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Abstract

We propose a method for the lattice QCD computation of nucleon–nucleon low-energy interactions. It consists in simulatin
QCD in the background of a “electromagnetic” field whose potential is non-vanishing, but whose field strength is z
tuning the background field, phase-shifts at any (but small) momenta can be determined by measuring the shift of th
state energy. Lattice sizes as small as 5 Fermi can be sufficient for the calculation of phase shifts up to momenta o
mπ/2.
 2004 Elsevier B.V. Open access under CC BY license.
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1. Introduction

One of the central goals of nuclear physics is
relate the successful phenomenological models de
oped throughout the years with the underlying fun
mental theory of the strong interactions, QCD. Effe
tive field theories are an important step in this dir
tion, but they are inherently limited by the existen
of low energy constants whose values are not de
mined by symmetries and have to be fit to experim
The need is then obvious for a fully non-perturbat
method that can determine the interaction between
cleons (or alternatively, the low energy constants o
the effective theory) directly from QCD. At presen
lattice QCD is the only such method.

E-mail address: pfbedaque@lbl.gov(P.F. Bedaque).
0370-2693  2004 Elsevier B.V.
doi:10.1016/j.physletb.2004.04.045

Open access under CC BY license.
Most phenomenological models of nuclei are ba
on non-relativistic two (and three) nucleon potentia
However, since nucleons are not infinitely heavy,
inter-nucleon potential is not a well defined quant
that can be measured on the lattice, even in pri
ple. Instead, the connection between QCD and nuc
physics should be established through observables
scattering amplitudes and phase shifts, etc. That br
out a problem: lattice calculations are done in Euc
ean space and analytic continuation of the Euclid
correlation functions at infinite volume to Minkows
space is, in practice, impossible. This observation,
malized in[1], seems to restrict lattice QCD to obser
ables like masses, decays constants and amplit
at kinematical thresholds. Phase shifts at some
cial values of the momenta can however be obtai
by measuring the shifts in the low lying two-partic
states due to the finite volume[2–4], as long as the lat
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tice sizeL is larger than the pion Compton waveleng
(up to corrections of ordere−mπL). This can be intu-
itively understood by realizing that the baryon numb
two sector of QCD at momenta smaller than the p
mass reduces to a non-relativistic quantum mech
cal system with two nucleons interacting through c
tact interactions. At momentaQ much smaller than
the ∼ 1/a, wherea is the nucleon–nucleon scatte
ing length, this contact interaction is perturbative bu
becomes strong atQ ∼ 1/a. In particular, for lattices
with sizeL much larger than the scattering lengtha

the low lying states have typical momentaQ satisfy-
ing Q � 1/a, and Luscher derived the formula rela
ing the shifts in the energy levels anda as an expan
sion in powers ofa/L. This method has been used
obtain pion–pion scattering phase shifts[5] but in the
two-nucleon sector I am aware of only one quenc
calculation performed with a large pion mass[6].

In the two-nucleon case the conditionL � a can
hardly be satisfied since the scattering lengths betw
two nucleons are large by QCD standards (5.42 fm
in the spin triplet and 23.7 fm in the spin single
channel) and numerical simulations with lattice siz
much larger than this are impractical. ForL ∼= a

the shifts in the energy levels due to the nucleo
nucleon interactions are not small but can still
reliably computed and used to obtain information
the nucleon–nucleon interactions. An analysis of t
method in the two-nucleon case was presented in[7].
There we found that, after taking into account t
strong nucleon–nucleon interactions, lattice sizesL ∼
8 fm are necessary for the ground state to have s
enough energy for the method to be valid, and e
larger sizes if the excited states are considered. F
the shift in the ground state energy the phase shif
only one kinematical point can be determined. Mo
handles on the phase shifts coming from the exc
states would require even larger lattice sizes.

This Letter proposes a method that (i) allows
smaller lattice sizes and (ii) provides informati
about the phase shifts at any momenta smaller
mπ/2. The basic idea is very simple: one just sim
lates the baryon number two sector of QCD in a fin
torus and in the background of a fictitious “magn
ic” potential with zero field strength, the kind of fie
generated by a thin solenoid going around inside
torus (seeFig. 1). Due to the Aharonov–Bohm effec
[8,9] the energy levels are changed by this poten
Fig. 1. The lattice with periodic boundary conditions (and tw
dimensions suppressed) is represented by the surface of the
torus. The fictitious solenoid (inner ring) generates a magn
vector potential�A along directionz (wrapped around the torus). Th
magnetic field is confined inside the ring and vanishes at the su
of the torus, where the lattice is.

despite the fact that the field strength vanishes ev
where on the lattice. The strength of the potential
then be adjusted in order to have the ground stat
have any energy desired. Alternatively we can desc
the method as simulating QCD with twisted bound
conditions for the quark in one chosen spatial dir
tion. The two descriptions are related by a change
variables amounting to a discontinuous gauge tra
formation.

2. QCD with the background field

We will consider QCD in the presence of aU(1)

background gauge field coupling to baryon numbe
the form

(1)�A = φ

3L
ẑ,

whereẑ is the unit vector in thez direction andφ is
real.

In the case of two degenerate flavors of Wils
fermions the quark action is

Sq = 1

2b

∑
x,µ̂

q̄x
[
(γµ − r)Ωµ(x)qx+µ̂

− (γµ + r)Ω†
µ(x − µ̂)qx−µ̂

]
(2)+ mqb + 4r

b

∑
x,µ̂

q̄xqx

(3)≡
∑
x,y

q̄xMxyqy,
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where b is the lattice spacing,i indexes the lattice
sites, µ̂ the directions of the links,r is the Wilson
term coefficient,Mij defines the quark operator an
a sum over flavors is implicit. The link operato
Ωµ(x) are a product of aSU(3) matrix Uµ(x) and a
phase determined by the background fieldΩµ(x) =
Uµ(x)eibAµ(x). Even in the presence o the backgrou
field the determinant ofM is positive. For that notice
that the matrixM satisfiesγ5M

†
xyγ5 = Myx, where

the dagger means hermitian conjugation on the s
and colors indices only. This relation implies th
det(M)∗ = det(M†) = det(γ5Mγ5) = det(M). The
quark determinant, being a product of a up qu
determinant and a down quark determinant, is t
positive even in the presence of the background fi
and standard Monte Carlo techniques are available

Instead of using the quark fields above, satisfy
periodic boundary conditions, we can use instead

(4)q̃x = ei
xzbφ
3L qx, ¯̃qx = e−i

xzbφ
3L q̄x.

The q̃, ¯̃q fields satisfy twisted boundary conditions a
z = L:

(5)q̃z=N = ei
φ
3 q̃z=0, ¯̃qz=N = e−i

φ
3 ˜̄qz=0,

whereN is the number of sites in thez direction.
We will extract the nucleon–nucleon phase sh

from the long (Euclidean) time behavior of the fin
volume correlator

C(t,p) = 〈0|T NT(p, t)PN(−p, t)

× N†(−p,0)P†N∗(p,0)|0〉

(6)

−→
t→∞ e−E0t

∣∣〈E0|N†(−p,0)P†N∗(p,0)|0〉∣∣2,
whereP is the projector on the spin triplet or spin si
glet channels,N(k, t) are operators with the quantu
numbers of nucleons with momentumk at timet and
E0 is the energy of the ground state with the quant
numbers of theN†(−p, t)P†N∗(k, t)|0〉 state.

3. The effective theory

For small momentaQ < mπ , the nucleon–nucleo
interaction can be described by an effective field t
ory containing only nucleons as explicit degrees
freedom. This effective theory has been used ex
sively in the computation of few-nucleon observab
Fig. 2. Sum of graphs determining the two-nucleon scatterin
amplitude in the effective theory. The vertices include interacti
with an arbitrary number of derivatives.

and has been reviewed in[10–12]. It contains only
contact interactions, with increasing number of de
atives, and we will denote the coefficient of terms w
2n derivatives byC2n. In the presence of the bac
ground field all derivatives in the effective lagrangi
are substituted by covariant derivatives. That is
only way that the background field can enter in the
fective theory. Terms that are gauge invariant by the
selves, for instance, anomalous magnetic terms,
ish since the magnetic field vanishes. We can perf
a similar change of variables as above and elimin
the background field by working with fields satisfyin
twisted boundary conditions

ψ(x, y,L) = eiφψ(x, y,0),

(7)ψ†(x, y,L) = e−iφψ†(x, y,0).

For momentaQ � 1/a the effective theory is
perturbative but forQ ∼ 1/a it is non-perturbative
In fact, the two-nucleon scattering amplitude is giv
by the infinite series of diagrams shown inFig. 2. Let
us first consider the case of the spin singlet chan
Using dimensional regularization the diagrams
Fig. 2 can be computed and summed. The resu
[10–12]

(8)A =
∑

n C2n(µ)k2n

1− I0
∑

n C2n(µ)k2n
= 4π

M

1

k cotδ − ik
,

where k is the center-of-mass momentum of t
colliding particles,µ is the renormalization point,δ
the phase shift at momentak and the loop sumI0 is1

I0 =
(

µ

2

)3−D ∫
dDq

(2π)D

1

E − q2

M
+ iε

(9)= −i
M

4π

√
ME,

1 Besides the minimal subtraction scheme used here, o
schemes were proposed that make the estimates ofC2n and power
counting much simpler[10,11,13].
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whereD is the number of space dimensions and
used the standard relation between the amplitude
the phase shifts in the second line ofEq. (8). We can
now go to the on-shell pointME = k2 and relate the
phase shifts to the constantsC2n

(10)k cotδ = 4π

M

1∑
n C2nk2n

.

The same combination of low energy consta
appearing above also determine the position of
energy eigenstates on a finite volume. They are g
by the poles of the finite volume, real time correla
analogue toEq. (6)

C(E,p) =
∫

dt eiEt 〈0|T NT(p, t)PN(−p, t)

× N†(−p,0)P†N∗(p,0)|0〉
∼

∑
�q

i

E − En + i0

(11)

× ∣∣〈En|N†(−p,0)P†N∗(p,0)|0〉∣∣2,
where, in the spin singlet case,PA ∼ σ2τ

2τA (theσ ’s
and τ ’s act on spin and isospin). The computati
of this correlator in the effective theory receives tw
kinds of contributions: from s-wave interactions a
from higher partial wave operators. The first kind a
the only ones that survive in the infinite volume lim
if one is careful to either usep = 0 or to average the
sink and the source inEq. (11)over all possible direc
tions ofp. In a finite volume and with the backgroun
field, p cannot be zero and cannot be averaged ove
directions so higher partial wave interactions, start
with the p-wave, contribute toEq. (11). These contri-
bution are suppressed by a factor(Q/mπ)3 compared
to the leading interactions. Furthermore, forφ = 0,π

this contributions are further suppressed. Forφ = 0
the cubic symmetry forbids the contamination fro
p-waves. Forφ = π there is an extra “parity” sym
metry along thez axis that, combined with the two
dimensional cubic group in thex–y plane also forbids
p-wave contributions. As we will see below, values
the background field aroundφ ≈ π are the most in-
teresting ones, so we will disregard the higher par
wave pieces in the following.

The correlator inEq. (11)can be computed in th
effective theory and the result is (up to corrections
Fig. 3. S
(
MEL2

4π2 ,φ
)

as a function ofME for three values of
φ = 0,π/2 andπ .

order(Q/mπ)3(φ − π)2)

(12)C(E,k) ∼ 1

1− ∑
n C2n(ME)n 1

L3

∑
q

1
E−q2/M

,

where the sum is over all the allowed momenta
the box. For the twisted boundary conditions th
allowed momenta are

(13)qx,y = 2π

L
nx,y, qz = 2π

L

(
nz + φ

2π

)
,

with nx,ny andnz integers. The poles ofEq. (12)are
then determined by

(14)kLcotδ = 1

π
S

(
k2L2

4π2
, φ

)
,

with k2 = ME and the functionS(η,φ) is defined by

(15)S(η,φ) ≡ lim
N→∞

∑
|�n|<N

1

n2 − η
− 4πN,

and n ≡ (nx, ny, nz + φ/2π). Notice thatS(η,π +
φ) = S(η,π − φ). In Fig. 3 we showS(η,φ) as a
function ofη for a few values ofφ.2

For large values ofL, kLcotδ is also large and
Eq. (10)will be satisfied for values ofk whereS is
close to one of its poles. These poles are located a

k2 = 4π2(n2
x + n2

y + (nz + φ/2π)2)/L2

= φ2/L2, (4π2 + φ2)/L2, . . . ,

2 A C code computingS(η,φ) in an efficient way can be down
loaded fromhttp://www-nsdth.lbl.gov/~bedaque/.

http://www-nsdth.lbl.gov/~bedaque/
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(a) (b)

Fig. 4. Ground state energy (in MeV) of two nucleons in the spin singlet (left) and triplet (right) channel as a function of the background fie
The three curves correspond, from bottom to top,L = 5,7 and 10 fm.
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corresponding to the eigenstates of free particle
the presence of the background field. Close to the
pole, for instance, the functionS is dominated by the
�n = 0 term and we have

kLcotδ = 1

π

4π2

φ2 − k2L2

(16)+ c0(φ) + O

((
φ2 − k2L2

4π2

)2
)

,

wherec0(φ) is

(17)c0(φ) = lim
N→∞

∑
|�n|<N
�n =0

1

�n2 + 2nzφ
− 4πN.

The equation above can be solved iteratively de
mining the energy level:

(18)

E = φ2

ML2
− 4π

kML3
tanδ

[
1+ c0(φ)

kL
tanδ + · · ·

]
.

For k � mπ , k cotδ is well approximated by
k cotδ ∼= −1/a + r0k

2/2+ · · · (effective range expan
sion), wherea is the scattering length andr0 the ef-
fective range. ForL � √

ar0, k cotδ ∼= −1/a and the
formula above reduces to

(19)E = φ2

ML2 + 4πa

ML3

[
1− c0(φ)a

L
+ · · ·

]
,

which is the analogue of the “Luscher’s formul
[2–4].
For smaller values ofL simple expansions a
Eq. (19)are not available. Still, we can numerica
compute the functionS(η,φ) and related energ
level in the box with the values of phase shifts.
Fig. 4(a) we show the estimate of the ground st
energy for boxes of different sizes and for differe
values of the background field. For these estima
we took the values of the phase shifts as given
th effective range formula with parametersas = 23.7,
r0s = 2.73 for the singlet. The validity of our approac
is limited to momenta smaller than about half t
pion mass, corresponding to an energy scale of a
6 MeV. Energy states with (the absolute value
the) energy larger than this are an artifact of the
effective theory and will not exist in a lattice QC
simulation.

Things are a little more complex in the tripl
s-wave channel (3S1) due to the mixing with the
triplet d-wave channel (3D1). In the infinite volume
limit this mixing is generated by the tensor for
and is suppressed at low energies by a factor
(Q/mπ)4 [15]. Two insertions of the tensor force a
necessary: one leading from the s-wave to the d-w
and another back to the s-wave. Each one of th
transitions is of order(Q/mπ)2 and the total effect is
∼ (Q/mπ)4. In a finite volume, due to the breakin
of rotational symmetry by the shape of the tor
and the background field, tensor forces can contrib
already at leading order. However, it is easy to
by an explicit calculation that the contribution line
in the tensor force is proportional toqiqj − q2δij /3,
where �q is either an internal or external momentu
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24
�q = �p. This contribution vanishes after averaging o
spin polarizations. In other words, the spin-avera
correlator

C(t,p) = 1

3

∑
i=1,2,3

〈0|T NT(p, t)P iN(−p, t)

(20)

× N†(−p,0)P i†N∗(p,0)|0〉,

(P i ∼ σ 2σ iτ2 is the spin triplet projector) will receiv
contributions to the tensor force only at second or
or higher. Since the contributions of the tensor fo
at finite or infinite volume are small (∼ (Q/mπ)4) we
will disregard them here.

In Fig. 4(b) we show the estimate of the tripl
ground state energy for boxes of different sizes and
different values of the background field. We use
valuesat = 5.425 andr0t = 1.75. Again we see tha
even boxes as small asL = 5 fm can support a stat
with energy small enough to be useful in the extract
of phase shifts, ifφ is adjusted to be aroundφ ≈ π .
In the absence of the background field box sizes o
leastL ≈ 8–10 fm would be required.

In both the spin singlet and triplet cases the low
bound onL saturates the minimum value set by fin
pion mass effects. These effects are suppressed b
factore−mπL which forL = 5 fm givese−mπL ≈ 0.03.
To use still smaller boxes a similar calculation to t
one presented here must be done using an effe
theory which includes pions explicitly and valid fo
Q ∼ mπ � mρ . One inconvenient is that calculation
in this effective theory will be neccesarily truncate
to a certain order in the low energy expansion, un
here where an all orders computation was possi
That means that the matching with the lattice res
will be more properly described as a computation
the effective theory low energy constants than a
determination of the phase shifts. By the other ha
this calculation can be used to extrapolate to reali
values of the quark mass[16–18].

Besides the possibility of using smaller latti
sizes, another advantage of the background field
thod described here is that the phase shifts at arbit
kinematical points are probed (as long as they ar
the regimek < mπ/2).

The method described here may also be applie
other hadronic interactions. For instance, pion–p
phase shifts can be calculated at arbitrary kinematica
e

points by adding a background field coupling to so
flavor charge, for instance, electric charge. This sp
the positivity of the determinant so seems to
feasible only in quenched calculations. Similarly,
might be of use in ameliorating some of the issu
involved in thek → ππ lattice extraction.
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