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Abstract The relevance of a point mutation at the C-terminal
end of the S6 helix (F468) and the introduction of C-type inacti-
vation in the blockage of hEag1 channels by astemizole, imipra-
mine and dofetilide was tested. C-type inactivation decreased
block by astemizole and dofetilide but not imipramine, suggest-
ing different binding sites in the channel. F468C mutation in-
creased IC50 for astemizole and imipramine but in contrast to
HERG channels, only slightly for dofetilide. Together with mea-
surements on recovery of blocking, our observations indicate that
the mechanism of hEag1 blockage by each of these drugs is dif-
ferent, and suggest relevant structural differences between hEag1
and HERG channels.
� 2006 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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Ether à go-go; Potassium channels; Mutagenesis; Docking
1. Introduction

Two channels of the Ether á go-go family [1] hEag1 and

HERG, have been reported as implicated in tumour progres-

sion [2]. In contrast to HERG, hEag1 shows unparalleled spec-

ificity for tumour tissue [3,4] (except in the CNS) and its

inhibition using astemizole or imipramine reduces prolifera-

tion of tumour cells [3,5], both ideal features for a potential

anticancer target. Unfortunately, all known hEag1 blockers

(including imipramine and astemizole, [6–8]) also inhibit

HERG, which represents a serious difficulty for dissecting

the functions of hEag1 and from a practical point of view (be-

cause of HERG-related cardiac adverse effects [9]). Therefore,

both the structural determinants responsible for hEag1 block-

age by compounds like astemizole and imipramine and the

possible differences in hEag1 and HERG blockage processes
Abbreviations: hEag1, human ether-á-go-go gene; WT, wild type; IC50,
half-maximal inhibitory drug concentration; AST, astemizole; IMI,
imipramine; DOF, dofetilide; NMA, N-methyl-astemizole
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will give us new insights for the future synthesis of specific

hEag1 blockers.

Previous studies from our group dealt with biophysical

details of the blocking mechanism of hEag1 channels by

astemizole and imipramine [10]. However, the structural deter-

minants important for these processes are still unknown. In

HERG channels, an intact C-type inactivation and a residue

at the C-terminal end of the S6 helix (F656) are crucial for

the blockage by several compounds [11–17]. The influence of

both features in hEag1 blockage by drugs, including astemizole

and imipramine is still unknown and was the goal of the pres-

ent work. We found clear differences in how the effects of the

drugs are altered by mutations, and clear indications that at

the molecular level the blocking mechanisms for HERG and

hEag1 are distinct. Additionally, we performed in silico mole-

cular modelling that supports our interpretation of the exper-

imental findings in an independent way.
2. Materials and methods

2.1. Molecular biology
Mutations were introduced into the pSGEM-hEAG1 [18] using the

QuikChange XL site-directed mutagenesis kit (Stratagene). All con-
structs were thereafter sequenced in full. The forward primer used to
generate hEag1F468C was (5 0–3 0; the reverse primer had the comple-
mentary sequence): TATGCCACCATCTGCGGGAATGTGACG.

hEag1T432S/A443S was constructed sequentially (first T432S and
then A443S). The forward oligonucleotides used were: TCTCCTCG-
TTGTATTTCACAATGTCCAGCCTCACC (T432S) and TGGGA-
ACATCTCCCCATCCACAGACATTG (A443S).

Oocyte preparation and electrophysiological recordings were per-
formed as described elsewhere [19].

2.2. Data analysis
Curve-fittings were performed using Igor Pro (WaveMetrics).

Half-maximal inhibitory drug concentration (IC50) values and Hill
coefficients (h) were obtained through fittings to the Hill equation.
Deactivation kinetics was determined by exponential fitting. Data are
represented as means ± S.E.M., where n is the number of oocytes.
Statistical significance was considered at P < 0.01 in two-tailed Student
t test.

2.3. Molecular modelling
Structural models of hEag1 and HERG were generated by homol-

ogy to the Kv1.2 Protein Data Bank entry 2A79 [20] for the open state.
Proteins were aligned with the program T-Coffee (Table 1) [21].
Aligned sequences were submitted to SWISS-MODEL [22] to obtain
the protein structures that were replicated in four identical subunits
and symmetrically placed around the pore axis to build the tetrameric
blished by Elsevier B.V. All rights reserved.
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Table 1
Alignment of hEag1, HERG1 and Kv1.2 channels from the pore helix region to the final residue of the S6 segment

Pore helix Filter Inner helix

hEag1 YISSLYFTMTST SVGFGNIAPSTI EKIFAVAIMMIGSLLYATIFGV
HERG1 YVTALYFTFSST SVGFGNVSPNTS EKIFSICVMLIGSLMYASIFGV
Kv1.2 IPDAFWWAVVST TVGYGDMVPTTG GKIVGSLCAIAGVLTIALPVPI
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channels. Finally, channel molecules were energy minimised by 500
steps of steepest descent, using AMBER [23]. Since energy minimisa-
tions were performed in the absence of solvent and lipid bilayer, the
protein backbone was restrained with a force constant of
7 Kcal mol�1 Å�2.

Imipramine, astemizole and dofetilide were modelled in the proton-
ated state. Partial atomic charges of all the drugs were parameterised
by the ANTECHAMBER module of AMBER. Protein atomic charges
were defined according to the AMBER99 force field.

The docking procedure was performed using AUTODOCK 3.0 [24].
AUTODOCK performs the automated docking of a flexible ligand in a
rigid receptor, minimizing an empirical energy function on a 3D grid.
All bound angles in the ligands were free to rotate. The grid was
defined to cover the whole internal vestibule of the channels and the
energy was minimised by Lamarckian genetic algorithm. In order to
achieve a broad statistical analysis, every binding position search
was carried out by 150 docking runs [25]. The results were clustered
according to the root mean square distance (RMSD). Binding posi-
tions with a RMSD lower than 2 Å were placed in the same cluster
[25]. The binding position with the lowest energy in the group of most
populated cluster was selected for the Rclosest analysis.
Fig. 1. Characterisation of hEag1 inhibition by NMA. (A) Chemical trans
currents elicited by the depicted voltage protocol applied at 0.05 Hz in the pre
line indicates the zero current level. (C) Time course of normalised current am
B (for clarity we indicated only the addition of 100 lM NMA), after NMA wa
measured at the end of the pulse at +40 mV and normalised to the amplitude b
dose–response curve (n = 10) obtained using the same protocol as desc
262.5 ± 22.5 lM and 1.4 ± 0.1. (D) hEag1 currents in inside-out patches in
obtained using the same protocol as in B. (E) Normalised dose–response curv
and Hill coefficients were 30 ± 0.7 nM and 1.46 ± 0.05 for NMA, and 91 ± 5
2.4. Drugs
Astemizole, N-methyl-astemizole, dofetilide and MK-499, were di-

luted from a DMSO stock solution. The final concentration of DMSO
was always 0.1%, a concentration that showed no effects on hEag1 cur-
rents (data not shown). Imipramine was used from stocks in distilled
water. Astemizole and imipramine were purchased from Sigma. Pfizer
and Merck and Co. kindly supplied Dofetilide and MK-499, respec-
tively.
3. Results and discussion

3.1. Charged astemizole blocks from the intracellular side

of hEag1 channels

Our laboratory [10] reported previously that in contrast to

imipramine, astemizole blocks a significant amount of hEag1

current from the extracellular side. Although the kinetics of

this blockage are compatible with drug equilibration across
formation of AST (1) into the charged derivate NMA (2). (B) hEag1
sence of increasing concentrations of NMA or 10 lM AST. The dashed
plitude (n = 4) in the presence of the NMA concentrations indicated in
shout, in the presence of 10 lM AST and after washout. Currents were
efore the addition of the NMA (Control in B). Inset, NMA normalised
ribed in B. The respective IC50 values and Hill coefficients were
the presence of increasing concentrations of AST and NMA. Traces
es (n = 4–6). Currents were normalized as in C. Respective IC50 values
.9 nM and 1.11 ± 0.1 for AST.



Table 2
Concentration-dependent block of hEag1 WT, T432S/A443S and
F468C by AST, IMI and DOF

WT T432S/A443S F468C

AST 2.8 ± 0.1 (n = 9) 1.2 ± 0.1 (n = 10) 49.8 ± 2.1 (n = 7)
IMI 40.2 ± 0.3 (n = 10) 71.5 ± 1.7 (n = 8) 202.5 ± 5.9 (n = 11)
DOF 29.6 ± 1.1 (n = 9) 8.2 ± 0.6 (n = 10) 67.7 ± 4.2 (n = 10)

IC50 values in lM, obtained as in Fig. 2.
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the membrane [10], the existence of a binding site on the extra-

cellular side of the hEag1 channel protein could not be ex-

cluded.

We synthesised the permanently charged, quaternary deriv-

ative of astemizole, N-methyl-astemizole (NMA; Fig. 1A).

Application of 100 lM NMA to the bathing solution reduced

current amplitude by �20% (IC50 > 100 lM; Fig. 1B and inset

Fig 1C). In contrast, in the same oocyte 10 lM astemizole

(AST) blocked �90% (Fig. 1B and C).

The lack of NMA effect is not due to loss of affinity for

hEag1. NMA applied to the intracellular side of inside-out

patches efficiently reduces the current amplitude (Fig. 1D). To-

gether with our previous studies [10], our data demonstrated

that both AST and NMA block the channel from the intracel-

lular side and that the charged form of AST (NMA) blocks

more effectively (Fig. 1E).

3.2. The effect of the mutations T432S/A443S and F468C on the

hEag1 blockage by astemizole (AST)

Intact C-type inactivation seems to be an important requisite

for the high-affinity block by methanesulfonanilides in HERG

channels [11]. Similarly, introduction of C-type inactivation

into bovine Eag channels by a double mutation (T432S/
Fig. 2. Concentration-dependent block of hEag1 WT, T432S/A443S and F
(0.05 Hz) after steady-state blockage with the indicated AST concentrations fo
(n = 7–10) obtained from experiments as described in A. Currents were measu
at +40 mV for T432S/A443S, and normalised to the amplitude of the current
values and Hill coefficients were 2.8 ± 0.1 lM and 1.11 ± 0.05 for WT, 1.2 ± 0
for F468C.
A443S) increases the potency of blockage by dofetilide [26].

These mutations in the context of hEag1 produce C-type inac-

tivation (Fig. 2A, T432S/A443S traces). Additionally, deacti-

vation of this mutant is slowed at all voltages between �70

and �140 mV, and the voltage-dependence of the activation

process is 10–15 mV left-shifted (data not shown).

AST did not affect the activation or inactivation kinetics of

this mutant (data not shown), and we therefore determined

IC50 values by measuring hEag1 current after a steady state

blockage was achieved for each AST concentration, either at

the end of a +40 mV depolarizing steps for hEag1 wild type

(WT) or in the peak at +40 mV for hEag1 T432S/A443S.

Under these conditions, the double mutation increased the

potency of hEag1 blockage by AST (Table 2 and Fig. 2B).
468C by AST. (A) hEag1 currents elicited by the depicted protocol
r WT, T432S/A443S and F468C. (B) Normalised dose–response curves

red at the end of the pulse at +40 mV in WT and F468C and at the peak
prior to the addition of the drugs (Control in A). The respective IC50

.1 lM and 1 ± 0.07 for T432S/A443S, and 49.8 ± 2.1 lM and 0.8 ± 0.04
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It is well documented that Phe 656 in HERG is crucial for

the binding of AST [27] and other blockers [16,17,28,29], but

the influence of the analogous residue (F468) in hEag1 block-

age had not been determined. F468C mutation did not alter

the activation or deactivation processes of hEag1 (data not

shown), although we cannot definitely discard any alteration

of channel kinetics because of the reduced expression levels

of the mutant, as reported for a mutation in HERG F656 [30].

hEag1F468C showed an IC50 for AST (after reaching stea-

dy-state blockage) �20 times higher than wild type channels

(Table 2 and Fig. 2B). This result constitutes the first evidence

that F468 plays a crucial role in hEag1 blocking mechanisms,

as demonstrated for AST.

3.3. Effects of mutations T432S/A443S and F468C on the hEag1

blockage by imipramine (IMI) and dofetilide (DOF)

AST and IMI compete for the inhibition of hEag1 channels,

suggesting that both drugs have an overlapping intracellular

binding site [10]. To test this hypothesis, we compared the

influence of C-type inactivation and F468C mutation in block

by IMI to the results obtained with AST (see above). Table 2

shows that the IC50 of IMI for hEag1 WT channels is 10 times

higher than that for AST, in good agreement with the differ-
Fig. 3. Differences in AST, IMI and DOF levels of block recovery between h
A443S and F468C currents prior to the block (C), after the steady-state block
were elicited by the same protocol as in Fig. 2. (B) Percentage of recovered cu
of washing was normalized to the total current blocked by each drug. The reco
and 93.7 ± 4%, respectively for WT, 6.7 ± 3.7%, 61 ± 8.2% and 6.6 ± 1%, resp
respectively for F468C. The bars represent the means ± S.E.M. of 5–8 oocyt
ences determined previously in HEK293 cells [10]. Surpris-

ingly, in contrast to astemizole, the introduction of C-type

inactivation in hEag1 increased the IC50 of IMI rather than

reducing it. Although this difference could be due to differences

in state-dependence of binding, this result suggests a distinct

binding site for each drug. Interestingly, F468C mutation in-

creased IC50 suggesting that F468 is an important residue in

hEag1 blockage by both IMI and AST.

We extended our study to characterise the hEag1 blocking

process by dofetilide. The IC50 value obtained for DOF in

hEag1 WT channels is in agreement with that previously re-

ported for bovine Eag channels (31.8 lM, Table 2; [26]). The

introduction of inactivation increased the potency of blocking

by DOF, similarly to bEag [26]. This result suggests that the

molecular determinants of DOF blocking are very alike for

the human and the bovine Eag1 isoforms. Surprisingly, the

IC50 value obtained for dofetilide in hEag1 F468C is only 2-

fold greater than that for hEag1 WT. This loss of affinity is

not as dramatic as that for HERG, where a mutation in

F656 increases the IC50 of DOF 100-fold [13]. Therefore,

although our data suggest that the F468 residue plays a role

in DOF binding to hEag1 channels, its importance seems to

be less than in HERG channels.
Eag1 WT, T432S/A443S and F468C channels. (A) hEag1 WT, T432S/
(B) and after the washout (W) of 10 lM AST and 100 lM IMI. Traces

rrent at +40 mV after 5 min washing. The current recovered after 5 min
very percentages of AST, IMI and DOF were 72.1 ± 4.6%, 41.4 ± 2.4%

ectively for T432S/A443S, and 31.2 ± 7.2%, 96.2 ± 3.7% and 11 ± 1.5%,
es.
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3.4. Mutations T432S/A443S and F468C alter the recovery from

AST-, IMI- and DOF-mediated blockage in different ways

The effects of introduction of C-type inactivation into hEag1

strongly suggest different binding sites for IMI, AST and

DOF. We further explored this possibility with studies on

the recovery of block.

After blocking hEag1 WT current with either 10 lM AST,

100 lM IMI or 100 lM DOF (Fig. 3A and B), between 40%

and 90% recovery was achieved after 5 min wash, strongly
Fig. 4. Mechanisms of block in hEag1 WT channels for DOF and MK-499.
499 (left traces) and DOF (right traces) and after washing (Washout). Traces
course of the recovery of block during washout of MK-499 and DOF. Current
the absence (Control) and presence of MK-499. Traces were produced accord
Right panel, tail current traces recorded at � 90 mV, in the absence (Contro
level and the dotted line is the scaled tail current after addition of MK-499
kinetics before and after the blocking to be made. Additionally, exponential
1.31 ms for Control and 1.26 ms for MK-499.
indicating that none of these drugs are trapped in the hEag1

channels during closing. In contrast, T432S/A443S and

F468C mutations significantly slowed the recovery from block

by AST and DOF, but not by IMI. This is not due to the less

efficient IMI-mediated hEag1 inhibition, because we obtained

the same results when lower concentrations of AST and

DOF were used, sufficient only to block 50% of the T432S/

A443S current (data not shown). Similarly, the slower recovery

from AST and DOF treatment is probably not due to the low
(A) hEag1 currents before the block (Control), in the presence of MK-
were produced by the indicated protocol applied at 0.05 Hz. (B) Time-
s were measured and normalised as in Fig. 2. (C) hEag1 WT currents in
ing to the indicated protocol. The pulse to +40 mV had duration of 2 s.
l) and presence of MK-499. The dashed line indicates the zero current
to the Control current level, allowing a better comparison of closing
fits to the currents are shown. The time constants of deactivation are



Fig. 5. Docking of AST, IMI and DOF within the cavity of the hEag1 K+ channel as constructed by homology. (A) Homology model showing the
S5–S6 domains of two hEag1 subunits with a docked molecule of AST (left panel) and DOF (right panel). F468 (red), T432 (blue) and A443 (yellow)
residues are shown as balls and sticks. (B) Close-up stereo views of the C-terminal end of the S6 helix showing the four F468 residues and the relative
position of the drugs. The upper panels and lower left panel correspond to hEag1 homology models with AST (blue, upper left), IMI (yellow, upper
right) and DOF (red, lower left). For AST and DOF and for better observation, the structures are rotated about the Y-axis with respect to the
structures in A as indicated on the left hand side of each schematic. The lower right panel is the HERG homology model with DOF and the F656
residues of the four subunits in orange. In all four panels, the closest distances between the aromatic rings atoms of the phenylalanine residues and the
drugs are indicated as dashed lines with the values in Å. (C) Aromatic ring (p-stacking) interactions in terms of phenylalanine aromatic ring atoms
within the 3.4–4.5 Å of the drug phenyl ring atoms. The inter-atomic distances (Rclosest) close to this interval are indicated for AST-hEag1 docking
(empty circles), IMI-hEag1 docking (empty squares), DOF-hEag1 docking (empty triangles) and DOF-HERG docking (full triangles). The dashed
lines represent the Rclosest values of 3.4 and 4.5 Å.
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stimulation frequency used during the washing period, because

we did not observe any significant increase in the recovery in-

duced by 20 preconditioning pre-pulses of 400 ms to +40 mV

(data not shown). Therefore, the differences in the recovery

kinetics substantiate our hypothesis that the binding site in

hEag1 shared, at least to some degree, by AST and DOF is dif-

ferent from that of IMI.

3.5. Lack of trapping of dofetilide and MK-499 in hEag1

channels

Since in contrast to HERG channels [26,31] DOF does not

block hEag1 channels by a trapping mechanism, we tested

the blocking mechanism of hEag1 by MK-499, another meth-

anesulfoanilide.

MK-499 blocked hEag1 with an IC50 of 43.5 ± 4.7 lM

(n = 4, data not shown). Recovery was complete in 5 min

(Fig. 4A), with a time constant of 106.8 ± 0.7 s, in the same

range as for DOF (82.6 ± 0.9 s, Fig. 4B), strongly indicating

that block of hEag1 by MK-499 does not involve a drug trap-

ping mechanism. Additionally, a ‘‘foot in the door’’ mecha-

nism [17] does not appear to be implicated in the block of

hEag1 by MK-499, because the drug does not alter the kinetics

of deactivation, as can be deduced from the overlapping nor-

malised tail currents at �90 mV before and after blockage with

40 lM MK-499 (Fig. 4C). Exponential fits to the tail currents

(Fig. 4C) gave time constants of deactivation of 1.3 ± 0.14 ms

before, and 1.3 ± 0.16 ms after blocking (n = 4).

These results strongly indicate that, unlike in HERG chan-

nels, both MK-499 and DOF dissociate from hEag1 before it

closes, and therefore blockage is not based on trapping of

the drug inside the channel during deactivation. Together with

the data concerning the different influence of the Phe residues

in hEag1 and HERG blockage by dofetilide, our results

strongly suggest structural differences between the internal ves-

tibules of both channels.

3.6. Molecular modeling of hEag1-mediated blockage by AST,

IMI and DOF

In order to generate a molecular model of hEag1 to test our

hypotheses, we used the crystal structure of Kv1.2 channel [20]

as a template. It is important to note that Kv1.2 shows a Pro-

Val-Pro motif in the S6 domain that has been described to be

important for curving the inner helices during channel activa-

tion [32], while the hEag1 channel, like KvAP, has a Gly resi-

due in the corresponding position. We reached identical

conclusions using either KvAP or Kv1.2 as a template, proba-

bly because the Gly residue in KvAP also produces a curvature

of the inner helices [20]. In order to dock several open channel

blockers, we decided to only comment on our results obtained

employing Kv1.2. (open conformation), rather than KvAP

(close conformation).

Fig. 5A shows the docking model for AST and DOF in the

hEag1 vestibule. At first glance, it is clear that the hydrophobic

rings of AST are closer than those of DOF to the Phe residue

rings. It is also interesting to note that, although the conforma-

tion of the inactivating mutant (T432S/A443S) could not be

predicted, our model suggests that the effects observed in the

double mutant T432S/A443S could be allosteric, since neither

of these two residues are in close proximity to the drugs. Cur-

rent models predict that C-type inactivation of HERG results

in a twisting of the S6 helices and a repositioning of F656, to

increase the sensitivity of the channel [33]. Therefore, a similar
movement is possible in the inner helices of hEag1 channels

during C-type inactivation, thereby changing the position of

some amino acids and increasing the affinity for AST and

DOF but not IMI. Further experiments will be necessary to

test this possibility. The in silico analysis also predicts that

other residues in the selectivity filter could interact with the

drugs and be important for their stabilization inside the inner

vestibule, as described for some residues at the base of the pore

helix of HERG and hEag1 [15,34].

Interestingly, molecular modelling also provides a possible

explanation for the effects of the F468 mutation. It is accepted

that a p–p stacking interaction between two hydrophobic aro-

matic rings is energetically favourable dependent on the orien-

tation and proximity of the phenyl groups [35,36]. The distance

between the carbon atoms of the interacting rings must be be-

tween 3.4 and 4.5 Å [35,36]. To predict interactions between

the different drugs and the F468 residues, we measured the dis-

tances (Rclosest) between the four Phe rings of the channel and

the atoms of the aromatic rings of the drugs. Fig. 5C indicates

all the Rclosest values close to this interval for the three different

drugs. Only some phenyl groups of AST and IMI but not of

DOF show Rclosest values within the 3.4–4.5 Å interval with re-

spect to phenylalanine hydrophobic rings in the channel. This

result gives us a theoretical explanation for the weak effect that

the F468 mutation has on the block achieved by DOF and the

large effect observed for AST and IMI.

The usefulness of the Rclosest parameter as an indication for

possible p–p stacking interactions was validated by molecular

modelling of HERG (Fig. 5B, lower right) and studying the

docking of DOF. Interestingly, Rclosest analysis shows that

DOF is closer to the Phe residues in HERG than in hEag1

channels (Fig. 5C). This would agree with recent studies that

suggest that the orientation of the S6 aromatic residues with

respect to the central cavity of HERG differs from those of

Eag channels [33]. Although other interactions must be impor-

tant for DOF binding to HERG channels, this data could ex-

plain why a mutation in these Phe residues affects DOF-

mediated block more HERG than to hEag1.

In summary, the experimental differences detected in this

study between AST, IMI and DOF blocking processes to

hEag1 channels correlate well with information obtained from

our molecular modelling approach.
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