3.25).

REVERSE TRANSCRIPTION-POLYMERASE CHAIN REACTION FOR
LOX-1 MRNA

Total RNA (1 ng) extracted from BACs with Isogen
(Nippon Gene, Tokyo, Japan) was reverse transcribed using
a OneStep RT-PCR kit (QIAGEN Japan, Tokyo, Japan).
Reverse-transcribed material (1.5 pl) was amplified with Taq
DNA polymerase (Bex, Tokyo, Japan) using a primer pair
specific to bovine LOX-1 (sense primer, 5'-GTGACTC-
TAGGGGTCCTTTG-3’, antisense primer, 5'-TGGGCATC-
CAAAGACAAGCA-3'). The PCR product was 415 bp in
length. For PCR, 34 cycles were used at 94°C for 30 s,55°C
for 30 s, and 72°C for 30 s. In the same experiments, bovine
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was
amplified with equal efficiency as a reference for quantifica-
tion of LOX-1 mRNA. A primer pair for bovine GAPDH was
used (sense primer, 5'-CCATCACCATCTTCGGAGC-3’,
antisense primer, 5'-GGAAGGCCATGCCAGTGAGC-3').
The PCR product was 483 bp in length. For PCR, 34 cycles
were used at 94°C for 30 s, 55°C for 30 s, and 72°C for
30 s. The RT-PCR-amplified samples were visualized on
1.5% agarose gels using ethidium bromide. Each LOX-1
mRNA band was normalized with a band of the relative
internal reference GAPDH mRNA. The relative intensities of
bands of interest were analyzed using Gel Doc 2000 (Bio-
Rad Labs, Hercules, CA) and scan analysis software
(Biosoft, Ferguson, MO), and expressed as a ratio to the
GAPDH mRNA band.

DETECTION OF ROS PRODUCTION BY DCF FORMATION

The intracellular production of ROS was detected using
2’,7'-dichlorofluorescin diacetate (DCFH-DA), as described
previously'819 with modifications. DCFH-DA is a non-fluo-
rescent probe that, upon diffusion into cells, is hydrolyzed by
intracellular esterases to 2’,7’-dichlorodihydrofluorescin
(DCFH2), which is trapped within the cells. In the presence
of ROS, particularly peroxides, DCFH2 is oxidized to the
highly fluorescent compound 2’,7’ -dichlorofluorescin (DCF).
To observe intracellular ROS production through the
oxidation of DCFH-DA, confluent BACs in 12-well plates
were incubated in DMEM containing 10% FBS and 5 uM
DCFH-DA (COSMO BIO, Tokyo, Japan) for 60 min at 37°C
in a 5% CO, incubator. Increasing concentrations of n-LDL,
ox-LDL, and IL-1B were then added to the medium for 5 min
at 37°C. The intracellular ROS produced by BACs were
observed by confocal microscopy (MRC 2400LSX imaging
system, Bio-Rad Labs, Hercules, CA), and ROS production
was monitored with a spectrofluorometer (CytoFluor-4000,
PerSeptive Biosystems, Framingham, MA), as described
previously2°. Fluorescence intensities indicating ROS pro-
duction by the chondrocytes were measured with an
excitation wavelength of 560 nm and an emission wave-
length of 580 nm.
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WESTERN BLOTTING ANALYSIS FOR LOX-1 PROTEIN

BACs stimulated with ox-LDL for various times were lysed
with CelLytic-M Mammalian Cell Lysis/Extraction Reagent
(Sigma, St Louis, MO). The protein concentration was
determined by the bicinchoninic acid (BCA) method. The
samples from each experiment (30 ug per lane) were
separated by 10% SDS-PAGE and transferred to polyviny-
lidene difluoride (PVDF) membranes. After incubation with
5% skim milk in 20 mM Tris-buffered saline/0.05% Tween
20, the membranes were incubated with primary monoclonal
antibody to LOX-1, diluted 1:500, overnight at 4°C.
Membranes were washed and then incubated for 1 h with
secondary mouse monoclonal antibody diluted 1:10000
(MBL, Nagoya, Japan). LOX-1 protein on the membrane was
detected with the ECL system (Amersham, Piscataway, NJ),
and relative intensities of protein bands were analyzed with
aLAS-1000 luminoimage analyzer (FUJIFILM, Tokyo, Japan).

PREPARATION OF LOX-1 SMALL INTERFERING RNA CELLS

The selection of small interfering RNA (siRNA) duplexes
from the target mMRNA sequence was performed accord-
ing to the method described by Elbashir et al?'22. We
searched for the sequence AA(N19)TT and chose those
with approximately 50% G/C content. siRNA oligonucleo-
tides directed to a 164-nucleotide coding sequence of the
bovine LOX-1 mRNA were designed and manufactured by
Dharmacon (Lafayette, CO) and were targeted as a 19-mer
to the 5'-AAUUAUCCAGUCUCUGAUC-3’ part of the
LOX-1 sequence. dsRNA sequences (sense 5'-UUAUCC-
CAGGUCUCUGAUCATAT-3' and antisense 5'-dTdTAA-
UAGGGUCCAGAGACUAG-3') were synthesized. In one
tube, 3 ul of 20 uM siRNA duplex was mixed with 50 pl of
Opti-MEM (Gibco) and incubated for 10 min at room
temperature. In another tube, 3 pl of Oligofectamine reagent
(Invitrogen, Carlsbad, CA) was mixed with 12 pl of Opti-
MEM and incubated under the same conditions. These
solutions were then gently mixed by inversion and in-
cubated for 25 min at room temperature. BACs were
cultured in DMEM using 24-well plates (30—40% confluent).
Each culture well was washed twice with Opti-MEM, and
the mixture of the siRNA duplex and Oligofectamine
reagent (total 68 pl) was added. After addition of 200 pl of
Opti-MEM to each well, cultured BACs were incubated for
4 h, and the cells were further incubated for 4 days with
30% FBS, without antibiotics, at 37°C in a 5% CO,»
incubator. To test the response specificity, non-specific
siRNA (Dharmacon) cells also were prepared using the
same experimental conditions as mentioned above.

PREPARATION OF NUCLEAR AND CYTOSOLIC EXTRACTS

Nuclear and cytosolic extracts were isolated with
a Nuclear/cytosol Fractionation kit (Biovision, Mountain
View, CA). After the incubation period, BACs were collected
by centrifugation at 600 g for 5 min at 4°C. Chondrocyte
pellets were washed twice with ice-cold PBS, followed by
the addition of 0.2 ml of Cytosol Extraction Buffer A and
vigorous mixing for 5 s. Ice-cold Cytosol Extraction Buffer B
(11 pl) was added to the solution. After vortex mixing, nuclei
and cytosolic fractions were separated by centrifugation at
16 000 g for 5 min. The cytoplasmic extracts (supernatants)
were stored at —80°C. Nuclear extraction buffer was added
to the nuclei and cytosolic fractions (pellets), which were
then mixed by vortex mixing on the highest setting for 15 s.
Icing the mixture, a 15-s vortex was performed every 10 min

for a total of 40 min. Nuclei were centrifuged at 16 000 g for
10 min. The nuclear extracts (supernatants) were stored at
—80°C. The protein concentration was determined by the
BCA method.

ELECTROPHORETIC MOBILITY SHIFT ASSAY (EMSA)

Nuclear transcription factor activity was studied using an
EMSA Gel-Shift Kit (Panomics, Redwood City CA). Briefly,
NF-kB consensus oligonucleotides (5'-AGTTGAGGG-
GACTTTCCCAGGC-3') were used as a biotin-labeled
probe, as described previously?3. Nuclear extracts (5 ng)
were equilibrated for 10 min in a binding buffer (2.0 ul
5 X Binding Buffer, 1.0 pl Poly d (I-C), 5.0 ul distilled water).
Then, 10 ng/ul of the labeled probe was added to the
binding buffer, and incubated for 30 min at room tempera-
ture. To confirm the specificity of the reaction, a competition
assay with unlabeled oligonucleotide was performed.
Samples were separated on 6.0% polyacrylamide gels
(1 ml 10X TBE, 4 ml 30% Bis-included acrylamide), 625 ul
80% glycerol, 14.375 ml dH,O, 300 ul 10% APS, 20 ul
TEMED, 20 ml total volume) and transferred to nylon
membranes by electroblotting. After DNA complexes were
fixed to the membranes using a UV cross-linker, blocking
buffer and 1:1000 diluted streptavidin-HRP conjugate were
added to the membrane for 15 min. After washing three
times, NF-kB expression on the membrane was detected as
a blot with a luminescent detection kit (Panomics, Redwood
City, CA), and relative intensities of the bands were
analyzed using the LAS-1000 luminoimage analyzer.

STATISTICAL ANALYSIS

Results are presented as the mean+SD. Analysis of
variance (ANOVA), Scheffe’s test and Student’s ¢ test were
used for statistical assessments. A level of P<0.05 was
considered statistically significant.

Results

INDUCTION OF LOX-1 EXPRESSION ON THE CULTURED
BACS WITH OX-LDL

The level of LOX-1 gene expression was minimal at time 0.
Six hours after addition of ox-LDL, LOX-1 mRNA expression
reached a maximal level [about fivefold, Fig. 1(A, B)]. The
level of LOX-1 protein at time 0 was also minimal. Treatment
with ox-LDL caused a maximal increase in LOX-1 protein
expression at 24 h [Fig. 1(C)].

OBSERVATION OF INTRACELLULAR ROS PRODUCTION
BY CONFOCAL MICROSCOPY

We used confocal microscopy to observe whether BACs
produce intracellular ROS following stimulation with IL-1
(5 ng/ml), n-LDL (50 pg/ml), and ox-LDL (10, 50 pg/ml). The
distribution of luminescence resulting from DCF formation
was observed to correspond to the cytoplasmic morphology
of BACs (Fig. 2). The luminescence intensity resulting from
ROS production following IL-1B and ox-LDL treatment (10
and 50 pg/ml) was significantly higher than that in cells
stimulated with n-LDL. Ox-LDL-induced ROS production
was dose-dependent.

MEASUREMENT OF THE AMOUNTS OF DCF FORMATION
THROUGH INTRACELLULAR ROS PRODUCTION

We also investigated the amount of DCF formation with a
spectrofluorometer. Addition of n-LDL (10, 50, or 100 pg/ml)
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Fig. 1. Induction of LOX-1 expression in bovine articular chon-
drocytes (BACs) by ox-LDL. (A) After incubation with ox-LDL
(50 ng/ml) for 0, 6, 12, or 24 h, LOX-1 mRNA expression in BACs
was assessed by RT-PCR. The level of LOX-1 gene expression
was minimal at time 0 and reached a maximum at 6 h. The
expected size of the LOX-1 PCR product was 415 bp. (B) Relative
intensity of LOX-1 and GAPDH bands was analyzed by scan
analysis software and expressed as a ratio to a GAPDH mRNA
band, which increased about fivefold at 6 h after the addition of ox-
LDL. (C) After incubation with ox-LDL (50 pg/ml) for 0, 6, 12, 24, or
48 h, LOX-1 protein in BACs was assessed by western blotting.
The level of LOX-1 protein expression at time 0 was minimal.
Treatment with ox-LDL caused a maximal increase in LOX-1
protein expression at 24 h.

did not result in any change in DCF formation (mean
fluorescent intensities (MFI): 18.1+1.3, 19.5+21,
16.6+2.2, respectively, control: 16.2+1.5, Fig. 3). By
contrast, 10, 50, or 100 pg/ml ox-LDL dose-dependently
increased the amounts of DCF formation (MFI: 49.2+3.0,
62.4+3.4, and 89.7+5.8, respectively, Fig. 3). We next
performed time-course experiments of DCF formation in
BACs that indicated that ROS production was evident 60 s
after addition of ox-LDL (Fig. 4). The effect of an anti-LOX-1
mAb on DCF formation in BACs was then investigated. DCF
formation was markedly reduced in BACs incubated with an
anti-LOX-1 mAb (40 ug/ml JTX-20) on treatment with ox-LDL
(ox-LDL 10, 50, and 100 pg/ml, MFI: 47.2+3.4, 60.3+3.8,
and 91.2+5.3, respectively; ox-LDL 10, 50, and 100 pg/ml
with 40 pg/ml JTX-20, MFl: 14.3+4.4, 25.5+4.1, and
29.945.5, respectively; ox-LDL 10, 50, and 100 pg/ml with
comparable amounts of non-specific mouse IgG (Funakoshi,
Tokyo, Japan), MFI: 42.44+4.9,57.5+6.1,86.6+5.8, Fig. 5).
To confirm that the ROS produced by BACs resulted in the
DCF formation, BACs preincubated with ascorbic acid,
a known radical scavenger, were stimulated with ox-LDL.

DCF formation was significantly reduced by the preincuba-
tion with ascorbic acid (ox-LDL 10, 50, and 100 pg/ml with
ascorbic acid, MFI: 12.3+1.9, 29.9+6.1, and 34.3+4.8,
respectively, Fig. 5).

INHIBITION OF ROS PRODUCTION IN LOX-1 SIRNA CELLS

In addition, we created LOX-1 siRNA cells to confirm that
ROS is produced through interaction between LOX-1 and
ox-LDL. First, we investigated the inhibitory rate of LOX-1
expression by LOX-1 siRNA. Basal expression of LOX-1
mRNA was observed by RT-PCR in control, LOX-1 siRNA,
and non-specific SiRNA cells [Fig. 6(A)]. The inhibitory ratio
of LOX-1/GAPDH mRNA in control cells to that in LOX-1
siRNA and non-specific siRNA cells averaged 54.8 +6.1%
and 4.0+0.5%, respectively [n =5, Fig. 6(B)]. We then
investigated the inhibition of DCF formation in LOX-1 siRNA
cells stimulated with ox-LDL. Intracellular ROS production
stimulated by ox-LDL was moderately inhibited in the LOX-1
siRNA cells compared with control and non-specific sSiRNA
cells (ox-LDL 10, 50, or 100 pg/ml, MFI: 43.6+5.0,
58.7+2.5, and 90.4+6.8 in the control cells, 38.4+3.2,
50.5+2.9, and 69.6+3.8 in the LOX-1 siRNA cells,
respectively, and 44.1+4.2, 55.3+4.4, 87.6+6.1 in the
non-specific siRNA cells, Fig. 7).

INHIBITION OF INTRACELLULAR ROS PRODUCTION
BY DPI TREATMENT

DCF formation was markedly reduced in BACs preincu-
bated with DPI (5 uM) when stimulated by 50 pg/ml ox-LDL
(78+4.1% inhibition compared with control cells incubated
with ox-LDL alone, Fig. 8).

NF-kB ACTIVATION BY OX-LDL STIMULATION

Finally, the effect of ox-LDL stimulation on NF-«B
activation in BACs was studied. In order to ascertain a causal
relationship between IL-18 and ox-LDL on NF-«B activation,
a time-course study was performed. NF-xB activation was
evident after a 5 min of incubation with both IL-13 and
ox-LDL, and reached a peak at 60 min (Fig. 9). In addition,
the effect of anti-LOX-1 mAb and ascorbic acid on ox-LDL-
induced NF-kB activation was also investigated. The
activation of NF-kB was attenuated in BACs incubated with
anti-LOX-1 mAb and ascorbic acid (Fig. 10).

Discussion

In this study, by monitoring intracellular oxidation of the
dye DCFH-DA, which is a process known to depend on the
intracellular production of ROS24—26  we have shown that ox-
LDL increased the intracellular formation of ROS in cultured
BACs, and that ox-LDL is a strong inducer of intracellular
ROS production. The increased intracellular production of
ROS was prevented by preincubating BACs with ascorbic
acid, one of a number of antioxidants known to work as
radical scavengers. These data support the conclusion that
the incubation of ox-LDL with BACs is associated with an
increased intracellular production of ROS and that the rise in
DCF formation is specifically related to ROS formation. Our
results agree with the conclusions of a series of papers
showing that ox-LDL increased the production of ROS in
different cells®426—28, The increase in intracellular ROS
formation induced by ox-LDL in BACs was very fast, the
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Fig. 2. Fluorometric micrographs of intracellular ROS production in BACs. DCF formation following ROS production was observed by confocal
microscopy after treatment with (A) IL-1B (5 ng/ml), (B) n-LDL (10 pg/ml), (C) ox-LDL (10 pug/ml), and (D) ox-LDL (50 pg/ml) for 5 min in the
presence of DCFH-DA. Upper: phase-contrast images, lower: confocal images (original magnification X400).

signal from ROS production being clearly visible after 60 s.
This suggests that intracellular ROS increases may be
secondary to ox-LDL interacting with a specific receptor on
BACs. The fact that DCF formation was markedly reduced in
BACs preincubated with an anti-LOX-1 mAb indicates that
ox-LDL binding to LOX-1 may play a role in intracellular ROS

100 |
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50 ¢

*p < 0.001
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c 10 50 100
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Fig. 3. Amounts of DCF formation in BACs treated with n-LDL or ox-
LDL. BACs were preincubated with DCFH-DA for 60 min at 37°C.
After incubation with n-LDL (10, 50, and 100 pg/ml) or ox-LDL (10,
50, and 100 pg/ml) for 5 min, DCF formation was measured using
a spectrofluorometer with an excitation wavelength of 560 nm and
an emission wavelength of 580 nm. Control (c): non-treated cells.
Results are expressed as means+SD (n=28). There were
statistically significant differences in mean fluorescence intensities
between 10 and 50 pg/ml ox-LDL, 50 and 100 pg/ml ox-LDL, and
10 and 100 pg/ml ox-LDL (ANOVA and Scheffe’s method as the
post-hoc test, P <0.001).

generation. This conclusion is further supported by the
results we obtained with LOX-1 siRNA cells, where DCF
formation stimulated by ox-LDL was also reduced signifi-
cantly.

There are many enzymatic sources of ROS in almost all
cell types. It has been hypothesized that the activity or
expression of these enzymes can be regulated by cytokines
and growth factors. Thus, receptor—ligand interaction is
likely to trigger free radical signaling through activation of
one or more of these enzymes?°. In the current study,
intracellular ROS production following binding of ox-LDL to
LOX-1 in BACs was suppressed markedly by the addition of
DPI, a well-known inhibitor of flavoproteins, strongly sug-
gesting the involvement of NADPH oxidase activation in the
ROS production. Unfortunately, we could not completely
exclude the involvement of mitochondrial complex-1, which
is also inhibited by DPI. Further studies are needed to
confirm that ox-LDL binding to LOX-1 generates intracellu-
lar ROS through activation of NADPH oxidase.

It has been reported that ROS are required for trans-
formation of n-LDL to ox-LDL3C. The ROS produced by the
binding of ox-LDL to LOX-1 could oxidatively modify n-LDL
to ox-LDL locally in the surrounds of chondrocytes, which in
turn could up-regulate LOX-1 expression in chondrocytes
and contribute to further ROS generation. This phenome-
non could be amplified in patients with high plasma
concentrations of LDL, such as in hypercholesterolemia.
Therefore, the results of the current study support the
hypothesis that hypercholesterolemia is one risk factor of
OA, and that lipid peroxidation products are involved in the
degradation of articular cartilage.

Since ox-LDL is a large molecule of about 550 kDa, it is
not likely that ox-LDL penetrates into the extracellular matrix
of normal articular cartilage and binds to LOX-1 expressed
on chondrocytes. However, degenerative OA and RA
cartilages are known to release high molecular weight
molecules, such as chondroitin sulfate, keratan sulfate,
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Fig. 4. Time course of DCF formation induced by ox-LDL in BACs.

BACs were preincubated with DCFH-DA for 60 min at 37°C. Then,

50 pg/ml of n-LDL or ox-LDL were incubated with the bovine

chondrocytes for the indicated times. DCF formation was measured

using a spectrofluorometer with an excitation wavelength of 560 nm

and an emission wavelength of 580 nm. Results are expressed as
means+SD (n = 8).

and hyaluronic acid, from the inner layer, suggesting the
possibility of permeation of ox-LDL into degenerative
cartilage. Furthermore, in OA and RA, articular cartilage is
subjected not only to deterioration of mechanical properties
due to degradation of the matrix, but also to morphological
changes. Fibrillation of articular cartilage, which is the
earliest morphological change in OA, can make it easier for
ox-LDL to gain access to chondrocytes. Anti-ox-LDL
antibody-reactive substances have also been detected in
articular cartilage from an animal arthritis model4. From this
point of view, the role of ox-LDL may not primarily be involved
in the degradation of articular cartilage. However, ox-LDL

100

: +anti-LOX-1
mAb (JTX-20)
XN : +ascorbic acid

I : +non-specific
IgG

I : control
L]
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50

ox-LDL

Fig. 5. Effect of preincubation of BACs with anti-LOX-1 mAb on
ox-LDL-induced DCF formation. BACs were preincubated with
DCFH-DA for 60 min at 37°C. BACs were also preincubated with
anti-LOX-1 mAb (40 pg/ml), ascorbic acid (10 pM) and non-specific
mouse IgG for 120 min at 37°C. Thereafter, ox-LDL (10, 50, and
100 pg/ml) was added for 5min at 37°C. DCF formation was
measured using a spectrofluorometer with an excitation wavelength
of 560 nm and an emission wavelength of 580 nm. Results are
expressed by means+SD (n = 8). There were statistically signif-
icant differences in mean fluorescence intensities (MFI) between
controls and anti-LOX-1 mAb groups of 10, 50, and 100 pg/ml
ox-LDL (Student’s unpaired t test, P<0.001).
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Fig. 6. Inhibition of LOX-1 expression in LOX-1 siRNA cells. (A)
LOX-1 mRNA induction in control, non-specific siRNA, and LOX-1
siRNA cells was assessed by RT-PCR. (B) The ratios of LOX-1/
GAPDH mRNA in control cells to that in LOX-1 and non-specific
siRNA cells were analyzed by scan analysis software. Inhibition
ratio of LOX-1 expression in LOX-1 siRNA cells (n = 5) and in non-
specific siRNA cells averaged 54.8+6.1% and 4.01+0.5%, re-
spectively. c: control cells, n: non-specific siRNA cells, i: LOX-1
siRNA cells.

could play an important role in acceleration of cartilage
degradation in chronic inflammatory joint diseases.

Finally, the results of the current study indicate that ox-LDL
binding to LOX-1 induced NF-kB activation in BACs.
Numerous studies have provided strong support for a pro-
posal that intracellular ROS serve as common intracellular
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Fig. 7. DCF formation in control, LOX-1 siRNA, and non-specific
siRNA cells. Control, LOX-1 siRNA and non-specific siRNA cells
were preincubated with DCFH-DA for 60 min at 37°C and then
incubated with ox-LDL (10, 50, and 100 pg/ml) for 5 min at 37°C.
DCF formation was measured using a spectrofluorometer with an
excitation wavelength of 560 nm and an emission wavelength of
580 nm. Results are expressed as means+ SD (n = 5). There were
statistically significant differences in mean fluorescence intensities
(MFI) between control and LOX-1 siRNA cells and between LOX-1
siRNA and non-specific siRNA cells incubated with 50 and 100 ng/
ml ox-LDL (Student’s unpaired ¢ test, P <0.02 for 50 pg/ml ox-LDL;
and P<0.01 for 100 pg/ml ox-LDL).
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Fig. 8. Effect of preincubation of bovine chondrocytes with DPI on
0ox-LDL-induced DCF formation. BACs were preincubated with DPI
(5 uM) for 60 min at 37°C. BACs were also preincubated with
DCFH-DA for 60 min at 37°C. Thereafter, ox-LDL (50 pg/ml) was
added for 5 min at 37°C. DCF formation was measured using
a spectrofluorometer with an excitation wavelength of 560 nm and
an emission wavelength of 580 nm. Results are expressed as
means+SD (n = 8). There was a statistically significant difference
in mean fluorescence intensity between control cells and cells
preincubated with DPI (Student’s unpaired f test, P <0.001).

downstream messengers of the various stimulus-specific
pathways leading to NF-kB activation3'—33. A kinetic co-
incidence of the two events, NF-«B activation and ROS
production, in response to ox-LDL, indicates a causal
relationship between the two events. In the current study,
peak ROS production by BACs is within 60 s of the addition
of ox-LDL. NF-«B activity did not strongly increase until 5 min
after the addition of ox-LDL. These data show that NF-xB
activation follows the production of ROS in ox-LDL-treated
cells, which is consistent with the idea that ROS serve as
a messenger of NF-kB activation. Furthermore, the fact that
preincubation with both anti-LOX-1 mAb and ascorbic acid
suppressed the ox-LDL-induced NF-«B activation suggests
that the binding of ox-LDL to LOX-1 and the consequent
formation of ROS may be the first event in the chain of
reactions leading to NF-«xB activation.

NF-kB transcription factor controls the expression of
a number of proinflammatory molecules, including cytokines
(TNF-o, IL-1B, IL-6), chemokines (IL-8, macrophage in-
flammatory protein-1B), enzymes (COX-2, inducible nitric
oxide synthase, cPLA2, metalloproteinases), and adhesion

<«—NFxB

0 1 5 30
IL-1B 5ng/ml

111 | DR

60 (min)
ox-LDL 50 pg/ml

Fig. 9. Activation of NF-kB in BACs with IL-1B and ox-LDL. BACs
were incubated for 0, 1, 5, 30, and 60 min with IL-1B (5 ng/ml) and
ox-LDL (50 pg/ml). Activation of NF-xB was evident 5 min after
incubation with ox-LDL and IL-1B, and reached a peak at 60 min.

60  (min)

+“—NF«B

' . . “— Free Probe

2 3 4 5

Fig. 10. Effect of anti-LOX-1 mAb and ascorbic acid on ox-LDL
(50 pg/ml)-induced NF-kB activation. BACs were preincubated for
120 min with anti-LOX-1 mAb (40 pg/ml) and ascorbic acid
(10 uM)), and were then stimulated with ox-LDL (50 ug/ml) for
60 min. (1) non-stimulated, (2) treated with ox-LDL (50 pg/ml)
alone, (3) treated with ox-LDL (50 pg/ml) following anti-LOX-1 mAb
(40 pg/ml) preincubation, (4) treated with ox-LDL (50 pg/ml)
following ascorbic acid (10 uM) preincubation, (5) cold NF-xB
probe. The positions of the specific NF-xB complexes are indicated.

molecules (intercellular adhesion molecule-1 and vascular
cell adhesion molecule-1)34. In chronic inflammatory joint
disease such as RA, the negative regulating loop with its
inhibitor, 1kB-a, is overwhelmed by a positive one involving
NF-«kB activation by TNF-o and IL-18, and NF-kB-dependent
expression of these two major proinflammatory cytokines.
Indeed, RA is associated with persistent in situ NF-«xB
activity3>. In the context of chronic arthritis, therefore,
induction of NF-«kB activity in chondrocytes would facilitate
degradation of the extracellular matrix of cartilage, although
it has been reported that NF-xB activity protects articular
chondrocytes from apoptotic cell death caused by NO36.

In conclusion, ox-LDL binding to LOX-1 in bovine cultured
chondrocytes increased production of intracellular ROS and
activated NF-«B. Reduction of NF-«kB activation by ascorbic
acid indicates that the activation, at least in part, is ROS-
dependent. These observations support the hypothesis that
hypercholesterolemia is one of the risk factors of arthritis,
and lipid peroxidation products such as ox-LDL are involved
in cartilage matrix degradation in OA and RA.
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