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Suppose the stationary r-dimensional multivariate time series {y,} is generated 
by an infinite autoregression. For lead times h > 1, the linear prediction of y,+,, 
based on y,, y,- , ,... ‘is considered using an autoregressive model of finite order k lit- 
ted to a realization of length T. Assuming that k + cc (at some rate) as T-P co, the 
consistency and asymptotic normality of the estimated autoregressive coefficients 
are derived, and an asymptotic approximation to the mean square prediction error 
based on this autoregressive model fitting approach is obtained. The asymptotic 
effect of estimating autoregressive parameters is found to inflate the minimum mean 
square prediction error by a factor of (1 + kr/T). 0 198s Academic PE.SS, IIIC. 

1. INTRODUCTION 

A problem of considerable interest in multivariate time series analysis is 
the prediction of future values of a stationary multivariate time series 
{y,, t = 0, + 1, k2 ,... }, based on a realization y,, y, ,..., y, from the 
process. When the process {yt} is generated by a model with a known 
parametric structure, such as a finite parameter autoregressive moving 
average model, estimates of the unknown parameters in the model are used 
in the prediction of future values. The asymptotic properties of prediction 
errors using such parametric models with estimated parameters have 
recently been investigated by several authors, including Akaike [2], 
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Bloomlield [8] and Yamamoto [22] in the univariate case, and Baillie 
[S], Reinsel [15] and Yamamoto [23] in the multivariate case. In the 
practical case, however, where the precise form of parametric model 
appropriate for the process {v,> is not known, several authors, such as 
Parzen [ 13,141 and Bhansali [7], have considered the “nonparametric” 
approach of predicting future values by autoregressive models fitted to the 
series of T observations, based only on the very mild assumption of an 
infinite order autoregressive model for the process {yt>. This 
“autoregressive model fitting” approach has also been applied by Akaike 
[l] and Parzen [14] to the problem of spectral density estimation, with 
considerable success. In the univariate case, Berk [6] derived the 
asymptotic distribution of spectral density estimators obtained from fitting 
autoregressive models of order k to a series of T observations, under the 
assumption that k increases (at some rate) simultaneously with the 
realization length T. Bhansali [7] has adopted Berk’s [6] approach and 
applied results of Berk to the problem of prediction of future values in the 
univariate case. 

In this paper we shall develop multivariate generalizations of some of the 
univariate results of Berk, and apply these to the problem of multivariate 
prediction. We first derive the asymptotic distribution of estimated 
autoregressive coefficients, obtained from fitting an autoregressive model of 
order k to a series of T observations from an infinite order autoregressive 
process, as k and T+ co. The asymptotic distribution of corresponding 
h > 1 step ahead prediction errors based on the fitted autoregressive model 
of order k is then determined, under the simplifying assumption that the 
series used for estimation of parameters and the series used for prediction 
are generated from two independent processes which have the same 
stochastic structure. Based on this result, an approximation to the h step 
ahead prediction mean square error matrix is proposed, and a sampling 
experiment is considered to investigate the accuracy of this approximation 
in finite samples. 

2. THE MODEL AND PARAMETER ESTIMATION 

Let (vt, t = 0, + 1, +2,...} be a vector-valued linear process, 

y<=s,+ f B. I&t-j’ (2.1) 
j=l 

where y, = (yll, y, ,,..., yll)’ and E, = (E,,, sZr ,..., E,~)’ are (r x 1) random vec- 
tors, and (aI, t,= 0, + 1, + 2,...} is a sequence of independent identically dis- 
tributed random vectors with mean 0 and positive definite covariance 
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matrix EC. Defining \lBjl\ 2 = tr(BjBj) and B(z) = CT=0 Bjzj, where B,, = I,, 
the (r x r) identity matrix, we assume throughout this paper that 
Cy=, llBjjll < cc and det{B(z)} #O for 1.~1 < 1. Under these assumptions we 
can also express (2.1) as an infinite autoregression, 

.Y,- 5 Aj.V-j=Et, (2.2) 
i=l 

where X7= 1 I(Ajll < 00 and A(z) = I, - CJ’?! I Ajzi= B(z)-’ satisfies 
det{A(z)} #O for Iz( < 1. We note here that the class of stationary inver- 
tible ARMA (p,q) models, yt-xy=r @jyr-j=El-Cy=I @j&t-j, is 
included in the class of models described above. 

Denote the autocovariances of the process {y,} by f(j) = E( y, Y;+~), 
j=o, +1, f2 ).... Then Z( -j) = Z(j)’ and we can also express Z(j) as 

wheref(i) = (27~)’ A-‘(e”) CA’-‘(e-“) = (2x)-’ B(e’“) CB’(e-‘“), --r< 
1~ 71, is the spectral density matrix of the process {y,}. 

The minimum mean square error linear predictor of y,, 1 based on 
Y,, Y,- l,...r yrdkcl is given by 

~~k(l)=A1k~t+A2k~r-1+ ... +Akk~t-k+l, (2.3) 

where the A,, j = l,..., k, satisfy the “Yule-Walker” equations 

(A,,, A2k,..., A,,) = &cr,-1, 

where r;,k = (ZJ l)‘, Z(2)‘,..., f(k)‘), and Z, is a kr x kr matrix whose 
(m, n)th (r x r) block of elements is ZJm - n), m, n = l,..., k. We let C, = 
EC(Yt+, - Y:kk(l))(Yt+ 1 - ylfk(l))‘] denote the mean square error of the 
predictor y;Tk( 1). 

Based on a realization y, , y, ,..., y, of length T, the A,, j = l,..., k, are 
estimated by 

a(k) = (Alk, A2,‘ ,..., &J = f’l,kfil, (2.4) 

where f,,k=(T-k)-‘CT:i Y,,y;+,, ?k=(T-k)-lCT:i Yt,kY;,k, and 
Y&k = (Y:, Yi- l?‘..Y Yi--k+, )‘. We also estimate Ck by 

T-1 

&=(T-W’ c (Y,+,-pr,k(l))(~t+l-Pl,k(l))‘, 
t=k 
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where 

Pt,k(l)= i AjkYr-j+l (2.5) 
j=l 

is an estimate of y:J 1). 
We are interested in the asymptotic behavior of y,, i - P,,J 1) (as well as 

the asymptotic behavior of general h step ahead prediction errors) as 
T+ co. However, since {y,} is expressible as the infinite autoregression 
(2.2), to obtain predictors which are asymptotically equivalent to the 
optimal predictor we shall let k + cc (at some rate) as T + co. In order to 
determine the asymptotic behavior of y,, i - Pl,J 1) as k and T + co we 
will first establish the asymptotic properties of A(k) - .4(k) as k and 
T+ 00, where A(k) = (A,, A, ,..., AJ. 

For later convenience we now introduce the vet operator. That is, for 
any (m x n) matrix C define vet(C) to be the (mn x 1) column vector for- 
med by stacking the columns of C below one another. A useful property of 
the vet operator is that vec(ABC) = (C’ @ A) vet(B), where A, B and C are 
conformable, and @ denotes the Kronecker product. We also introduce the 
matrix norm 11 Cl1 : = sup,, O l’C’Ci/l’l, the largest eigenvalue of CC. (If C is 
symmetric, then (1 CJI : is the square of the largest, in absolute value, eigen- 
value of C.) A useful inequality relating /)*(I* and /[*II: is [21, p. 961 

IWII * G IP II f IIBII *, as well as ljAB()*< llAll* ~~B~~~. (2.6) 

We are now ready to present our main results concerning the asymptotic 
behavior of a(k) - A(k). First note, however, that 

T-l 

Al(k)-A(k)=~~;,~,-‘-Abet,-‘= (T-k)-’ 1 &,+l,kY:,k fF1, 
f -= k 

(2.7) 

where &,,k = y, -C:= 1 Ajy,-j. In Theorem 1 we establish the “consistency” 
of A(k), while in Theorems 2, 3 and 4 we derive the asymptotic normality 
of d(k) - a(k) = vec{A(k) - A(k)}. 

THEOREM 1. Let (y,} satisfy (2.1), and assume that 

(i) E (Eir&j,EkrE,,( < J’4 < 00, 1 <L j, k I< r; 

(ii) k is chosen as a function of T such that k*/T --) 0 as k, T + ox; 

(iii) k is chosen as a function of T such that k”* Cj”=,+ 1 llAjll -+ 0 as 
k, T-, 03. 

Then 

II&k) - 4k)ll -G 0 as T-+c.cI. 
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Proof From (2.7) and using (2.6), we have 

II&v-A(k)lI G llPII1 IIUlTIl + II~,?ll1 II ~2Tll7 (2.8) 

where 

U,,= (T-k 
T-l T-l 

)-’ 1 (~,+l,k-~,+l) Y:,kr U,,=V-W-’ c ~,+lY:,k. 

r=k r=k 

Also, jlp;’ 1) 
C6, p. 491 I, 

~dll~~llll+ll~~l-~~llll where, as in the univariate case 
I/r,- ’ (1, is uniformly bounded above by a positive constant F 

for all k, and we now indicate that /[f,- ’ - I-,-I 11 I -+P 0 as T-+ 00 under 
assumption (ii). First, from Hannan [ll, Chap. 41 we can establish 
that IIPk-~rklll-+PO since E(IIPk-rkll:)~E()1~k:,-fk(12)6constant’ 
(kr)‘/(T-k)-+O as T -+ cc by assumption (ii), Then from 

II~~1-~~‘II1=(I~~i(~k--k)~~‘//1~F(ll~~1-~~1I/1+F)(i~k--kI/1, 

Fathy OaZ,,,=[l~,-‘-~,-‘I[,/~((j~,-‘-~,-’lj,+F)~l~~~-~~ll~, SO 

k,T-+pO as T+ 00. Hence it follows [ 121 that \lf;r’ - r;l I( 1 = 
F2Z,,/( 1 - FZk,=) also converges in probability to zero as T + 00. Now we 
also have 

r=k 

< {k tr(f(O))}l’* (=F+, jsT+l Ilr(i-All llAill llAjll~*/’ 

,< constant. klf2 j=$+ 1 IIAill~ (2.9) 

noting that the Ilr(i - j)ll are uniformly bounded since 
zyz --m j]f(j)l) < CO, which follows from the condition I?=, IjBjjl < CD. 
Thus by assumption (iii), II Ulrll +p 0, and it follows that the first term on 
the right side of (2.8) converges to zero in probability. Finally, since E,+, 
and Y,, are independent, 

T-l 

~tIh-l12)=t~-k)-2 c Et&;+lE,+l)EtY:,kYr,k) 
r=k 

= k( T- k)-’ tr(Z) tr(r(O)} -+ 0 as T-t 00 (2.10) 
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by assumption (ii). Therefore )( U2JJ + p 0 as T + co and it follows that the 
second term on the right side of (2.8) also converges to zero in probability. 

In the next theorem we show that E,, I,k and p; l in expression (2.7) for 
A(k) - A(k) may be replaced by E,+ 1 and r,-’ when obtaining the 
asymptotic distribution of di(k) - a(k) = vec{A(k) -A(k)}. In Theorem 3 
the asymptotic distribution of the asymptotically equivalent expression for 
61(k) -a(k) is then derived. 

THEOREM 2. Let {yt} satisfy (2.1), and assume that 

(i) E (EirEjtEkrEltl < y4 < CO, 1 Gi, j, k, I< r; 

(ii) k is chosen as a function of T such that k3/T-, 0 as k, T + co; 

(iii) k is chosen as a function of T such that 

T112 -f IIA~II +O us k, T+ 00; 
j=k+l 

(iv) {I(k)) is a sequence of (kr2 x 1) vectors such that 

0 < Ml < III(k))/ 2 = I(k)’ f(k) d M2 < cc for k = 1, 2,... 

Then 

(T- k)1’2 I(k)‘(d(k) - a(k)) 

T-l 

-(T-k)‘/2Z(k)‘vec (T-k)-’ 1 &,+lr,k r;’ 
r=k I 1 

converges in probability to zero as T -+ co. 

Prooj From (2.7) we have that 

(T- k)“2 I(k)‘(&(k) - cr(k)) 

[-I 

T-l 

-(T-k)li21(k)‘vec (T-k)-’ c &,+lK,k r,-’ 
t=k i 1 

=l(k)‘(((~;‘-I’;1)OZ,)vec[(T-k)1’2 UIT] 

+((P,-1-Z-‘,-1)@Z,)vec[(T-k)1’2 u2T] 

+ (TF’@Z~) vec[(T-k)“’ UlT]} 

= wlT+ w2T+ w3T~ 

where UIT and U2T are as defined in the proof of Theorem 1, and wlT, w2r 
and w3T are defined in an obvious manner. Using (2.6) we have 

IwlTI < IIl(k)ll F2 113~‘-~,-111, Ilk~“2(T-k)1’2 U,~ll, 
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where (1 l(k) 11 < IV:/‘, and, similar to the argument following (2.8), it can be 
shown that k1j2 \If, I - r,- l )I 1 +p 0 under assumption (ii). Also, by (2.9), 

E(Ilkp1’2(T-k)“2 U,.I()<constant.(T-k)1’2 f I(Ajl( +O as T+oo 
j=k+l 

by assumption (iii), and thus wlT + p 0 as T + co. Similarly, 

1~24 < IIWNI C2 IIf,-‘-~,-‘ll1 llk-1’2(T-k)1’2 U27-II, 

where Ilk-1’2(T- k)‘12 U24 is bounded in probability, by (2.10). Thus wZT 
also converges to zero in probability as T--t co. Finally, 

T-l 

I”‘3~1 = (T-W1’2 1 ~(k)‘(~~lYr,k~z~)(&,+l.k-&r+l 
t=k )I 

II 

T-l 

< (T-k)-1’2 r1’2 

Zk ( 
E,+l,k-Et+I ) l(k)% ’ yt,, @ 1,) 

II 
9 

so that similar to the result in (2.9), defining r:,k = Z(k)‘(T,-’ Y,,k@ZIr), we 
have 

E IwJT( <constant* {E(Ilu,,kI12)}1’2(T- k)1’2 f l[Ajll +O as T+oo 
j=k+l 

by assumption (iii), since E( II u,,kll 2, = l(k)‘(TL ’ @I I,) I(k) < Ilr,-’ II 1 M2 is 
uniformly bounded under assumption (iv). Therefore w3T + p 0 as T + 00. 

THEOREM 3. Let {y,} satisfy (2.1), and assume that conditions (i)-(ii) 
and (iv) of Theorem 2 hold. Also let 

T-l 

sT = (T-k)“’ Z(k)’ vet (T-k)-’ c h+lY:,k 
t=k 

with 

Then 

I$= var(sT) = Z(k)‘(&’ @ 2) l(k). 

ST/u+-+ N(“, l) as T+CXI. 

Proof First let y,(m) = CyzO BjEt-j, and 

T-l 

S Tm = (T- k)‘j2 l(k)’ vet (T-k)-’ c &+l yi,ktm) r;l ) 
t=k I I 

m = 1, 2,..., 
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where Y,,,(m)= (v;(m), JJ- ,(m),..., JJ-~+ i(m))‘. Then set 

sT/vT=sTm/vTm+ (ST/VT-STm/VTm)=STm/VTm+ZT~r 

where 

v& = Var(s,) = Z(k)‘(f,- ‘Z,(m) Z,- l OX) Z(k), 

and 

T&J = E( Yt,kb) Ykdm)). 

By Anderson [4, Corollary 7.7.11, sT/vT converges in distribution to 
N(0, 1) as T + co since we can establish that 

(a) E(z2,) < M,,, < cc for all T 2 1, where lim, _ o. A4,,, = 0, and 

(b) sT,,JvT~ +dN(O, 1) as T+ GO, for each ma 1. 

To verify that condition (a) holds, we set zrm =zlrm +z,,, where 
iTm= (s~,&,)(u~~/v~- 1) and zZT,,,= (sT-sTm)/vT. Now we have 

ZE(Z!T~I=(~T~/VT- 1Y9 and v$. m/v’,= 1 - [Z’((Z’, - f,(m)) SC) l/l'l]/ 
[Z’(Z, @ C) Z/r’l], where I = (Z’,- l @I,) Z(k), and Z’(Z’, 0 C) Z/Z’/ is uniformly 
bounded below by a positive constant [6, p. 4911. That condition (a) is 
satisfied for z, Tm then follows from the fact that I/f(L) -f,(n)112 converges 
to zero uniformly in 1 as m -+ co, where f,(L)= (27~)-~(Clm,~ Bj@) 
C(Cy??, B!e-“j) is the spectral density matrix of {y,(m)). Thus, defining 
h = (e’“, e$..., eik’)‘, it follows that 

Ir’((r,-r,(m))O~)1//111 <in II’(h~~((f(~)-f,(1))8C)II dWl+O 
--71 

(2.11) 

uniformly in k as m + cc, and hence lim, _ ocI v&,,/u~ = 1 uniformly in T and 
condition (a) holds for z,~,,,. In a similar way condition (a) can be 
established for zaT, = (sT-sTm)/uT based on the fact that the spectral den- 
sity matrix of the process { yr - y,(m)} also converges to zero uniformly in 
lasm--+cc. 

To verify condition (b), for each m = 1, 2,..., we can write ST,,,/VT,,, = 

CT= 1 Jf,(T), where 

X,(T)=(T-k)-1’2 f(k)'(T,-'Y,-,,,(m)Ol,)&,/vT~, for k+l<t<T, 

and X,(T) = 0 for 1 d t d k. We note that X,(T) and X,(T) are uncorrelated 
for s#t, with E(X,(T))=O and Var(X,(T))=(T-k))’ for k+l<t<T. 
By Theorem 9.1.5 of Chung [9], (SJ T) = C;= 1 X,(T), 0 6 n 6 T), where 
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S,(T) = 0 a.e. is a martingale sequence for each T > 1. Then since we can 
establish the following conditions, 

(cl SU~~~~~(T)--+~O as T+ co, and 

Cd) C:“;’ xf( T) --) pz, O-czd 1, as T-, 00, 

where nr(r)=max,G.{n:E[(C;=,XI(T))2]<~}=[z(T-k)+k], and 
[x] denotes the greatest integer <x, it follows that sT,,,/vrm +d N(0, 1) as 
T+ co by Theorem 2 of Scott [17]. Condition (c) holds since for any 
6 > 0, using (2.6) and the independence of E, and Y, _ ,,Jm), we have 

P(supe(T)a&< 2 P(~(T)>@66-*(T-k)E(Xf(T)) 
f<T t=k+l 

<6-*(T-k)-‘v ?,it lll(k)l14 lir,-‘\l: E(llE,114) E(Ii Y,-l,k(m)l\4) 

<constant. (T-k)-’ k*E[(y;(m) y,(m))‘] 

< constant. k*/( T - k) + 0 (2.12) 

as T-, CO by assumption (ii). For condition (d), we have 

and 

=([z(T-k)+k]-k)/(T-k)+z as T-03, 

Var(T1’x(T))<constant-k’/(T-k)-+O as T+co 

by assumption (ii), since x(T) and e(T) are independent for 1s - tl > 
k + m, and from (2.12), Var(z( T)) < E(Xf( T)) < constant. k2/( T- k)*. We 
thus have that condition (d) holds, and the theorem is established. 

The following is an immediate consequence of Theorems 2 and 3. 

THEOREM 4. Let {y,} satisfy (2.1), and ussume that conditions (ik(iv) 
of Theorem 2 hold. Then 

(T-k)“* l(k)‘(d(k)-cl(k))/+& N(0, 1) as T-co, 

where ug= Z(k)‘(T;‘@C) f(k). 

In particular, let us define the infinite-dimensional matrix rrn = 
{r(m-n)}, m,n= 1,2 ,..., and let Pm” denote the (m, n)th (r x r) block 
element of r;’ which can be shown to be given by 

m-1 n-1 

Pm*= 1 A;Cp’Ajfn_,,,= 1 A;+,-,C-‘A,, m, n = 1, 2 ,..., 
j=O j=O 
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where we define Ai = 0 for j < 0, and A0 = -I,. Then for any fixed integer 
I&,, we have that the asymptotic distribution of (T- k)1’2 vec[(Alk, A12k,..., 
&,A - (A,, A2,..., A&] is multivariate normal with mean vector 0 and 
covariance matrix V@z, where V= { Vmn} = (Pm”}, m, n = l,..., kO, is the 
upper left (k0r2 x k,r2) corner of ZQ l. This result follows directly from 
Theorem 4 based on the fact that the (m, n)th (r x r) block element of Z,-* 
is given by 

m-l 
C”‘= 1 A;j+k--mC,~l~-rnAj+.-,,j+k--m, m, n = l,..., k, 

j=O 

where, under the conditions of the theorem, the A, converge to Aj and 
,?C; l converges to F’, pointwise, as k + 00, and hence T converges to 
Pm” as T+ co, for m, n = l,..., ko. 

3. ASYMPTOTIC PROPERTIES OF PREDICTORS BASED ON 
AUTOREGRE~WE MODEL FITTING 

Let {yt} be a stochastic process generated by (2.1), and let (x,} be a 
process which is independent of {r,}, but has the same stochastic structure. 
We want to study the asymptotic properties of one-step ahead predictors of 
the form (2.5), as well as related multistep predictors. We assume the 
estimates J(k) = (AIlk,..., Jkk) have been obtained as in (2.4), but, as is 
commonly assumed in studies of this type (see, for example, [22, 7]), using 
a realization x1, x2,..., xT from the independent process {x~). This problem 
has previously been considered by Bhansali [7] for the univariate case. 

We define the (kr x kr) matrix A(,, and the infinite-dimensional matrix 
A,,, by 

We also define the (kr x r) matrix Ek= (I,, O,..., 0)‘, the matrix E, = 
(I,, 0, O,...)’ and the infinite-dimensional vector Y,,, = (y:, JJ- 1 ,...)‘. Then 
similar to the development in the finite order multivariate autoregressive 
case (see [ 15, p. 329]), it follows that an explicit expression for the 
minimum mean square error predictor of the future value y, + h based on y,, 
Yr-1Y is given by 

Y:(W=E~,A:,,Y~,,, (3.1) 
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with prediction error equal to y,+h-y:(h)=CG:i BjE,+h-j and 
associated mean square prediction error matrix 

h-l 

C(h)=EC(y,+h-y:(h))(y,+h-y:(h))‘l= C BjCBj’. 
j=O 

As mentioned in Section 2, an estimate of the minimum mean square 
error linear predictor of yt+l given y,, Y,-~,..., yr--k+l is j&l)= 
CT=, Aj,cYt-j+l =GJck, Y,,Q where Al(k) is a matrix of the same form as 
A (kj, but with the estimates Aik in place of the A,., j = l,..., k. Generalizing 
this to h step ahead prediction yields the predictor 

-h 
Pt./c(h) = E;A,,, Yt,,o h = 1, 2,... . 

We note here that if ( yt} were a kth order autoregressive process, then 
y,,,(h) = &A:,, Y,,, would be the minimum mean square error predictor of 
Y,+h given y,, yr-l,... . Thus $Jh) is the “natural” predictor of yt+h based 
on fitting an autoregressive model of order k. We are interested in deter- 
mining an asymptotic approximation, as k and T -+ co, to the mean square 
error matrix of the predictor jl,Jh), 

To obtain an approximation to C,(h), we first note that 

h-l 

Yt+h-Pt,k(h)= C Bj&t+h-j-(3,,,(h)-Y:(h)), 
j=O 

where the two terms on the right side are independent since the s,+hej, 
0 < j < h - 1, are independent of Y,,, and A(k). Thus 

C,(h) =-w) + EC(P*,!Ah) - YXh))(.P,.k(h) - Y?v))‘l. (3.2) 

For the second term on the right side of (3.2) we have 

Pt,/@) - Y:(h) = (Pt,dh) - Y*,,(h)) - (Y:(h) -Y,,,(h)) 

= E6(d&, - A&J Yt,,- Em&,, Y,,, -E;&, Y,,,). (3.3) 

Now, assuming that k is chosen as a function of T such that T”* CJY,+ 1 
)I Aill + 0 as k, T + co, it follows that 

W)“*Wm&, Y,, - E;A:,, Yt,,) +O in mean square as k, T + co. 

(3.4) 

6X3,16/3-9 



404 LEWIS AND REINSEL 

For example, considering the case h = 1, from the derivation in (2.9) we 
have 

as k,T+a. 

Also, for the first term on the right side of (3.3) we have the following 
asymptotic result. 

THEOREM 5. Let {yt} satisfy (2.1), and assume that conditions (ik(iii) 
of Theorem 2 are satisfied. Also let {xt} be a stochastic process which is 
independent of {y,}, but has the same stochastic structure. Then 

(T/k)1’2 J%(J:~,- Atk,) Y,,k 4 NO, r.W)) as T-co, 

where the estimates A(k) = (Al,,..., A,,) have been obtained as in (2.4), but 
using a realization xl ,..., xr from the process {xt}. 

Proof Noting that AikJ - Atk, = c;Zi A&,(A(k, - A,,,) Apkjj- ’ [ 161 
and that ACk, - A(,, = E,(A(k) - A(k)), we have 

WW1’2 Ei($k, - A:kj) yt,k 
h-l 

= ( T/k)1’2 c (Y&A&- ’ 0 Bj)(a(k) - a(k)) 
j=O 

h-l 

+ (T/k)1’2 c ( Y;.kA$;‘- ’ @ (Bjk - Bj))(a(k) - a(k)), (3.5) 
j=O 

Now let I= (Zr ,..., r,)’ be an arbitrary (r x 1) vector and define 

h-1 h-l 

Z(k)’ = l’k - 1’2 1 ( Y;,, A;hk)j- 1 @ Bj) = 1 (k - 1’2 r:,, A;hkrj- ’ 0 I’D,). 
j=O j=O 

Then an arbitrary linear combination of the first term on the right side of 
(3.5) can be expressed as T”‘Z(k)‘(&(k) -a(k)), which is in a form to which 
Theorem 4 may be applied, conditional on the values Y,,, = (y:, y:- 1 ,...)‘. 
To verify that condition (iv) of Theorem 4 is satisfied for the above random 
sequence I(k), we note that 
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h-l h-l 

IIl(k)l c 1 (k-‘Y:,kA;hkri-‘A:kSi-lY~,k)(llBiBIz) 

i=O j=O 

h-l h-l 

a.% p c c tr(z-(i-j)) I’B,B,Z 

i=O j-0 

h - I 
=E as k-+az, 

j=O 

since k-‘Y:,, -,-,. kY,+,,~i-I,k~a.s.tr{T(i--)} as k-+cc [ll, p.2101, 
and 

,(-~~tkA;~;i-lAh-j-l 
Ck) K.~-k-lK+,r-i-~.~Yt+h-,-~.~ =‘+ 0 

as k-co, 

where we note that, with m = h - j- 1, A;nk) Yt,k = (y;,Jm) ,..., &(l), y; ,..., 
Y-~+~+~)‘, so that A$,YG- Yt+m,k=(~;,k(m)-~:+m,..., Y:,~(~)-Y;+~, 
O’,..., 0’)’ consists of only m ,< k - 1 nonzero terms. Thus, since ]jl(k)ll’ con- 
verges almost surely to a positive constant as k -+ co, conditional on 
Y,,, = (.P:, v:P I ,... )‘, we have by Theorem 4 that 

T”*W’W) - 4k)) A N(o 1) 

I(k)‘(f,-’ 0 C) l(k) ’ 
as T-+co (3.6) 

for almost all realizations of the process { JJ,~. Since the above limiting dis- 
tribution does not depend on Y,., it follows that (3.6) also holds uncon- 
ditionally, because, Jetting ZT denote the quantity on the left side of (3.6), 
by the Dominated Convergence Theorem and the almost sure convergence 
of the conditional distributions, we have 

Jim P(Z,<z} = !‘mrn ECP{Z,<zl Y,,,}] =E[Frnm P{Z,GZI Y,,,}], T-m 

where the last term above equals the standard normal distribution function 
by (3.6). 

We now consider the probability limit of the term I(k)‘(T; ’ 0 C) Z(k). 
We have 

h-l h-l 

I(k)‘(I’,-‘@X)/(k)= c 1 (k-lY:+h-~r~,k~~‘Y~+h--j~,,k)(~BrCB;z) 

h-l h-l 

+ 1 1 (k-‘Y;,A$yi- IL’,- ‘A;$ ’ Y,,, 
(~0 j-0 

-k-‘Y:+h-i--,kr~‘Y,+h-j-l,k)(l’Bi~B~Z). (3.7) 
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For the first term on the right side of (3.7) we have 

k-'Y' r+h-i-I,kr~1YI+h-j-,,k41r, i=j 
as k-co, 

--% 0, i#j 

since, for 0 < i < j < h - 1, letting T,(n) = E( Y,,k Y; + n,k ), 

E(k-lY:+h-i-l,kT~lYI+h-j-l,k)=k-l tr{E(T,-‘Yl,kY:+j-i,k)) 

= k-l tr{T;‘T,(j- i)}, 

which equals k-’ tr(T,-‘r,) = r when i = j, and which converges to zero as 
k + co when i < j, noting that the last r(k - n) columns of r; ‘TJn) equal 
the first r(k - n) columns of Z,,. Furthermore, for 0 < i < j < h - 1, 

Var(k-‘Y~+h-~-,,,~~‘Y,+h-j-,,,) 

=k-2[tr(T~i~,~~‘T,)+tr(T~1T,(j-i)T~’T,(j-i))+C,(j-i)] 

=k-2[kr+tr((I’~‘T,(j-i))2)+C,(j-i)]-,0 as k-tea, 

where C,( j - i), which is of order k [l 1, p. 2111, is a term containing 
fourth cumulants of the process {yt}. Hence the first term on the right side 
of (3.7) converges in probability to 

h-l 

1 r(l’BjCBj’I) = I’(r,Z(h)) I as k + co. 
j=O 

Furthermore, it is not difficult to show that the second term on the right 
side of (3.7) converges to zero in absolute mean (and hence in probability) 
as k + co, noting the comment which precedes (3.6). Thus the denominator 
in (3.6), I(k)‘(T;’ OL’) I(k), converges in probability to I’(rL’(h)) I as 
k + co, and it follows that the first term on the right side of (3.5) converges 
in distribution to N(0, rL’(h)),as T+ co. 

Finally, we show that the second term on the right side of (3.5) con- 
verges to zero in probability. We have 

h-l 

(T/k)“’ 1 ( Y;,kA;h,;i- l Q (fijk - B,))@(k) - a(k)) 
j=O 

h-l 

zjgo (Bj~-Bj)(T/k)1’2(Y:,kA;(lk;i~1Qz,)(di(k)--Cl(k)), 

where B,=EkA-I’,,E,forjdh-l<k. Now, forO<j<h-1, Bik-Bj-tpO 
as T + 00 by Theorem 4 and Serfling’s [ 18, p. 1221 Theorem A concerning 
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the asymptotic distribution of a function of an asymptotically normal ran- 
dom vector. Also, using an argument similar to that which established the 
asymptotic normality of the first term on the right side of (3.5) we can 
show that, for O<j<h- 1, 

(T/k)“‘( Y&A;h&- ’ @1,)(&(k) - cc(k)) -L N(0, rC) as T-co. 

It follows that 

h-l 

(T/k)1’2 c (Y;,kA;hk~J-l@(fiik-Bj))(&(k)-cc(k))l?-,O as T-+oo, 
/=O 

and the proof of the theorem is complete. 
We now state the main result of this section, concerning the asymptotic 

distribution of the predictor jJh). 

THEOREM 6. Let { yt} satisfy (2.1), and assume that all the conditions of 
Theorem 5 are satisfied. Then 

(T/k)“*(P,dh) - y:(h)) -% NO, rC(h)) as k, T-00 forallh>l. 

Proof. Writing jJh)- y:(h) in the form (3.3), the proof follows 
immediately from result (3.4) and Theorem 5. 

4. DISCUSSION OF RESULTS 

Using the asymptotic distributional result of Theorem 6, we obtain an 
asymptotic approximation, as k, T -+ co, to the mean square error matrix 
of PJh) - YW) as 

EC(P&) - yi+V))(?,,dh) - y3h))‘l x WT) C(h), 

where C(h) is the mean square error of the “optimal” predictor y:(h). 
Using the above asymptotic approximation and (3.2), we can approximate 
the mean square error of the predictor j,,Jh) by 

C,(h)zC(h)+(kr/T)C(h)=(l +kr/T)Z(h). (4.1) 

Of course, this approximation is based on the covariance matrix of the 
limiting distribution of (T/k)1’2(j,,,(h) - y:(h)), which may not in general 
be guaranteed to equal the limit of the actual covariance matrices of this 
sequence of random vectors without additional considerations. Fuller and 
Hasza [lo] have shown that these two asymptotic approaches do in fact 
yield equivalent prediction mean square error results in the case of predic- 
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tion from a frnite order univariate Gaussian autoregressive model. Also, in 
the univariate case for one-step ahead prediction, Shibata [I91 has con- 
sidered the asymptotic behavior of the quantity (T/k)@(k) - A(k))’ 
T&(k) -A(k)), which is the mean square error of (7’/k)‘12 times the first 
term on the right side of (3.3) with h = 1 and r= I, conditional on the 
values of A(k). He has shown that this quantity converges in probability to 
rr2 as T-r cc under assumptions (ii) and (iii) of Theorem 2, and hence the 
mean square error of (T/k)“2(jck( 1) - y:(l)), conditional on the A(k), 
also converges in probability to cr2 as T-, cc. It seems likely that this 
argument can be extended to the present multivariate setting as well as to 
more than one-step ahead prediction errors. We note also that, in the case 
of one-step ahead prediction, Z,( 1) z (I+ kr/T) 2 coincides with the 
asymptotic approximation obtained by Reinsel [IS] under the 
assumptions that (yl} is a finite autoregression of known order k, and that 
k is fixed as T+ co. 

A useful feature of the approximation (4.1) is its simplicity, which allows 
(4.1) to be both easily interpreted and computed. Note that (4.1) implies 
that the approximate asymptotic effect of parameter estimation in the 
autoregressive model fitting approach is to inflate the mean square predic- 
tion error L(h) by a factor of (1 + kr/T). We also note that our results 
agree with those of Bhansali [7] in the univariate case, although for more 
than one-step ahead prediction we have extended these results by providing 
a simple, explicit expression in Theorem 6 for the covariance matrix of the 
asymptotic distribution of ( T/k)‘j2( ,Ot ,Jh) - y,?(h)) which has not been 
previously obtained explicitly in the &variate case. As noted by Bhansali 
[7], in practice one may consider using the “finite sample” approximation 
to (4.1) 

h-l 

L’(h)+ T-’ c tr{A;h~l--jr-‘A~~l~irk}(Bi~:BI), k 
j,i= 0 

(4.2) 

as derived by Reinsel [IS] for the finite order multivariate autoregressive 
case. Although (4.1) is preferable on the basis of its simplicity, further 
investigation would be needed to compare the accuracy of the 
approximations (4.1) and (4.2). Also, in practical use estimates Bjk and 2.k 
would need to be substituted in place of the Bj and Z in (4.1) and (4.2). 

Finally, we note that in practice one must choose the value of k to use 
for any given series length T. While we can provide no specific guidelines in 
this matter, the asymptotic approximation that has been obtained suggests 
that it may be reasonable to use Akaike’s [3] FPE criterion, which was 
originally suggested for selecting the order of a finite autoregressive process 
by choosing the value of k which minimizes the determinant of the 
estimated one-step ahead mean square prediction error matrix, to deter- 
mine a finite order approximation to a true infinite order autoregressive 
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process. This has previously been noted by Bhansali [7] for the univariate 
case. One might also use the alternative CAT criterion suggested by Parzen 
[ 141. The result (4.1) may also be convenient and useful when one is 
interested in choosing the “approximating” autoregressive order k which 
minimizes the mean square error of general h > 1 step ahead predictors. 

5. NUMERICAL EXAMPLE 

In this section we present the results of a sampling experiment conducted 
to investigate the finite sample properties of prediction errors based on the 
autoregressive model fitting procedure and compare their behavior with the 
theoretical asymptotic results obtained in the previous sections. We con- 
sider the bivariate ARMA (1, 1) model y, - @y,- I = E, - &- 1, with 

While this model represents an infinite order autoregressive model, we will 
consider properties of predictors obtained by fitting finite order 
autoregressive models. Note that if the order k of an “approximating” 
autoregressive model for this ARMA (1, 1) model is chosen by minimizing 
det{(l +kr/T)Z,}, a version of Akaike’s [3] FPE criterion in which the 
sample estimate of Ck is replaced by its theoretical value, we obtain k = 4 
when T= 100, with 

For T= 100, realizations of the above ARMA (1, 1) process of length 
T+ 5 were generated, with the E, normally distributed with mean zero and 
covariance matrix Z. Autoregressive models of orders k, for k = 2, 3, 4 and 
5, were lit to the first T observations of the realizations using (2.4). For 
h = 1 to 5, h step ahead predictions of the future values at times 
T+ l,..., T+ 5 were formed based on the fitted autoregressive models. 
These predictions were compared to their corresponding actual values and 
squared prediction errors were computed. The averages of these squared 
prediction errors, based on 2500 realizations, are given in Table I under the 
heading “Observed.” Also given in Table I are the diagonal elements of the 
theoretical prediction mean square error matrices based on the asymptotic 
approximation (4.1). Comparing the observed average squared prediction 
errors with the approximation (4.1), we find reasonably good agreement, 
and note that in particular the approximation (1 + kr/T) C(h) is clearly to 
be preferred over the “unadjusted’ value Z(h). 
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TABLE I 

Mean Square Errors (Diagonal Elements of Z:,(h)) of Predicting by Autoregressive Model 
Fitting for Bivariate ARMA (1, 1) Example (T= 100, 2500 Replications) 

Lead 
AR 

order Observed 
Theoretical 

(1 + 2/c/100) Z(h) 

Theoretical 
with known 
parameters 

-WI 

h=l 

h=2 

h=3 

h=4 

h=5 

k=2 
3 
4 
5 

k=2 
3 
4 
5 

k=2 
‘3 
4 
5 

k=2 
3 
4 
5 

k=2 
3 
4 
5 

1.13 1.43 1.04 1.30 1.00 1.25 
1.09 1.40 1.06 1.33 
1.11 1.39 1.08 1.35 
1.12 1.42 1.10 1.38 

3.86 1.56 3.74 1.42 3.60 1.36 
3.94 1.56 3.82 1.44 
4.01 1.55 3.89 1.47 
4.05 1.57 3.96 1.50 

7.31 2.65 7.11 2.57 6.83 2.41 
7.48 2.64 7.24 2.62 
7.53 2.72 7.38 2.67 
7.63 2.75 7.52 2.72 

10.24 4.17 9.89 4.59 9.50 4.41 
10.50 4.83 10.08 4.68 
10.49 4.81 10.27 4.76 
10.67 4.87 10.46 4.85 

11.94 6.74 11.55 6.62 11.11 6.37 
12.20 6.83 11.78 6.75 
12.20 6.82 12.00 6.88 
12.45 6.96 12.22 7.00 
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