MATHEMATICS

THE LINEAR MODULUS OF AN ORDER BOUNDED LINEAR TRANSFORMATION. II

BY

W. A. J. LUXEMBURG and A. C. ZAANEN

(Communicated at the meeting of March 27, 1971)

4. Order bounded linear integral operators

Let (X, Λ, μ) be a (totally) σ-finite measure space (i.e., μ is a nonnegative and countably additive measure on the σ-algebra A of subsets of the non-empty set X, such that X is a finite or countable union of sets of finite measure). By $M(X, \mu)$, or briefly $M(X)$, we shall denote the set of all μ-almost everywhere finitevalued and μ-measurable real functions on X, with identification of μ-almost everywhere equal functions. The set $M(X)$ is a real vector space under the usual operations, and $M(X)$ is even a Riesz space with respect to the partial ordering defined by saying that $f \leqslant g$ in $M(X)$ means that $f(x) \leqslant g(x)$ holds for μ-almost every $x \in X$. It is well-known that the Riesz space $M(X)$ is Dedekind complete, i.e., every subset of $M(X)$ that is bounded from above has a supremum. Some caution is necessary in handling this statement. Given the set ($f_{\alpha}: \alpha \in\{\alpha\}$) in $M(X)$ such that the set is bounded from above, the supremum $f=\sup f_{\alpha}$ is not necessarily the pointwise supremum of the functions $f_{\alpha}(\alpha \in\{\alpha\})$. In the first place, the pointwise supremum need not be measurable. Secondly, even if the pointwise supremum is measurable, it need not be equal to the function $f=\sup f_{\alpha}$ in $M(X)$. As an example, take ordinary Lebesgue measure on the interval $[0,1]$ and, for x and α running through $[0,1]$, let $f_{\alpha}(x)=0$ for $x \neq \alpha$ and $f_{\alpha}(x)=1$ for $x=\alpha$. Then, since every f_{α} is μ-equal to the function identically zero, we have $f=\sup f_{\alpha}$ identically equal to zero, but the pointwise supremum of the functions f_{α} is identically equal to one.

Assume now that (X, Λ, μ) and (Y, T, v) are both (totally) σ-finite measure spaces. The corresponding Riesz spaces of real measurable functions will be denoted by $M(X)$ and $M(Y)$ respectively. Let $T(x, y)$ be a real and $(\mu \times \nu)$-measurable function on the Cartesian product $X \times Y$. For any $f \in M(Y)$ the function $T(x, y) f(y)$ is then ($\mu \times v)$-measurable, which implies that for μ-almost every $x \in X$ the function $T(x, y) f(y)$, as a function of y, is ν-measurable. It follows that

$$
\begin{equation*}
h(x)=\int_{Y}|T(x, y) f(y)| d v(y) \tag{1}
\end{equation*}
$$

makes sense for these values of x, and the resulting function $h(x)$ is μ-measurable on X. All this is included in a complete formulation of Fubini's theorem on repeated integration. Of course, it is not necessary that the function h assumes a finite value for μ-almost every $x \in X$, i.e., h is not necessarily a member of $M(X)$. The set of all $f \in M(Y)$ with the property that the corresponding function h satisfies $h \in M(X)$ will be called the Y-domain of $T(x, y)$, or simply the domain of $T(x, y)$ if there is no danger of confusion between X and Y. Obviously, the domain of $T(x, y)$, written as dom (T), is an ideal in the Riesz space $M(Y)$. It follows that dom (T) in its own right is a Dedekind complete Riesz space.

Let $f \in \operatorname{dom}(T)$, and let h be given by (1). It follows already from what was observed above that for any $x \in X$ for which $h(x)$ is finite the function g, defined by

$$
g(x)=\int_{Y} T(x, y) f(y) d v(y),
$$

is finite. The μ-measurability of $g(x)$ follows by observing that

$$
g(x)=\int_{Y}(T(x, y) f(y))^{+} d v(y)-\int_{Y}(T(x, y) f(y))^{-} d \nu(y)
$$

holds for μ-almost every $x \in X$, and both terms on the right are μ-measurable (once again by applying Fubini's theorem to the non-negative and $(\mu \times \nu)$-measurable functions under the signs of integration).

If f and g have the same meaning as above, the mapping $T: f \rightarrow g$ is now a linear mapping from the Riesz space dom (T) into the Riesz space $M(X)$. We shall say that T is a linear integral operator and, as usual with integral operators, $T(x, y)$ is called the kernel of T.

Denote the integral operator with kernel $|T(x, y)|$ by A. It is evident that $\operatorname{dom}(A)=\operatorname{dom}(T)$, and A is not only a linear mapping, but even a positive linear mapping from $\operatorname{dom}(A)=\operatorname{dom}(T)$ into $M(X)$. Obviously, $A-T$ is also a positive linear mapping from dom (T) into $M(X)$, so T is majorized by A, i.e., T is order bounded. We summarize some of these facts in the following theorem.

Theorem 4.1. Given the $(\mu \times v)$-measurable real function $T(x, y)$, the integral operator T, defined by

$$
(T f)(x)=\int_{Y} T(x, y) f(y) d v(y),
$$

is an order bounded linear mapping from dom (T) into $M(X)$. If L is any Riesz subspace of $\operatorname{dom}(T)$, then the restriction of T on L is of course an order bounded linear mapping from L into $M(X)$.

Given the integral operator T as in the last theorem, it is a natural question to ask what the mappings T^{+}, T^{-}and $|T|$ are, and it is an obvious conjecture that these mappings are integral operators with kernels $T^{+}(x, y)$, $T^{-}(x, y)$ and $|T(x, y)|$ respectively. We shall prove that the conjecture
is true. One simple remark first. The operator P with kernel $T^{+}(x, y)$ is certainly a majorant of T as well as of the null operator, and hence

$$
P \geqslant \sup (T, 0)=T^{+}
$$

Similarly, the operator N with kernel $T^{-}(x, y)$ satisfies $N \geqslant T^{-}$, and so the operator A with kernel $|T(x, y)|$ satisfies $A \geqslant|T|$.

Theorem 4.2. Given the integral operator T with kernel $T(x, y)$ as in the preceding theorem, the linear mappings T^{+}, T^{-}and $|T|$ are also integral operators with kernels $T^{+}(x, y), T^{-}(x, y)$ and $|T(x, y)|$ respectively.

Proof. Let $0 \leqslant t \in \operatorname{dom}(T)$ be given. Then the function

$$
\int_{Y}|T(x, y)| f(y) d v(y)
$$

is non-negative, μ-measurable and μ-almost everywhere finite on X. The function f will be kept fixed throughout the proof. We have to prove that

$$
\left(T^{+} f\right)(x)=\int_{Y} T^{+}(x, y) f(y) d v(y)
$$

holds for μ-almost every $x \in X$. For this purpose, write $T_{1}(x, y)=T(x, y) f(y)$. Then

$$
T_{1}{ }^{+}(x, y)=T^{+}(x, y) f(y)
$$

and

$$
T^{+} f=\sup (T g: 0 \leqslant g \leqslant f)=\sup \left(T_{1} h: 0 \leqslant h \leqslant e\right)=T_{1}{ }^{+} e
$$

where e is the function on Y satisfying $e(y)=1$ for every $y \in Y$. Hence, we may just as well prove that

$$
\left(T_{1}{ }^{+} e\right)(x)=\int_{Y} T_{1}{ }^{+}(x, y) d v(y)
$$

holds for μ-almost every $x \in X$. It follows from

$$
T_{1}{ }^{+} e=\sup \left(T_{1} g: 0 \leqslant g \leqslant e\right)
$$

that for $0 \leqslant g \leqslant e$ we have

$$
\left(T_{1}+e\right)(x) \geqslant \int_{Y} T_{1}(x, y) g(y) d v(y)
$$

for almost every $x \in X$. Hence, if E is any μ-measurable subset of X such that the functions $T_{1}{ }^{+} e$ and $\int_{Y}\left|T_{1}(x, y)\right| d v$ are μ-summable over E, and if g and h are measurable functions on Y and X respectively satisfying

$$
0 \leqslant g \leqslant e \text { and } 0 \leqslant h \leqslant \chi_{E},
$$

then

$$
\begin{equation*}
\int_{X}\left(T_{1}{ }^{+} e\right) h d \mu \geqslant \iint T_{1}(x, y) g(y) h(x) d(\mu \times v) . \tag{2}
\end{equation*}
$$

29 Indagationes

Now, let $s(x, y)$ be a ($\mu \times \nu$)-step function of the particular form

$$
s(x, y)=\sum_{n=1}^{p} a_{n} \chi_{A_{n}}(x) \chi_{B_{n}}(y)
$$

with all coefficients a_{n} real, all A_{n} of finite μ-measure and all B_{n} of finite y-measure. Assume also that

$$
0 \leqslant s(x, y) \leqslant \chi_{E}(x) e(y),
$$

where E is the same subset of X as above. Then $s(x, y)$ can be written as

$$
s(x, y)=\sum_{n=1}^{\alpha} \chi_{E_{n}}(x) t_{n}(y),
$$

with E_{1}, \ldots, E_{q} disjoint subsets of E, each E_{n} of finite μ-measure, and $t_{n}(y) \leqslant e(y)$ for $n=1, \ldots, q$. Substituting now $h(x)=\chi_{E_{n}}(x)$ and $g(y)=t_{n}(y)$ in (2), we obtain

$$
\int_{E_{n}}\left(T_{1}+e\right) d \mu \geqslant \iint T_{1}(x, y) \chi_{E_{n}}(x) t_{n}(y) d(\mu \times v)
$$

for $n=1, \ldots, q$, so by addition

$$
\begin{equation*}
\int_{E}\left(T_{1}+e\right) d \mu \geqslant \iint T_{1}(x, y) s(x, y) d(\mu \times v) \tag{3}
\end{equation*}
$$

At the next step, let $\sigma(x, y)$ be a function satisfying

$$
0 \leqslant \sigma(x, y) \leqslant \chi_{E}(x) e(y)
$$

and such that there exists a sequence $\left(s_{n}(x, y): n=1,2, \ldots\right)$ of step functions of the kind considered above satisfying $0 \leqslant s_{n} \uparrow \sigma$ on $E \times Y$. Any function $\sigma(x, y)$ of this kind is sometimes called a σ-function. It follows from (3) by means of the theorem on dominated convergence that

$$
\begin{equation*}
\int_{E}\left(T_{1}+e\right) d \mu \geqslant \iint T_{1}(x, y) \sigma(x, y) d(\mu \times v) \tag{4}
\end{equation*}
$$

Finally, let $p(x, y)$ be any ($\mu \times \nu$)-measurable function satisfying

$$
0 \leqslant p(x, y) \leqslant \chi_{E}(x) e(y)
$$

It is well-known from the theory of product measures that $p(x, y)$ differs at most on a set of $(\mu \times \nu)$-measure zero from the limit function of an appropriate decreasing sequence of σ-functions. Hence, we may assume that there exists a sequence $\left(\sigma_{n}(x, y): n=1,2, \ldots\right)$ of σ-functions such that $\sigma_{n}(x, y) \downarrow p(x, y)$ holds on $X \times Y$. For $n=1,2, \ldots$, we set

$$
\sigma_{n}{ }^{\prime}(x, y)=\min \left(\sigma_{n}(x, y), \chi_{E}(x) e(y)\right)
$$

The functions $\sigma_{n}{ }^{\prime}$ are σ-functions satisfying

$$
0 \leqslant \sigma_{n}^{\prime}(x, y) \leqslant \chi_{E}(x) e(y)
$$

and $\sigma_{n}{ }^{\prime} \downarrow p$. Hence, once more by the theorem on dominated convergence, it follows from (4) that

$$
\begin{equation*}
\int_{E}\left(T_{1}{ }^{+} e\right) d \mu \geqslant \iint T_{1}(x, y) p(x, y) d(\mu \times \nu) \tag{5}
\end{equation*}
$$

Now, let $p(x, y)=1$ at all points of $E \times Y$ where $T_{1}(x, y)>0$, and $p(x, y)=0$ everywhere else on $X \times Y$. Then $p(x, y)$ satisfies the conditions required in (5), so
(6) $\int_{E}\left(T_{1}{ }^{+} e\right) d \mu \geqslant \iint T_{1}{ }^{+}(x, y) \chi_{E}(x) d(\mu \times \nu)=\int_{E}\left\{\int_{Y} T_{1}{ }^{+}(x, y) d \nu(y)\right\} d \mu(x)$.

On the other hand, since the integral operator with kernel $T_{1}{ }^{+}(x, y)$ is a majorant of $T_{1}{ }^{+}$, we have also the inverse inequality, and so there is equality in (6). The same equality persists to hold if E is replaced by any μ-measurable subset of E. This implies that

$$
\begin{equation*}
\left(T_{1^{+}} e\right)(x)=\int_{Y} T_{1^{+}}(x, y) d v(y) \tag{7}
\end{equation*}
$$

holds for μ-almost every $x \in E$. Finally, we return to the conditions which E had to satisfy. It was required that $T_{1}{ }^{+} e$ and $\int_{Y}\left|T_{1}(x, y)\right| d \nu(y)$ are μ-summable over E. Both functions, call them p and q, are members of $M^{+}(X)$, and it is easy to see that there exists a sequence $E_{n} \uparrow X$ such that p and q are μ-summable over each E_{n}. Indeed, let $A_{n}=(x: p(x) \leqslant n)$ and $B_{n}=(x: q(x) \leqslant n)$ for $n=1,2, \ldots$, and let $\left(C_{n}: n=1,2, \ldots\right)$ be a sequence of subsets of X of finite measure such that $C_{n} \uparrow X$. Then

$$
E_{n}=A_{n} \cap B_{n} \cap C_{n}(n=1,2, \ldots)
$$

satisfies the required conditions. Hence, (7) holds μ-almost everywhere on each E_{n}, and so (7) holds μ-almost everywhere on X. This concludes the proof that T^{+}is an integral operator with kernel $T^{+}(x, y)$. The proof for T^{-}is similar, and the desired result for $|T|$ follows then by addition. Note that the transition from an arbitrary $f \geqslant 0$ to the function e is not merely for notational convenience, but is of essential importance where we introduce the functions $\sigma_{n}{ }^{\prime}$.

We make some additional remarks.
(i) If $M(X)$ and $M(Y)$ denote the complex Riesz spaces of all complex functions that are measurable and almost everywhere finite on X and Y respectively, and if $T(x, y)$ is complex and $(\mu \times v)$-measurable on $X \times Y$, then the mapping T with kernel $T(x, y)$ is an order bounded linear transformation from dom (T) into $M(X)$. It is proved similarly as above that the linear modulus $|T|$ of T is the integral transformation with kernel $|T(x, y)|$.
(ii) In a recent book "Integral Operators in Spaces of Summable Functions" by M. A. Krasnoselskif, P. P. Zabreiko, E. I. Pustylnik
and P. E. Sobolevski ($[3], 1966$) the following situation is considered. Let Ω be a subset of R^{n} of finite Lebesgue measure, and let $t(x, y)$ be a real Lebesgue measurable function on $\Omega \times \Omega$ such that the integral operator T with kernel $t(x, y)$ is norm bounded from the real space $L^{p}(\Omega)$ into the real space $L^{q}(\Omega)$, where p and q are given real numbers satisfying $1 \leqslant p, q \leqslant \infty$. In Theorem 4.2 the authors state that T is order bounded if and only if T is majorized by a positive transformation T_{0} from L^{p} into L^{q}. In the proof it is asserted that the linear modulus $|T|$, defined by

$$
|T| f=\sup (|T g|:-f \leqslant g \leqslant f) \text { for } f \geqslant 0 \text {, }
$$

is the integral operator with kernel $|t(x, y)|$. Their proof, however, contains an error. We reproduce part of the argument. For $f \geqslant 0$ in $\operatorname{dom}(T)$, we have

$$
\int_{\Omega}|t(x, y)| f(y) d y<\infty
$$

for almost every $x \in \Omega$. Take such a point x, say $x=x_{0}$. Hence, for x_{0} and f fixed, the function $\left|t\left(x_{0}, y\right)\right| f(y)$ is an L^{1}-function of y on Ω, so $F_{x_{0}}(g)$, defined for all L^{∞}-functions $g(y)$ by

$$
F_{x_{0}}(g)=\int_{\Omega} t\left(x_{0}, y\right) f(y) g(y) d y,
$$

is a bounded linear functional on $L^{\infty}(\Omega)$ with norm

$$
\left\|F_{x_{0}}\right\|=\int_{\Omega}\left|t\left(x_{0}, y\right)\right| f(y) d y
$$

Also, by the definition of the norm of a bounded linear functional, we have

$$
\left\|F_{x_{0}}\right\|=\sup _{|h(y)| \leqslant 1}\left|\int t\left(x_{0}, y\right) f(y) h(y) d y\right|=\sup _{|q(y)| \leqslant f(y)}\left|\int t\left(x_{0}, y\right) g(y) d y\right|
$$

This shows that the pointwise supremum of the set $(|T g|:|g| \leqslant f)$ is almost everywhere on Ω equal to $\int_{\Omega}|t(x, y)| f(y) d y$, and the authors conclude from this (formula 4.11 on p. 77) that

$$
(|T| f)(x)=\int_{\Omega}|t(x, y)| f(y) d y
$$

The conclusion is false because, as observed earlier, the function $\sup (|T g|$: $|g| \leqslant f)$ in the Riesz space $L^{q}(\Omega)$ may be properly smaller than the pointwise supremum. The correct conclusion would be, therefore, that

$$
(|T| f)(x) \leqslant \int_{\Omega}|t(x, y)| f(y) d y
$$

which was known from the beginning.
(iii) We present an example, showing that a norm bounded linear integral transformation from an L^{2}-space into itself is not necessarily order bounded from L^{2} into L^{2}, although it is order bounded from L^{2}
into a certain larger space. To be specific, let $X=Y$ be the set of all integers, equipped with the counting measure μ (i.e., $\mu(m)=1$ for every point of $X=Y$). Furthermore, let the kernel $T(m, n)$ be defined on $X \times Y$ by

$$
T(m, n)=\frac{1}{\pi} \cdot \frac{1}{m+n+\frac{1}{2}}
$$

for all integers m, n.
In order that $y=\left(\ldots, \eta_{-1}, \eta_{0}, \eta_{1}, \eta_{2}, \ldots\right)$ be a member of $\operatorname{dom}_{Y}(T)$, it is necessary and sufficient that

$$
\sum_{n--\infty}^{\infty}\left|T(m, n) \eta_{n}\right|<\infty
$$

holds for every m, and obviously this is equivalent to requiring that

$$
' \sum_{n=-\infty}^{\infty}\left|n^{-1} \eta_{n}\right|<\infty
$$

where ' Σ indicates that the term with $n=0$ is omitted. For any number p satisfying $l \leqslant p<\infty$ the sequence space l^{p} is included in $\operatorname{dom}_{Y}(T)$, and so T is an order bounded integral operator from l^{p} into $M(X)$. For the present purposes, we restrict our attention to the case that $p=2$. The following holds.

The mapping T is a unitary transformation from the Hilbert space l^{2} into itself, and T is equal to its own inverse (i.e., T^{2} is equal to the identity transformation in l^{2}).

The proof is straightforward (we refer to a paper by E. C. Titchmarsh [7]).

The mapping T, although a norm bounded linear mapping from l^{2} into itself, is not an order bounded linear mapping from l^{2} into itself.

We briefly indicate the proof. It will be sufficient to show that the mapping $|T|$ with kernel $|T(m, n)|$ fails to map l^{2} into itself. Assume, on the contrary, that $|T|$ maps l^{2} into l^{2}. Then the inner product $(|T| y, x)$ exists as a finite number for all x and y in l^{2}, i.e.,

$$
\sum_{n} \mid \xi_{n}\left(\left(\sum_{k}\left|T(n, k) \eta_{k}\right|\right)<\infty\right.
$$

holds for all $x=\left(\xi_{n}\right)$ and $y=\left(\eta_{n}\right)$ in l^{2}. We set

$$
\xi_{n}=\left\{\begin{array}{cl}
\left(n^{\frac{t}{2}} \log n\right)^{-1} & \text { for } n=2,3, \ldots \\
0 & \text { for } n=1,0,-1,-2, \ldots
\end{array}\right.
$$

and

$$
\eta_{n}=\left\{\begin{array}{cl}
\left(|n|^{t} \log |n|\right)^{-1} & \text { for } n=-2,-3, \ldots \\
0 & \text { for } n=-1,0,1,2, \ldots
\end{array}\right.
$$

Then x and y are members of l^{2} with non-negative coordinates, and

$$
\begin{aligned}
x(|T| y, x) & =\sum_{n=2}^{\infty} \xi_{n}\left(\sum_{k=2}^{\infty} \frac{\eta-k}{n-k+\frac{1}{2}!}\right) \geqslant \sum_{n=2}^{\infty} \xi_{n}\left(\sum_{k=n+1}^{\infty} \frac{\eta-k}{k-n-\frac{1}{2}}\right) \\
& =\sum_{n=2}^{\infty} \xi_{n}\left(\sum_{k=1}^{\infty} \frac{\eta-(k+n)}{k-\frac{1}{2}}\right)=\sum_{k=1}^{\infty} \frac{1}{k-\frac{1}{2}}\left(\sum_{n=2}^{\infty} \xi_{n} \eta_{-(n+k)}\right) \\
& \geqslant \sum_{k=1}^{\infty} \frac{1}{k-\frac{1}{2}}\left(\sum_{n=2}^{\infty} \xi_{n+k}^{2}\right)=\sum_{k=1}^{\infty} \frac{1}{k-\frac{1}{2}}\left(\sum_{n=k+2}^{\infty} \xi_{n}^{2}\right) \\
& =\sum_{k=1}^{\infty} \frac{1}{k-\frac{1}{2}}\left(\sum_{n-k+2}^{\infty} \frac{1}{n \log ^{2} n}\right) \geqslant \sum_{k=1}^{\infty} \frac{1}{k-\frac{1}{2}} \int_{k+2}^{\infty} \frac{d x}{x \log ^{2} x} \\
& =\sum_{k=1}^{\infty} \frac{1}{\left(k-\frac{1}{2}\right)} \frac{\log (k+2)}{}=\infty
\end{aligned}
$$

against the assumption that $(|T| y, x)$ is finite.
It has been shown thus that T is order bounded from l^{2} into $M(X, \mu)$ and norm bounded from l^{2} into l^{2}, but not order bounded from l^{2} into l^{2}.

There exist several variants. The results can be extended from $p=2$ to arbitrary p satisfying $\mathrm{l}<p<\infty$, but the proofs become more difficult. All variants are known under the name of the Hilbert transform. We still observe it can be shown that the mapping T corresponding to the kernel $T(m, n)$ is norm bounded from l^{1} into l^{p} for any $p>1$. Hence, by Theorem 2.3, T is order bounded from l^{1} into $l p$.
(iv) It was shown in the proof of Theorem 4.2 that for $0 \leqslant f \in \operatorname{dom}(T)$ we have

$$
\begin{equation*}
\int_{Y} T^{+}(x, y) f(y) d v(y)=\sup _{0 \leqslant h \leqslant i} \int_{Y} T(x, y) h(y) d v(y) \tag{8}
\end{equation*}
$$

where the supremum is to be understood not as a pointwise supremum, but as a supremum in the space $M(X)$. Now, let $0 \leqslant g \in M(X)$ be such that

$$
\iint_{X \times Y} T^{+}(x, y) g(x) f(y) d(\mu \times v)<\infty
$$

One might believe that (8) implies

$$
\left\{\begin{array}{l}
\iint_{X \times Y} T^{+}(x, y) g(x) f(y) d(\mu \times \nu)= \tag{9}\\
\quad=\sup _{0 \leqslant h \leqslant \hbar, 0 \leqslant k \leqslant \eta} \iint_{X \times Y} T(x, y) k(x) h(y) d(\mu \times v) .
\end{array}\right.
$$

This is not true, however, as the following example shows. Let $X=Y=[0,1]$ with Lebesgue measure, let

$$
T(x, y)=\left\{\begin{array}{r}
1 \text { for } 0 \leqslant y \leqslant 1-x \\
-1 \text { for } 1 \geqslant y>1-x
\end{array}\right.
$$

and let $f(y)=g(x)=1$ for all y and x. It is obvious then that the left hand side of (9) is

$$
\int_{0}^{1} \int_{0}^{1} T^{+}(x, y) d x d y=\frac{1}{2}
$$

In order to determine the right hand side of (9) we first state the following simple lemma, the proof of which we leave to the reader.

On the interval $[0,1]$, let $q(x)$ be non-increasing and let $k(x)$ satisfy $0 \leqslant k(x) \leqslant 1$ with $\int_{0}^{1} k(x) d x=\alpha$. Then, writing $k_{1}(x)=1$ for $0 \leqslant x \leqslant \alpha$ and $k_{1}(x)=0$ for $\alpha<x \leqslant 1$, we have

$$
\int_{0}^{1} q(x) k(x) d x \leqslant \int_{0}^{1} q(x) k_{1}(x) d x=\int_{0}^{\alpha} q(x) d x .
$$

Now, let $0 \leqslant h(y) \leqslant 1$ and $0 \leqslant k(x) \leqslant 1$ on $[0,1]$ with $\int_{0}^{1} h(y) d y=\beta$ and $\int_{0}^{1} k(x) d x=\alpha$. Then, since

$$
q(x)=\int_{0}^{1} T(x, y) h(y) d y
$$

is a non-increasing function of x, the lemma shows that

$$
\int_{0}^{1} \int_{0}^{1} T(x, y) k(x) h(y) d x d y \leqslant \int_{0}^{1} \int_{0}^{1} T(x, y) k_{1}(x) h(y) d x d y
$$

Applying the lemma once more, we obtain

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{1} T(x, y) k_{1}(x) h(y) d x d y & \leqslant \int_{0}^{1} \int_{0}^{1} T(x, y) k_{1}(x) h_{1}(y) d x d y= \\
& =\int_{0}^{\alpha} \int_{0}^{\beta} T(x, y) d x d y
\end{aligned}
$$

It is easy to see that

$$
\max _{0 \leqslant \alpha \leqslant 1,0 \leqslant \beta \leqslant 1} \int_{0}^{\alpha} \int_{0}^{\beta} T(x, y) d x d y=\frac{1}{3}
$$

the maximum is attained for $\alpha=\beta=\frac{2}{3}$. Hence, the right hand side of (9) is $\frac{1}{3}$. As shown above, the left hand side of (9) is $\frac{1}{2}$.
(v) Given the subset D of the Riesz space L, the set D^{d} of all elements g satisfying $g \perp f$ for all $f \in D$ is called the disjoint complement of D. In an (Archimedean) Riesz space the subset D is sometimes said to be order dense if D^{d} consists only of the null element. In the case of the integral operator T the set $\operatorname{dom}_{Y}(T)$ is order dense in $M(Y)$, therefore, if and only if the only function disjoint to all functions in $\operatorname{dom}_{Y}(T)$ is the null function. This is equivalent to saying that any subset E of Y of positive ν-measure contains a subset F such that $0<v(F)<\infty$ and $\chi_{F} \in \operatorname{dom}_{Y}(T)$, where χ_{F} denotes the characteristic function of F.

We can interchange the roles of X and Y. Thus, $\operatorname{dom}_{X}(T)$ is the set of all $f \in M(X)$ such that

$$
h(y)=\int_{X}|T(x, y) f(x)| d \mu(x) \in M(Y)
$$

and the mapping $f \rightarrow g$, defined by

$$
g(y)=\int_{X} T(x, y) f(x) d \mu(x)
$$

is an order bounded linear mapping from $\operatorname{dom}_{X}(T)$ into $M(Y)$. The following theorem holds.

Theorem 4.3. The set $\operatorname{dom}_{X}(T)$ is order dense in $M(X)$ if and only if $\operatorname{dom}_{Y}(T)$ is order dense in $M(Y)$.

Proof. We briefly indicate a (purely measure theoretic) proof. First of all, we need a so-called exhaustion lemma, for the proof of which we refer to ([9], Theorem 67.3).

Let (P) be some property which any v-measurable subset of Y does or does not possess, where it is understood that (P) is a property of the equivalence classes modulo sets of measure zero rather than of the individual sets. Assume, furthermore, that.
(i) if E_{1} and E_{2} are subsets of Y possessing (P), then $E_{1} \cup E_{2}$ possesses (P),
(ii) if E possesses (P), then any measurable subset of E possesses (P), (iii) any set of positive measure has a subset of positive measure possessing (P).

Then there exists a sequence ($Y_{n}: n=1,2, \ldots$) of measurable sets of finite measure such that $Y_{n} \uparrow Y$, and every Y_{n} has the property (P).

Assuming now that $\operatorname{dom}_{Y}(T)$ is order dense in $M(Y)$, it follows easily that there exists a sequence $Y_{n} \uparrow Y$ such that $v\left(Y_{n}\right)<\infty$ and $\chi_{Y_{n}} \in \operatorname{dom}_{Y}(T)$ for $n=1,2, \ldots$. Indeed, let us say that the ν-measurable subset E of Y has property (P) whenever $\chi_{E} \in \operatorname{dom}_{Y}(T)$. Evidently, the property (P) satisfies the conditions in the exhaustion lemma, so the existence of the sequence ($Y_{n}: n=1,2, \ldots$) with the desired properties follows.

We need another measure theoretic lemma, as follows.
Let (X, Λ, μ) be a σ-finite measure space, and let $\left(g_{n}: n=1,2, \ldots\right)$ be a sequence of functions in $M^{+}(X)$. Then there exist strictly positive coefficients $\left(a_{n}: n=1,2, \ldots\right)$ such that

$$
s=\sum_{1}^{\infty} a_{n} g_{n} \in M^{+}(X)
$$

For the proof, assume first that $\mu(X)<\infty$. Then, for n fixed, the sets $E_{n k}=\left(x: g_{n}(x) \geqslant k\right)$ satisfy $\mu\left(E_{n k}\right) \downarrow 0$ as $k \rightarrow \infty$. We determine $k=k(n)$ such that

$$
\mu\left(E_{n, k(n)}\right)<2^{-n}
$$

and we set $a_{n}=\left(2^{n} \cdot k(n)\right)^{-1}$. Then $a_{n} g_{n}(x) \leqslant 2^{-n}$ holds for all x in the complement of $E_{n, k(n)}$, so

$$
\sum_{n=n_{0}+1}^{\infty} a_{n} g_{n}(x) \leqslant 2^{-n_{0}}
$$

holds, except on a set of measure at most $2^{-n_{0}}$.
Given $\varepsilon>0$, we now determine the natural number n_{0} such that $2^{-n} n_{0}<\varepsilon$. Then

$$
s(x)=\sum_{1}^{n_{0}} a_{n} g_{n}(x)+\sum_{n_{0}+1}^{\infty} a_{n} g_{n}(x)=s_{n_{0}}(x)+r_{n_{0}}(x),
$$

where $r_{n_{0}}(x) \leqslant 2^{-n_{0}}<\varepsilon$ holds for all x, except on a set of measure at most $2^{-n_{0}}<\varepsilon$, and where $s_{n_{0}}(x)$, being a finite sum of functions in $M^{+}(X)$, is itself a function in $M^{+}(X)$. It follows that the set $(x: s(x)=+\infty)$ is of measure less than ε. This holds for every $\varepsilon>0$, so $(x: s(x)=+\infty)$ is of measure zero. In other words, we have $s \in M^{+}(X)$.

Now assume $\mu(X)=\infty$, and let $X=\bigcup_{1}^{\infty} D_{n}$ with all D_{n} mutually disjoint and of finite measure. We write

$$
\varphi(x)=\sum_{1}^{\infty} c_{n} \chi_{D_{n}}(x),
$$

where all coefficients c_{n} are strictly positive and such that $\int_{X} \varphi(x) d \mu<\infty$. Then, setting

$$
\mu_{1}(E)=\int_{E} \varphi(x) d \mu
$$

for every μ-measurable set E, it is evident that μ_{1} is a finite measure in X (i.e., $\left.\mu_{1}(X)<\infty\right)$ such that any subset E of X is μ_{1}-measurable if and only if E is μ-measurable. Furthermore, sets of μ_{1}-measure zero are the same as sets of μ-measure zero. Hence, we have $M^{+}\left(X, \mu_{1}\right)=M^{+}(X, \mu)$. It follows that $g_{n} \in M^{+}\left(X, \mu_{1}\right)$ holds for $n=1,2, \ldots$, so in view of what we proved already there exist strictly positive coefficients ($a_{n}: n=1,2, \ldots$) such that

$$
s=\sum_{1}^{\infty} a_{n} g_{n} \in M^{+}\left(X, \mu_{1}\right)=M^{+}(X, \mu) .
$$

This concludes the proof of the lemma.
We return to the integral operator T. It will be sufficient to prove that order denseness of $\operatorname{dom}_{Y}(T)$ implies order denseness of $\operatorname{dom}_{X}(T)$. In view of the order denseness of $\operatorname{dom}_{Y}(T)$ there exists a sequence $Y_{n} \uparrow Y$ such that $v\left(Y_{n}\right)<\infty$ and $\chi_{Y_{n}} \in \operatorname{dom}_{Y}(T)$ for $n=1,2, \ldots$ Writing $D_{1}=Y_{1}$ and $D_{n}=Y_{n}-Y_{n-1}$ for $n=2,3, \ldots$, we have $\chi_{D_{n}} \in \operatorname{dom}_{Y}(T)$ for all n. It follows that

$$
g_{n}(x)=\int_{Y}|T(x, y)| \chi_{D_{n}}(y) d v(y) \in M^{+}(X)
$$

for $n=1,2, \ldots$, and so, by the last lemma, there exist strictly positive coefficients ($a_{n}: n=1,2, \ldots$) such that

$$
\begin{equation*}
s(x)=\sum_{1}^{\infty} a_{n} g_{n}(x) \in M^{+}(X) \tag{10}
\end{equation*}
$$

Writing $t(y)=\sum_{1}^{\infty} a_{n} \chi_{D_{n}}(y)$, it is evident that $t \in M^{+}(Y)$ and $t(y)>0$ for every $y \in Y$. Furthermore, we have

$$
\begin{equation*}
s(x)=\int_{Y}|T(x, y)| t(y) d v(y) \tag{11}
\end{equation*}
$$

Now, let $\varphi \in M^{+}(X)$ be an auxiliary function satisfying $\varphi(x)>0$ for all $x \in X$ and $\int \varphi(x) d \mu<\infty$. We set

$$
f(x)=\left\{\begin{array}{cc}
\varphi(x) / s(x) & \text { for } s(x)>0 \\
1 & \text { for } s(x)=0
\end{array}\right.
$$

Then $f \in M^{+}(X)$, and $f(x)>0$ except at the points x where $s(x)=+\infty$. This shows that $0<f(x)<\infty$ holds μ-almost everywhere on X. Furthermore, we have

$$
\int f(x) s(x) d \mu \leqslant \int \varphi(x) d \mu<\infty,
$$

so

$$
\iint|T(x, y)| f(x) t(y) d(\mu \times v)<\infty .
$$

By Fubini's theorem this implies that

$$
\int_{X}|T(x, y)| f(x) t(y) d \mu(x) \in M^{+}(Y)
$$

so in view of $t(y)>0$ for every $y \in Y$ it follows that

$$
\int_{X}|T(x, y)| f(x) d \mu(x) \in M^{+}(Y)
$$

This shows that $f \in \operatorname{dom}_{X}(T)$. But $f(x)>0$ holds for μ-almost every $x \in X$, and so $\operatorname{dom}_{X}(T)$ is order dense in $M(X)$. This completes the proof.

Properties of integral operators of the same kind as considered here were also investigated by A. Aronszajn and P. Szeptycki [1]. Our theorem that $\operatorname{dom}_{X}(T)$ is order dense in $M(X)$ if and only if $\operatorname{dom}_{Y}(T)$ is order dense in $M(Y)$ corresponds to their theorem (Proposition 4.2) that $T(x, y)$ is non-singular if and only if $T(y, x)$ is non-singular. Our proof is purely measure theoretic; their proof uses the fact that if $q \in M^{+}(Y)$ is chosen such that $\varphi(y)>0$ for all y and $\int_{Y} \varphi d \nu=1$, and if

$$
\varrho_{Y}(f)=\int_{Y} \frac{|f(y)|}{1+|f(y)|} \varphi(y) d \nu(y)
$$

for $f \in M(Y)$, then $\varrho_{Y}(f-g)$ is a distance function in $M(Y)$ with respect to which $M(Y)$ is an F-space (in the terminology of S. Banach). Similarly, $M(X)$ has a metric generated by a function ϱx. Furthermore, if on $\operatorname{dom}_{Y}(T)$ we define ϱ_{T} by

$$
\varrho_{T}(f)=\varrho_{Y}(f)+\varrho_{X}(|T| \cdot|f|),
$$

then $\operatorname{dom}_{Y}(T)$ is an F-space with respect to the metric generated by ϱ_{T} (so, in particular, $\operatorname{dom}_{Y}(T)$ is a complete metric space with respect to this metric). The proof of completeness corresponds with the part in our proof (near the formulas (10) and (11)) where the functions $s(x)$ and $t(y)$ are introduced, and where it is shown that $s=|T| t$.

Since in the paper by Aronszajn and Szeptycki the Riesz space aspects are not mentioned, the paper has no proof that the operator $\sup (T,-T)$ has the kernel $|T(x, y)|$.

REFERENCES

1. Aronszajn, N. and P. Szeptyoki, On general integral transformations, Math. Annalen 163, 127-154 (1966).
2. Chacon, R. V. and U. Krengel, Linear modulus of a lincar operator, Proc. Am. Math. Soc. 15, 553-559 (1964).
3. Krasnoselskit, M. A., P. P. Zabreiko, F. T. Pustylnik and P. E. Sobolevskir, Integral Operators in Spaces of Summable Functions, Moscow (1966); Private translation into English by T. Ando, Sapporo (1967).
4. Krengel, U., Ueber den Absolutbetrag stetiger lincarer Operatoren und seine Anwendung auf ergodische Zerlegungen, Math. Scandinavica 13, 151-187 (1963).
5. Lotz, H. P., Ueber das Spektrum positiver Operatoren, Math. Zeitschr. 108, 15-32 (1968-69).
6. Luxemburg, W. A. J. and A. C. Zaanen, Notes un Banach function spaces, Proe. Acad. Sc. Amsterdam, Note VI, A66, 665-668 (1963); Note VII, A66, 669-681 (1963); Noto VIII, A67, 104-119 (1964); Note IX, A67, 360-376 (1964); Note X, A67, 493-506 (1964); Note XI, A67, 507-518 (1964); Note XII, A67, 519-529 (1964); Note XIII, A67, 530-543 (1964).
7. Titohmarsh, E. C., Reciprocal formulae involving series and integrals, Math. Zeitschr. 25, 32I-341 (1926).
8. Yosida, K., On vector lattice with a unit, Proc. Imp. Acad. Tokyo 17, 121-124 (1940-41).
9. Zaanen, A. C., Integration, Amsterdam (1967).
