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a b s t r a c t

In this paperweuse the relation of the index of an infinite aperiodicword and its recurrence
function to give another characterization of Sturmian words. As a by-product, we give a
newproof of the theoremdescribing the index of a Sturmianword in terms of the continued
fraction expansion of its slope. This theorem was independently proved in [A. Carpi, A. de
Luca, Special factors, periodicity, and an application to Sturmian words, Acta Inform. 36
(2000) 983–1006] and [D. Damanik, D. Lenz, The index of Sturmian sequences, European J.
Combin. 23 (2002) 23–29].
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1. Introduction

Sturmian words constitute the most studied example of aperiodic infinite words. They appeared for the first time in
the paper of Morse and Hedlund in 1938 [17]. But even after 70 years of extensive research, Sturmian words continue to
attract the attention of numerous mathematicians and recently also computer scientists. The appeal of Sturmian words
stems from the fact that they appear in various contexts. This is also why Sturmian words are often hidden under different
titles: cutting sequences, Beatty sequences, mechanical words, etc. The beauty of Sturmian words consists in the abundance
of equivalent definitions.Morse andHedlund in [18] show that Sturmianwords can be characterized by the so-called balance
property. Ref. [14] contains a nice exposition on diverse definitions of Sturmian words. The most recent ones, which [14]
does notmention, are characterization of Sturmianwords using returnwords given by Vuillon [21] (for a less technical proof
see [2]), characterization using the number of palindromes of given length given in [10] and yet another characterization by
Richomme [19].
The aim of this paper is to give another equivalent definition of Sturmian words. Our characteristic gives a relation

between the recurrence function and the index of an infiniteword u. Obvious similarity between formulas for the recurrence
quotient and the index of a Sturmian word was already noted in [1,5,7].
The recurrence function R associates to every n ∈ N the minimal length R(n) ∈ N such that an arbitrary segment of the

infinite word u of length R(n) contains all factors of u of length n. This function has been studied already by Hedlund and
Morse, who gave an explicit formula for R(n) for an arbitrary Sturmian word u and determined the so-called recurrence
quotient, lim supn→∞ R(n)/n. On the other hand, the index of an infinite word u describes themaximal repetition of a factor
of u. The study of the index of infinite words is considerably younger, though, in the last decade, very intense, especially due
to applications in spectral theory for corresponding Schrödinger operators [8].
Repetitions in themost prominent Sturmianword, namely the Fibonacci word, were studied in [13]. More general results

about the index of Sturmian words can be found in [3,5,6,12,15,16,20]. The complete solution to the problem was given
independently by Carpi and de Luca in [7] and by Damanik and Lenz in [9].
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The paper is organized as follows. In Section 2 we introduce all necessary notions and notations. Section 3 contains the
proof of the main result of the paper, namely the following theorem.

Theorem 1. A uniformly recurrent infinite word u is Sturmian if and only if there exist infinitely many factorsw of u such that

R(|w|) = |w| ind(w)+ 1.

Notation |w| stands for the length of the factorw, and ind(w) is the maximal rational exponent r such thatwr is a factor
of u.
It was pointed to us that already from [7] one can extract that Sturmian words satisfy the above equality for infinitely

many factors. The proof of Carpi and de Luca uses the explicit formula for the recurrence function from [18]. Our proof relies
onVuillon’s description of Sturmianwords by returnwords and avoidsmanipulationwith the continued fraction of the slope
of the Sturmian word. Our theorem moreover states that Sturmian words are the only words having the above property.
With the help of Theorem 1, one can derive the upper bound on the index of u (Section 4). In Section 5 we prove that

the bound is in fact reached. For the construction of factors of u with large repetition we use the knowledge of Sturmian
morphisms, i.e. morphisms preserving the family of Sturmian words, as described in [4]. Sections 4 and 5 thus represent an
alternative proof of the result of [7] and [9].

2. Preliminaries

An alphabet A is a finite set of symbols, called letters. A word w of length |w| = n is a concatenation of n letters. The
number of letters X ∈ A occurring in the wordw is denoted by |w|X . The symbolA∗ denotes the set of all finite words over
the alphabet A including the empty word ε. Equipped with the operation of concatenation, it is a monoid. We also define
infinite words u = (un)n∈N ∈ AN.
A finite word v ∈ A∗ is called a factor of a word w (finite or infinite) if there exist words w(1), w(2) such that

w = w(1)vw(2). If w(1) = ε, then v is said to be a prefix of w; if w(2) = ε, then v is a suffix of w. The set of all factors
of length n of an infinite word u is denoted byLn(u); the set of all factors of u is called the language of u, and is denoted by
L(u).
The mapping C : n 7→ #Ln(u) is called the complexity of the infinite word u. For determining the complexity of an

infinite word one uses the so-called special factors. A factor w ∈ L(u) is called left special if there exist letters A, B ∈ A,
A 6= B, such that both Aw and Bw belong toL(u). Similarly, one defines right special factors. A factor of u is called bispecial
if it is at the same time right special and left special. Every eventually periodic word has bounded complexity. For aperiodic
words, one has for all n ∈ N that C(n) ≥ n + 1. Infinite words, for which equality holds for all n ∈ N, i.e. aperiodic words
with minimal complexity, are called Sturmian words. Directly from the definition one can derive that in the language of a
Sturmian word u one has exactly one left special and exactly one right special factor of each length, and Sturmian words are
characterized by this property.
Sturmian words are obviously defined over a binary alphabet, say {A, B}. The densities of letters A, B in a Sturmian word

u = (ui)i∈N are well defined and satisfy

%(A) = lim
n→∞

|u0 · · · un−1|A
n

= α, %(B) = lim
n→∞

|u0 · · · un−1|B
n

= 1− α,

for someα ∈ (0, 1). In fact, the language of a Sturmianword u depends only on the parameterα, which is also called the slope
of u. For a given α, one can construct all Sturmian words with the slope α, for example, as codings of different orbits under
an exchange of two intervals. Let α ∈ (0, 1) be an irrational number. Denote I = [0, 1) (resp. I = (0, 1]) and IA = [0, α),
IB = [α, 1) (resp. IA = (0, α], IB = (α, 1]). The mapping T : I 7→ I given by the prescription

T (x) =
{
x+ 1− α for x ∈ IA,
x− α for x ∈ IB,

is called an exchange of two intervals with slope α. For an arbitrary x0 ∈ I we define an infinite word (un)n∈N by

un = X ∈ {A, B} if T n(x0) ∈ IX . (1)

It is known that the set of Sturmian words coincides with the set of infinite words given by the prescription (1). Since we
assume that the slope is irrational, the language of a Sturmian word does not depend on the choice of the initial point x0,
but only on α. Due to the symmetry α ↔ 1 − α, studying the language of a Sturmian word, one can consider without loss
of generality only parameters α > 1

2 . From the exchange of intervals is not difficult to see that, with such an assumption,
%(A) > %(B) and, in fact, the Sturmian word can be viewed as composed by blocks of the form Ak, Ak+1, with k = b α

1−α c,
separated by single letters B.
In this paperwe study the repetition of factors in Sturmianwords.We say that aword v is a power of awordw if |v| ≥ |w|

and v is a prefix of the periodic word www · · · . We write v = wr , where r = |v|/|w|. The index of a word w in an infinite
word u is defined by

ind(w) = sup{r ∈ Q | wr ∈ L(u)}. (2)
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A power v ofw with maximal r is called amaximal repetition ofw. We have thus v = wind(w). From what was said above, it
is clear that, in a Sturmian word with slope α > 1

2 , one has

ind(B) = 1 and ind(A) =
⌊ α

1− α

⌋
+ 1. (3)

Taking the supremum of indices over all factors of an infinite word u, one obtains an important characteristic of u, the
so-called index of u. Formally,

ind(u) = sup{ind(w) | w ∈ L(u)}. (4)

It turns out that for the study of the index of Sturmian words, the notion of return words and recurrence function is
important. A return word of a factorw of an infinite word u is a factor v ∈ L(u) such that vw ∈ L(u),w is a prefix of vw and
the factorw occurs in vw exactly twice. The factor vw is often called a complete return word ofw. The set of return words of
a factorw is denoted by Ret(w). If the set Ret(w) is finite for any factorw of an infinite word u, then u is said to be uniformly
recurrent. In fact, this means that distances between consecutive occurrences of a given factor are bounded. Let us mention
that for a uniformly recurrent word u the supremum in (2) is always reached, as will be explained later, and therefore the
notion of the index of u in (4) has sense. For a uniformly recurrent infinite word u we define a mapping R : N 7→ N by the
prescription

R(n) := −1+max
{
|vw|

∣∣ v ∈ Ret(w), w ∈ Ln(u)
}
, (5)

i.e. R(n) + 1 is equal to the maximum of lengths of a complete return word over all factors of length n. It is not difficult to
see that an arbitrary segment of the infinite word u of length R(n) contains all factors of the word u of length n. Formally,
we have

Ln(u) = {uiui+1 · · · ui+n−1 | k ≤ i ≤ k+ R(n)− n+ 1}, for all k ∈ N. (6)

Moreover, the number R(n) is the smallest possible so that (6) remains valid. The mapping R(n) is called the recurrence
function of the infinite word u.

3. Recurrence function and index

Our aim is to find the relation between the recurrence function (well defined for uniformly recurrent words) and the
index of aperiodic words. We first show that the index of every factor in an aperiodic uniformly recurrent word is finite, and
we then determine a lower bound on the recurrence function.

Proposition 2. Let u be an aperiodic uniformly recurrent word. Then for every factorw ∈ L(u) we have ind(w) < +∞ and

R(|w|) ≥ |w| ind(w)+ C(|w|)− |w|. (7)

Proof. Let w = w1 · · ·wn be a factor of u. We first show that ind(w) is finite. Without loss of generality, let ind(w) ≥ 2.
Obviously, all factors of the formwi · · ·wnw1 · · ·wi−1 for any 1 ≤ i ≤ n belong toL(u). (Such factors are called conjugates of
w.) Since C(n) ≥ n+1, there exists a factorw′ which is not a conjugate ofw. IfL(u) contained factorswk for all k ∈ N, then
the distances between consecutive occurrences ofw′ would be unbounded, which would contradict the uniform recurrence
of u. Therefore ind(w) < +∞.
Now let v be a maximal repetition of w. We prolong v to a factor vv′ ∈ L(u) so that vv′ contains all C(|w|) factors of u

of length |w|, but none of the prefixes of vv′ does. Since v has at most |w| factors of length |w| (namely the conjugates of
w), we must have |v′| ≥ C(|w|)− |w|. From the definition of the recurrence function, we have

R(|w|) ≥ |vv′| ≥ |v| + C(|w|)− |w|.

As v = |w| ind(w), the proof is complete. �

Note that, in particular, for a Sturmian word u one has R(|w|) ≥ |w| ind(w) + 1 for every factor w of u. The following
proposition states that if equality is reached for infinitely many factorsw of an aperiodic word u, then u is Sturmian.

Proposition 3. Let u be an aperiodic uniformly recurrent infinite word. If there exist infinitely many factorsw ∈ L(u) such that
R(|w|) = |w| ind(w)+ 1, then u is a Sturmian word.

Proof. Using the assumption of the proposition and (7), there exist infinitelymany factorsw of u such thatC(|w|) ≤ |w|+1,
i.e. for infinitely many n ∈ N we have C(n) ≤ n + 1. The complexity of an aperiodic word is a strictly increasing function
and C(1) ≥ 2. This implies that C(n) = n+ 1 for all n, and u is therefore Sturmian. �

In order to show the opposite implication to that of Proposition 3, we need to cite a nice result of Vuillon [21] which
characterizes Sturmian words using return words. He shows that a binary infinite word u is Sturmian if and only if every
factor of u has exactly two return words. For every factor w of a Sturmian word u thus there exist two finite words r0(w),
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r1(w) such that the suffix of u starting with the first occurrence of w can be written as an infinite concatenation of blocks
r0(w) and r1(w), i.e.

u = p ri0(w)ri1(w)ri2(w)ri3(w) · · · ,

where p is a prefix of u and i0, i1, i2, i3, . . . ∈ {0, 1}. We can therefore define the so-called derivated word v = (vn)n∈N over
the alphabet {0, 1} by the prescription vn = in, coding the order of the blocks r0(w), r1(w) in the infinite concatenation. We
could now study return words of factors of the newly defined infinite word v. However, since return words of factors of the
derivated word are in one-to-one correspondence with return words of factors in the original infinite word (see [11]), we
deduce that every factor of v has again exactly two return words, and thus is itself Sturmian.
It is obvious that for finding factors w with the maximal index in the infinite word, we can limit our consideration to

primitive factorsw, i.e. such thatw 6= zk for any z ∈ L(u) and any k ∈ N, k ≥ 2.

Proposition 4. Let u be a Sturmian word and let w ∈ Ln(u) be a primitive factor such that ww ∈ L(u), and, moreover, let it
have the maximal index among all factors of u of length n with the above properties. Then

R(n) = n ind(w)+ 1.

Proof. Let k := bind(w)c and θ := ind(w) − bind(w)c. Then w can be written as w = w1w2, where |w1| = θn, and the
maximal repetition ofw is the word

(w1w2)(w1w2) · · · (w1w2)︸ ︷︷ ︸
k times

w1 ∈ L(u).

Let us find X, Y ∈ {A, B} such that

Xw1w2 · · ·w1w2w1Y ∈ L(u). (8)

Since ind(w) = k+ θ is the greatest power such that wk+θ ∈ L(u), the letter Y is not a prefix of w2. Since w is a primitive
word with the greatest index in Ln(u), the letter X is not a suffix of w2. This, together with the fact that k ≥ 2, means that
w1w2 = w is a left special factor andw2w1 =: w′ is a right special factor. A Sturmian word has exactly one left special and
one right special factor of each length.
Let us consider the Rauzy graph Γn of u. The set of vertices of Γn is equal to Ln(u) and the set of its edges to Ln+1(u).

The Rauzy graph Γn of a Sturmian word thus has n+ 1 vertices and n + 2 edges. An edge e ∈ Ln+1(u) starts in a vertex
v ∈ Ln(u) and ends in v′ ∈ Ln(u) if v is a prefix and v′ a suffix of e. An arbitrary factor u of length m ≥ n in the language
of the infinite word u can be viewed as a path of length m − n in the graph Γn starting in the vertex corresponding to the
prefix and ending in the vertex corresponding to the suffix of u of length n.
Since w ∈ Ln(u), ww ∈ L(u) and w is primitive, there exists a cycle C of length n in the graph Γn containing the factor

w. Let us denote the vertices of the cycle C by v(0) = w, v(1), . . . , v(n−1). Since Γn has n + 1 vertices, only one of them is
missing in C . Let us denote it by v(n). Recall thatw is the only left special factor inLn(u), and thus the only vertex in Γn with
indegree 2. Similarly,w′ is the only right special factor inLn(u), and thus the only vertex in Γn with outdegree 2. Since Γn is
a strongly connected graph, an edge must go from the vertex v(n) to the cycle C and an edge from the cycle C to the vertex
v(n). Thusw′ = v(s) for some 0 ≤ s ≤ n− 1. Relation (8) implies that the edge from v(s) to v(n) isw2w1Y and the edge from
v(n) to v(0) is Xw1w2. The Rauzy graph Γn is thus of the following form.

w = v(0) t tv(1) tv(2) r r r t t- - - - - v(s) = w′

v(n)t
�

���
���

���HH
HH

H
HH

HHY

tv(s+1)
B
BM

t
HHY

�tv(n−1)

�
�

t
���
� r r r

Xw w′Y

Let us consider the return words ofw. Sinceww ∈ L(u), one of the return words ofw is r0(w) = w, the complete return
word isww, and the corresponding path in the Rauzy graph is the cycle C . We denote the other return word ofw by r1(w).
From the structure of the graph Γn it follows that the complete return word r1(w)w corresponds to the cycle C ′ given by
vertices v(0), v(1), . . . , v(s), v(n).
As we have already mentioned, the order of the blocks r0(w), r1(w) is given by the derivated word over the alphabet

{0, 1}, which is Sturmian. Since (r0(w))k = wk ∈ L(u), for k = bind(w)c ≥ 2, the derivated word has blocks 0k, 0k−1
separated by single letters 1. As a consequence, among all factors of length n, it is v(n) which has the longest complete return
word, namely of the form

X ww · · ·w︸ ︷︷ ︸
k times

w1Y .
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From the definition (5) it follows that
R(n) = −1+ |wk+θ | + 2 = 1+ (k+ θ)n,

which completes the proof. �

Proof of Theorem 1. In order to complete the proof of Theorem1,wehave to show that there exist infinitelymanyprimitive
factors w with index at least 2. For the construction of such factors we make use of bispecial factors. Let b be a bispecial
factor in L(u). Denote by n its length, n := |b|, and by r0(b), r1(b) its return words. From the Rauzy graph Γn it follows
that the two return words of b are given by the two cycles in Γn, which have b as the only common vertex. Therefore
|r0(b)| + |r1(b)| = n+ 2. Without loss of generality, let b contain both letters. Then |ri(b)| ≥ 2. At least for one of the return
words, say r0(b), it holds that n/2 < |r0(b)| ≤ n, and therefore r0(b) is a prefix of b. It follows that the complete return
word r0(b)b ∈ L(u) has as its prefix r0(b)r0(b). Moreover, a return word of an arbitrary factor of any uniformly recurrent
word is primitive. Thus we can take r0(b) for the desired factorw. Since there are infinitely many bispecial factors b, we can
construct infinitely many primitive factors with index≥ 2 and length≥ |b|2 . �

4. Upper bound on the index of Sturmian words

In this section we mention the consequences of Proposition 4, which gives a relation between the recurrence function
and index of factors of a Sturmian word. In particular, we can very easily derive the upper bound on the index of a Sturmian
word, which constitutes an alternative proof for the result of Damanik and Lenz [9]. The bound depends on the continued
fraction expansion of the slope of the Sturmian word.
Recall the notion of a continued fraction. To every irrational β ∈ (0, 1) one associates the continued fraction β =

[0, b1, b2, . . .], where bi ∈ Z, bi ≥ 1. Obviously, if β > 1
2 , then b1 = 1. The convergents of β form a sequence of fractions

(
pn
qn
),

p1
q1
=
1
b1
,

p2
q2
=

1
b1 + 1

b2

,
p3
q3
=

1
b1 + 1

b2+
1
b3

, . . .

We have pn coprime to qn and limn→∞
pn
qn
= β .

It is known that the denominators qn of convergents of β satisfy the recurrence
qN = bNqN−1 + qN−2

with initial values q−1 = 0, q0 = 1. Denoting the matrixMc :=
(
c 1
1 0

)
, then the recurrence can be rewritten as

(qN , qN−1) = (qN−1, qN−2)MbN ,
and by repetition, we obtain

(qN , qN−1) = (1, 0)Mb1Mb2 · · ·MbN .

In order to extract the component qN , it suffices to multiply the latter from the right by the vector
(1
0

)
. We obtain

qN = (1, 0)Mb1Mb2 · · ·MbN

(
1
0

)
= (1, 0)MbN · · ·Mb2Mb1

(
1
0

)
, (9)

where we have used that equality must hold also for the transpose qTN = qN andM
T
c = Mc for all c ∈ N.

For the derivation of the lower bound on the index of Sturmian words we use an old result on recurrence function of
Sturmian words given in [18].
Theorem 5 ([18]). Let u be a Sturmian word with slope α. Denote by q0, q1, q2, . . . the denominators of the convergents of α.
Then, for every n ∈ N,

R(n) = qN+1 + qN + n− 1, where N is such that qN ≤ n < qN+1.
Substituting into Proposition 4, one obtains an easy proof of the following result. One can find a similar derivation in [7].

Corollary 6. The index of every factor of a Sturmian word u with slope α = [0, 1, a2, a3, . . .] is bounded by

sup
{
2+ aN+1 +

qN−1 − 2
qN

∣∣∣ N ≥ 1 },
where qN are the denominators of the convergents of α.
Proof. Obviously, it suffices to consider only factors w satisfying the assumptions of Proposition 4. Let |w| = n and let
qN ≤ n < qN+1. Using Proposition 4 and Theorem 5, we have

n ind(w)+ 1 = R(n) = qN+1 + qN + n− 1.
Therefore

qN
(
ind(w)− 1

)
≤ n

(
ind(w)− 1

)
= qN+1 + qN − 2 = (aN+1 + 1)qN + qN−1 − 2,
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and consequently

ind(w) ≤ 2+ aN+1 +
qN−1 − 2
qN

. �

5. Sturmian morphisms and factors with maximal index

In this section we provide a lower bound on the index of a Sturmian word u of slope α. Obviously, ind(u) ≥ a2+ 1, since
b

α
1−α c in the formula (3) for the index of the letter A is equal to the coefficient a2 of the continued fraction of α. The idea for
the construction of factorswith large index in a Sturmianword u is based on the application of specific Sturmianmorphisms.
Since the application of a morphism preserves repetitions, it suffices to know how the chosen morphism changes the slope
of the Sturmian word. Let us recall the necessary facts.
A morphism over the alphabet {A, B} is a mapping ϕ : {A, B}∗ 7→ {A, B}∗ satisfying ϕ(w1w2) = ϕ(w1)ϕ(w2). Obviously,

a morphism is uniquely determined by ϕ(A), ϕ(B). The incidence matrix of a morphism ϕ is given by

Mϕ =
(
|ϕ(A)|A |ϕ(A)|B
|ϕ(B)|A |ϕ(B)|B

)
.

The action of a morphism can be naturally extended to infinite words by

ϕ(u0u1u2 · · · ) = ϕ(u0)ϕ(u1)ϕ(u2) · · · .

It is easy to show that, for the number of letters in the image of a wordw, one has(
|ϕ(w)|A, |ϕ(w)|B

)
=
(
|w|A, |w|B

)
Mϕ . (10)

From that, we can deduce the following fact for the densities of letters in an infinite word u. If %(A), %(B) are the densities
in u, than the densities in the word u′ = ϕ(u) are %′(A), %′(B), where(

%′(A), %′(B)
)
= const.

(
%(A), %(B)

)
Mϕ, (11)

and const. is chosen so that %′(A)+ %′(B) = 1.
A morphism ϕ is called Sturmian if ϕ(u) is a Sturmian word for every Sturmian word u. Obviously, the set of Sturmian

morphisms equipped with the operation of composition is a monoid, denoted by St . It is known [4] that the monoid St has
three generators, namely

ψ1 :
A 7→ AB
B 7→ B ψ2 :

A 7→ BA
B 7→ B E : A 7→ B

B 7→ A . (12)

Consider a Sturmianwordwith slopeβ ∈ ( 12 , 1)whose continued fraction is of the formβ = [0, 1, b2, b3, . . .]. For c ∈ N,
we shall study the action of the morphism

ϕ :
A 7→ AcB
B 7→ A (13)

on the Sturmian word u with slope β . The morphism ϕ is a Sturmian morphism; it is a composition of the generators (12)

of the Sturmian monoid, namely ϕ = Eψ c2 . The corresponding incidence matrix is Mϕ = Mc =
(
c 1
1 0

)
, as defined at

the beginning of Section 4. Consequently, the infinite word ϕ(u) is also Sturmian, i.e. there exists an irrational β ′ such that
u′ := ϕ(u) is a Sturmian word with slope β ′. According to (11), the densities of letters a, b in the word u′ satisfy

(β ′, 1− β ′) = const. (β, 1− β)
(
c 1
1 0

)
.

Therefore β ′ = cβ+1−β
cβ+1 . It is not difficult to show that the continued fraction of β

′ is equal to

β ′ = [0, 1, c, b2, b3, . . .]. (14)

The following lemma is crucial for the construction of factors of a Sturmian word with maximal index.

Lemma 7. Let u be a Sturmian word with slope β having the continued fraction β = [0, 1, b2, b3, . . .]. Let w ∈ L(u), and let
r ∈ Q, r ≥ 2 be such that v = wr ∈ L(u). Denote

w′ = ϕ(w) and v′ = ϕ(v)Ac,

whereϕ is themorphismgiven by (13). Thenv′ is a rational power ofw′ in a Sturmianword u′with slopeβ ′ = [0, 1, c, b2, b3, . . .].
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Proof. If |w| = 1, then necessarilyw = A, v = Ar for 2 < r ≤ b2 + 1, ϕ(w) = AcB, and ϕ(v)Ac = (AcB)rAc is a factor of u′,
since a Sturmian word with slope β ′ = [0, 1, c, b2, b3, . . .] has blocks Ac , Ac+1 separated by single letters B.
If |w| ≥ 2, let us write w = w1w2 so that w2 6= ε and v = (w1w2)brcw1. Then ϕ(v)Ac = ϕ(wbrc)ϕ(w1)Ac . In order to

show that ϕ(v)Ac is a power of ϕ(w), it suffices to show that ϕ(w1)Ac is a prefix of ϕ(w) or ϕ(w)ϕ(w). If w2 starts with A
or BA, then ϕ(w2) has prefix Ac , and thus ϕ(w1)Ac is a prefix of ϕ(w) = ϕ(w1)ϕ(w2). Since BB /∈ L(u), it remains to discuss
the special case when w2 = B. As |w| ≥ 2, we have w1 6= ε. Since w2w1 ∈ L(u), the word w1 must start with the letter A
and therefore ϕ(w1)Ac is a prefix of ϕ(w1B)ϕ(w1B) =

(
ϕ(w)

)2. �

Theorem 8. Let u be a Sturmian word with slope α = [0, 1, a2, a3, . . .]. Then for every N ∈ N there exists a factor w ∈ L(u)
with index at least equal to 2+ aN+1 +

qN−1−2
qN

, where qN is the denominator of the N-th convergent of α.

Proof. For N = 1 it follows from the continued fraction of α that q1 = 1, q0 = 1, and therefore we have to find a factor
with index 2 + a2 − 1 = a2 + 1. It suffices to put w = A. Therefore we consider N ≥ 2. We shall construct the desired
factor w and its power v by (N − 1)-fold application of Lemma 7. Consider the irrational number α0 with the continued
fraction α0 = [0, 1, aN+1, aN+2,...]. Take a Sturmian word u(0) with slope α0 and its factors w(0) := A, v(0) := A1+aN+1 for
initial values of the construction. For 1 ≤ i ≤ N − 1, define

w(i) := ϕi(w
(i−1)), v(i) := ϕi(v

(i−1))AaN−i+1 , where ϕi :
A 7→ AaN−i+1B
B 7→ A.

By Lemma 7, the word w(i) is a factor of a Sturmian word u(i) with slope αi, where αi has the continued fraction αi =
[0, 1, aN+1−i, aN+2−i, . . .] and v(i) is a power of w(i) in the word u(i). In particular, w(N−1) is a factor of a Sturmian word u
with slope α = [0, 1, a2, a3, . . .] and v(N−1) is its power in u.
It suffices now to show that the length of w(N−1) is qN and the length of v(N−1) is (2 + aN+1)qN + qN−1 − 2. For the

recurrent expression of lengths of factorsw(i), v(i) we use formula (10). We have(
|w(i)|A, |w

(i)
|B
)
=
(
|w(i−1)|A, |w

(i−1)
|B
)
MaN−i+1 ,

for all i = 1, 2, . . . ,N − 1, with
(
|w(0)|A, |w

(0)
|B
)
= (1, 0). It can be easily seen that(

|w(N−1)|A, |w
(N−1)
|B
)
= (1, 0)MaNMaN−1 · · ·Ma2 .

In order to obtain |w(N−1)| = |w(N−1)|A + |w(N−1)|B, we multiply the latter from the right by the vector
(1
1

)
, which can be

also written as
(1
1

)
=

(
1 1
1 0

) (1
0

)
. Since in the continued fraction of α we have a1 = 1, we can use (9) to obtain

|w(N−1)| = (1, 0)MaNMaN−1 · · ·Ma2Ma1

(
1
0

)
= qN .

From the definition of words v(i) we have for their lengths(
|v(i)|A, |v

(i)
|B
)
=
(
|v(i−1)|A, |v

(i−1)
|B
)
MaN−i+1 + (aN−i+1, 0), (15)

with
(
|v(0)|A, |v

(0)
|B
)
= (1+ aN+1, 0). Let us compute the lengths for N = 1,(

|v(1)|A, |v
(1)
|B
)
= (1+ aN+1, 0)

( aN 1
1 0

)
+ (aN , 0) = (2+ aN+1)(1, 0)MaN + (1, 0)− (1, 1).

Since for every c we have−(1, 1)Mc + (c, 0) = −(1, 1), by repeated application of the recurrence (15) we obtain(
|v(N−1)|A, |v

(N−1)
|B
)
= (2+ aN+1)(1, 0)MaNMaN−1 · · ·Ma2 + (1, 0)MaN−1 · · ·Ma2 − (1, 1).

Again, multiplying the latter from the right by the vector
(1
1

)
= Ma1

(1
0

)
and using (9), we obtain

|v(N−1)| = (2+ aN+1)qN + qN−1 − 2. �
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