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Abstract

Given two polynomials f (x) and g(x), we extend the formula expressing the remainder in
terms of the roots of these two polynomials to the case where f (x) is a Laurent polynomial.
This allows us to give new expressions of a Schur function, which generalize the Giambelli
identity.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The Euclidean algorithm is an algorithm to determine the greatest common divi-
sor of two integers, which appeared in Euclid’s Elements around 300 BC. However it
is easily generalized to polynomials in one variable x over the field of real numbers.
It turns out that this process generates symmetric functions over the variable sets A

and B, if A and B are the alphabets of roots of the two original polynomials. By
developing this point of view in [6], Lascoux obtained the explicit expressions of
remainders in terms of Schur functions.
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We assume that the reader is familiar with the background of the theory of sym-
metric functions [6,8,9]. We use nondecreasing partitions to index Schur functions.
Let A be of cardinality n, I ∈ Nn be a partition contained in some rectangular par-
tition � = mn, and J be the complementary partition of I in �. We denote the set
{a−1 : a ∈ A} by A∨. Let u = a1 · · · an be the product of all the variables in A.
Taking the expression of a Schur function in terms of the Vandermonde matrix [8, p.
40], then one has the following relation between the Schur functions in A and those
in A∨:

SI (A
∨) = SJ (A)u−m. (1)

Taking an extra indeterminate z and two alphabets A, B, then the complete sym-
metric functions Sk(A − B) are defined by the generating function∑

k�0

Sk(A − B)zk =
∏

b∈B(1 − bz)∏
a∈A(1 − az)

. (2)

Given two sets of alphabets {A1, A2, . . . , An} and {B1, B2, . . . , Bn}, and I, J ∈ Nn,
then the multi-Schur function of index J/I is defined as follows [6]:

SJ/I (A1 − B1; . . . ; An − Bn) := |Sjk−il+k−l (Ak − Bk)|1�l,k�n. (3)

If each column has the same argument A − B, we denote the multi-Schur function
by SJ/I (A − B).

Lascoux [6] proved that

Theorem 1.1. The rth remainder in the division of Sm(x − B) by Sn(x − A) is
equal to

S1n−r ;(m−n+r)r (A − x, A − B). (4)

In Section 2, we adapt division to the case of the division of a Laurent polyno-
mial by a usual polynomial, and we give several expressions of the first remainder
as a Schur function. The Lagrange interpolation and Lagrange functional are used
to reconstruct these remainders. To proceed the Euclidean algorithm, Theorem 1.1
allows us to obtain expressions for other remainders in terms of Schur functions.

For an arbitrary Schur function of shape J , the Giambelli identity provides a
formula which expresses SJ (A) as a determinant with entries being Schur functions
of hook shapes [3,8]. Many combinatorial proofs and extensions of the Giambelli
identity have appeared, and we refer the reader to [1,2,10]. By expressing the remain-
ders of xk, k ∈ N by Sn(x − A) as Schur functions, Lascoux presents another proof
for the Giambelli identity [6]. We find that this idea can also be used to study the
extension of Schur functions with negative indices [5], denoted GJ (A), J ∈ Zn,
which are needed when interpreting them as characters of the linear group. Following
the treatment of Lascoux in Section 3, we construct a matrix with column indices in
Z, that we call double companion matrix, by putting the coefficients of the remain-
ders of all xk, k ∈ Z into this matrix. Taking minors of this matrix, we obtain new
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determinantal expressions for GJ (A), which generalize the usual Giambelli identity.
We should point out that this extension of the Giambelli identity can also be derived
from the following theorem given by Hou and Mu [5].

Theorem 1.2. Given n recurrent sequences T (i) = {T (i)
m : m ∈ Z} (1 � i � n) with

the same characteristic polynomial having the root set A, then we have

GJ (A) = |T (k)
jl+l−1|1�k,l�n

|T (k)
l−1|1�k,l�n

. (5)

2. Division

Given two polynomials f (x) and g(x), there exists a unique pair (q(x), r(x))

such that

f (x) = q(x)g(x) + r(x) and deg(r(x)) < deg(g(x)), (6)

where we denote the degree of a polynomial by deg( ).
Eq. (6) remains valid if f (x) and q(x) are polynomials in x−1, i.e. there exists a

unique polynomial r(x) of degree < n, that we still call the remainder.
In the case of a general Laurent polynomial, one would uniquely decompose it

into f1(x) + f2(x
−1), with f2(0) = 0. Formulas for the remainders in the case of

polynomials are well known, and we shall show how to adapt them to the case where
f (x) is a polynomial in x−1.

Given two sets of variables A and B, denote by R(A, B) the product
∏

a∈A,b∈B

(a − b), and by A − B the set difference. Supposing g(x) to be monic, with set of
roots A = {a1, a2, . . . , an} (that we suppose distinct), then we can write it g(x) =
R(x, A). In terms of A, the remainder r(x) is characterized by the conditions{

r(a) = f (a) for each a ∈ A,

deg(r(x)) � n − 1.
(7)

A polynomial of degree less than n is determined by its values in n points. One
can reconstruct it by the Lagrange formula, that we shall interpret with the help
of a Lagrange functional LA [6]. Let Sym(A) be the ring of symmetric functions
in A, and let Sym(1|n − 1) be the space of Laurent polynomials of a set X of n

variables {x1, x2 . . . , xn}, which are symmetrical in the last n − 1 variables. Then
LA is defined by

Sym(1|n − 1) � p → LA(p) :=
∑
a∈A

p(a, A − a)

R(a, A − a)
∈ Sym(A). (8)

In terms of LA, the expression of the remainder is

r(x) = LA(r(x1)R(x, X − x1)). (9)
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The main theorem is

Theorem 2.1. Given k ∈ N and A of cardinality n, then the remainder of x−k mod-
ulo by R(x, A) is equal to

(i) Skn−1(A − x)u−k;
(ii) (−1)n−1xn−1S1n−1;k(A∨ − x−1; A∨);

(iii) Given B of cardinality m, the remainder of R(x−1, B) is equal to (−1)n−1xn−1

S1n−1;m(A∨ − x−1; A∨ − B).

Proof. (i) The polynomial Skn−1(A − x) is of degree � n − 1 because x appears
in degree 1 in each column. Specializing it into any element of A, say x = a1, we
get Skn−1(A − x)u−k = (a2 · · · an)

ku−k = a−k
1 , and therefore this polynomial is the

remainder of x−k .
(ii) We expand the Schur function by linearity on x−1, and obtain

(−1)n−1xn−1S1n−1;k(A∨ − x−1; A∨)

=
n−1∑
l=0

(−1)n−1+lxn−1−lS1n−1−l ,k(A
∨)

=
n−1∑
l=0

(−x)lS1l ,k(A
∨)

=
n−1∑
l=0

(−x)lS(k−1)l ,k(n−1)−l (A)u−k

= Skn−1(A − x)u−k,

the third step using 1.
(iii) By linearity (ii) implies (iii), but let us check it directly using the Lagrange

interpolation. Thanks to (7) and (9), we have

r(x) = LA(R(x−1
1 , B)R(x, X − x1)). (10)

Let �(A) = ∏
1�i<j�n(aj − ai). Since for any k ∈ N,

LA(x−k
1 )=

∑
a∈A

a−k

R(a, A − a)

= 1

�(A)

∣∣∣∣∣∣∣
a0

1 a1
1 · · · an−2

1 a−k
1

...
...

...
...

a0
n a1

n · · · an−2
n a−k

n

∣∣∣∣∣∣∣
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=(−1)n−1 u−k

�(A)

∣∣∣∣∣∣∣
a0

1 ak
1 ak+1

1 · · · ak+n−2
1

...
...

...
...

a0
n ak

n ak+1
n · · · ak+n−2

n

∣∣∣∣∣∣∣
=(−1)n−1u−kS(k−1)n−1(A)

=(−1)n−1u−1Sk−1(A
∨),

then

LA(Sk(x
−1
1 − B)) = (−1)n−1u−1Sk−1(A

∨ − B). (11)

Moreover we have

R(x−1
1 , B)R(x, X − x1)

= (−1)n−1 xn−1

x−1
1 · · · x−1

n

Sm+1(x
−1
1 − B)Sn−1(x

−1 − X∨ + x−1
1 ),

which is equal to

R(x−1
1 , B)R(x, X − x1)

= xn−1

x−1
1 · · · x−1

n

S1n−1;m+1(X
∨ − x−1, x−1

1 − B). (12)

Thus Eqs. (10)–(12) lead to

r(x) = (−1)n−1xn−1S1n−1;m(A∨ − x−1; A∨ − B). �

3. The Giambelli identity

We modify the definition of a Schur function (see also Hou and Mu [5]), and for
J ∈ Zn put

GJ (A) = |ajl+l−1
k |1�l,k�n

|al−1
k |1�l,k�n

. (13)

In the case where J ∈ Nn, it coincides with the usual definition of the Schur function
SJ (A). However, when A has two letters, the usual Schur function S4,−2(A), defined
as a determinant of complete functions, is null, but G4,−2(A) is not. In fact, one can
get rid of negative powers by multiplication by u = a1 · · · an, then GJ (A) can be
written as a Schur function in A, as well as in A∨, up to powers of u. The following
property is easy to check:
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Lemma 3.1. For any J ∈ Nn,

GJ (A) = SJ (A) and G−J (A) = SJω(A∨), (14)

where

−J = (−j1, . . . , −jn) and Jω = (jn, . . . , j1).

The usual companion matrix, finite or infinite, is the matrix of coefficients of the
remainders of x1, . . . , xn (resp. x0, x1, . . . , x∞). We define the double companion
matrix C(A) to be the matrix of coefficients of the remainders of . . . , x−2, x−1, x0,

x1, . . . in the basis x0, x1, . . . , xn−1, modulo R(x, A). Explicitly, for any k ∈ Z, if
the remainder r(x) of xk modulo R(x, A) is

r(x) = c0,kx
0 + c1,kx

1 + · · · + cn−1,kx
n−1, (15)

then we let

C(A) = (cl−1,k)1�l�n,k∈Z. (16)

For k ∈ N, the remainder r(x) of xk modulo R(x, A) is given in [6]

r(x) = (−1)n−1S1n−1;k−n+1(A − x, A). (17)

Expanding the first n − 1 columns according to Sj (A − x) = Sj (A) − xSj−1(A),
we get

r(x) =
n∑

l=1

(−1)n−lxl−1S1n−l ,k−n+1(A). (18)

Thus for any l : 1 � l � n and k ∈ N, we have

cl−1,k =(−1)n−lS1n−l ,k−n+1(A)

=Sk−l+1,0n−l (A) = S0l−1,k−l+1,0n−l (A) = G0l−1,k−l+1,0n−l (A). (19)

By Theorem 2.1 the remainder r(x) of x−k modulo R(x, A) is

r(x) = (−1)n−1xn−1S1n−1;k(A∨ − x−1; A∨). (20)

Expanding the above Schur function, we get

r(x) =
n∑

l=1

(−1)l−1xl−1S1l−1,k(A
∨). (21)

Therefore for any l : 1 � l � n and k ∈ N,

cl−1,−k =(−1)l−1S1l−1,k(A
∨)

=S0n−l ,k+l−1,0l−1(A
∨) = G0l−1,−k−l+1,0n−l (A). (22)

Combining Eqs. (19) and (22), we get

C(A) = (G0l−1,k−l+1,0n−l (A))1�l�n,k∈Z. (23)
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For any I = [i1, i2, . . . , in] ∈ Nn, let CI (A) be the submatrix of C(A) on col-
umns i1 + 0, i2 + 1, . . . , in + n − 1. The usual companion matrix is C1n(A). The
following proposition is implicit in [5].

Proposition 3.2. For any m ∈ Z,

(C1n(A))m = Cmn(A). (24)

One can similarly define the double Vandermonde matrix:

Ṽ (A) :=




· · · a−2
1 a−1

1 a0
1 a1

1 a2
1 · · ·

· · · a−2
2 a−1

2 a0
2 a1

2 a2
2 · · ·

· · · ...
...

...
...

... · · ·
· · · a−2

n a−1
n a0

n a1
n a2

n · · ·


 .

The usual Vandermonde matrix V0(A) of order n is the submatrix of Ṽ (A) on
columns 0, 1, . . . , n − 1.

Proposition 3.3. Let V0(A) be the finite Vandermonde matrix on A. Then

V0(A)C(A) = Ṽ (A). (25)

This factorization implies that for any J, |CJ (A)V0(A)| is equal to the minor of Ṽ (A)

on columns j1 + 0, j2 + 1, . . . , jn + n − 1. Thanks to (13), we therefore obtain the
following theorem, which generalizes Giambelli’s identity to the Schur function
GJ (A) (see [3] and [8, p. 47]).

Theorem 3.4. For any J ∈ Zn, we have

GJ (A) = |G0l−1,jk+k−l,0n−l (A)|1�l,k�n. (26)

This theorem follows also from [5, Theorem 4.4] once we check that for each l :
1 � l � n, {G0l−1,k−l+1,0n−l , k ∈ Z} is a recurrent sequence with characteristic poly-
nomial R(x, A).

For any weakly increasing sequence J ∈ Zn, let J1 = (j1, . . . , jt ) be the negative
part and J2 = (jt+1, . . . , jn) nonnegative part. Let (α|β) be the Frobenius decom-
position into diagonal hooks of −Jω

1 (with rank r1), and let (γ |δ) be the Frobenius
decomposition of J2 (with rank r2) [8, p. 3]. Let i & j denote the partition (1j , i + 1)

for i, j ∈ N.
Some modification on the determinant in (26) (suppressing columns having only

one occurrence of 1, the other entries being 0) leads to the following combinatorial
version of Theorem 3.4
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Fig. 1. Combinatorial visualization of generalized Giambelli identity.

Theorem 3.5. For any weakly increasing sequence J ∈ Zn, let α, β, γ, δ be defined
as above, then

GJ (A) =
∣∣∣∣P Q

M N

∣∣∣∣ , (27)

where

P = (Sαr1+1−j &βr1+1−i
(A∨))r1×r1 , Q = (Sγj &(n−1−βr1+1−i )(A))r1×r2 ,

M = (Sαr1+1−j &(n−1−δi )(A
∨))r2×r1 , N = (Sγj &δi

(A))r2×r2 .

For example, for n = 6, J = [−4, −3, −2, 1, 3, 4], one has

GJ (A) =

∣∣∣∣∣∣∣∣
S12(A

∨) S14(A
∨) S14,4(A) S14,2(A)

S112(A
∨) S114(A

∨) S13,4(A) S13,2(A)

S13,2(A
∨) S13,4(A

∨) S114(A) S112(A)

S15,2(A
∨) S15,4(A

∨) S4(A) S2(A)

∣∣∣∣∣∣∣∣ .

Notice that the first two columns involve A∨, and the last two columns involve A.
Fig. 1 illustrates graphically the preceding identity.

The Giambelli identity of Schur functions has been generalized in many different
ways. Lascoux and Pragacz [7] express Schur functions as determinants of ribbon
Schur functions. Hamel and Goulden [4] use planar decompositions of skew shape
tableaux into strips, to which they associate determinantal expressions of skew Schur
functions.

Notice that in the two diagonal blocks, we have the usual Giambelli determinants
for S234(A

∨) and S134(A), but the two other blocks are not 0, because our function
is not S444/12(A)S134(A).
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