An Intemational Joumal
computers \& mathematics
with applications

A Certain Family of Meromorphically Multivalent Functions

S. B. Joshi
Department of Mathematics, Walchand College of Engineering Sangli 416415, Maharashtra, India
joshisbowces.ernet.in
H. M. Srivastava
Department of Mathematics and Statistics, University of Victoria
Victoria, British Columbia V8W 3P4, Canada
hmsri@uvvm.uvic.ca
(Received and accepted September 1998)

Abstract

By making use of a familiar analogue of the Ruscheweyh derivative as well as of the principle of subordination between two analytic functions, the authors introduce and study rather systematically a certain family of meromorphically multivalent functions in the open unit disk $$
\mathcal{U}:=\{z: z \in \mathbb{C} \text { and }|z|<1\}
$$

Several inclusion properties of this family are associated with an integral operator of the Bernardi-Libera-Livingston type. (c) 1999 Elsevier Science Ltd. All rights reserved.

Keywords-Meromorphic functions, p-valent functions, Ruscheweyh derivative, Analytic functions, Inclusion property, Integral operator, Hadamard product (or convolution), Jack's Lemma, Parseval's identity.

1. INTRODUCTION, DEFINITIONS, AND PRELIMINARIES

Let Σ_{p} denote the class of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z^{-p}+\sum_{k=0}^{\infty} a_{k} z^{k-p+1}, \quad(p \in \mathbb{N}:=\{1,2,3, \ldots\}) \tag{1.1}
\end{equation*}
$$

which are analytic and p-valent in the punctured unit disk

$$
\mathcal{U}^{*}:=\{z: z \in \mathbb{C} \text { and } 0<|z|<1\}=\mathcal{U} \backslash\{0\} .
$$

In terms of the Hadamard product (or convolution) of two functions, we define an analogue of the familiar Ruscheweyh derivative [1] by

$$
\begin{equation*}
\mathcal{D}^{n+p-1} f(z):=\frac{1}{z^{p}(1-z)^{n+p}} * f(z), \quad\left(n>-p ; p \in \mathbb{N} ; f \in \Sigma_{p}\right) \tag{1.2}
\end{equation*}
$$

The present investigation was supported, in part, by the Natural Sciences and Engineering Research Council of Canada under Grant OGP0007353.

0898-1221/99/\$ - see front matter. (c) 1999 Elsevier Science Ltd. All rights reserved. Typeset by AMS-TEX
PII: S0898-1221(99)00194-7
or equivalently, by

$$
\begin{equation*}
\mathcal{D}^{n+p-1} f(z)=\frac{1}{z^{p}}\left(\frac{z^{n+2 p-1} f(z)}{(n+p-1)!}\right)^{(n+p-1)}, \quad\left(n>-p ; p \in \mathbb{N} ; f \in \Sigma_{p}\right) \tag{1.3}
\end{equation*}
$$

where, and throughout this paper, n is assumed to be an integer ($>-p$).
It follows readily from (1.1) and (1.2) (or (1.3)) that

$$
\begin{equation*}
\mathcal{D}^{n+p-1} f(z)=z^{-p}+\sum_{k=0}^{\infty} \delta(n, k) a_{k} z^{k-p+1}, \quad\left(n>-p ; p \in \mathbb{N} ; f \in \Sigma_{p}\right) \tag{1.4}
\end{equation*}
$$

where $f \in \Sigma_{p}$ is given by (1.1) and (for convenience)

$$
\begin{equation*}
\delta(n, k):=\binom{n+p+k}{k+1}=\binom{n+p+k}{n+p-1} . \tag{1.5}
\end{equation*}
$$

Next, with a view to recalling the principle of subordination between analytic functions, let $f(z)$ and $g(z)$ be analytic in \mathcal{U}. Then we say that the function $f(z)$ is subordinate to $g(z)$ if there exists a function $h(z)$ analytic in \mathcal{U}, with

$$
\begin{equation*}
h(0)=0 \quad \text { and } \quad|h(z)|<1, \tag{1.6}
\end{equation*}
$$

such that

$$
\begin{equation*}
f(z)=g(h(z)), \quad(z \in \mathcal{U}) . \tag{1.7}
\end{equation*}
$$

We denote this subordination by

$$
\begin{equation*}
f(z) \prec g(z) . \tag{1.8}
\end{equation*}
$$

In particular, if $g(z)$ is univalent in \mathcal{U}, subordination (1.8) is equivalent to (cf. [2, p. 190])

$$
\begin{equation*}
f(0)=g(0) \quad \text { and } \quad f(\mathcal{U}) \subset g(\mathcal{U}) \tag{1.9}
\end{equation*}
$$

Many interesting families of analytic and multivalent functions were considered by earlier authors in Geometric Function Theory (cf., e.g., [3,4]). Motivated essentially by some recent works of Uralegaddi et al. [5-7], we aim at investigating here various properties and characteristics of a new family

$$
\Omega_{n, p}(A, B ; \alpha), \quad(-1 \leq B<A \leq 1 ; 0 \leq \alpha<p)
$$

of meromorphically p-valent functions in \mathcal{U}, which is given by the following.
Definition. A function $f \in \Sigma_{p}$ is said to be in the class $\Omega_{n, p}(A, B ; \alpha)$ of meromorphically p-valent functions in \mathcal{U} if

$$
\begin{align*}
& -z^{p+1}\left(\mathcal{D}^{n+p-1} f(z)\right)^{\prime} \prec \frac{p+\{p B+(p-\alpha)(A-B)\} z}{1+B z} \tag{1.10}\\
& (z \in \mathcal{U} ;-1 \leq B<A \leq 1 ; 0 \leq \alpha<p ; n>-p ; p \in \mathbb{N})
\end{align*}
$$

or equivalently, if

$$
\begin{align*}
&-z^{p+1}\left(\mathcal{D}^{n+p-1} f(z)\right)^{\prime}=\frac{p+\{p B+(p-\alpha)(A-B)\} h(z)}{1+B h(z)} \tag{1.11}\\
&(z \in \mathcal{U} ; h \in \Lambda ;-1 \leq B<A \leq 1 ; 0 \leq \alpha<p ; n>-p ; p \in \mathbb{N})
\end{align*}
$$

where

$$
\begin{equation*}
\Lambda:=\{f: f \text { analytic in } \mathcal{U}, f(0)=0, \text { and }|f(z)|<1(z \in \mathcal{U})\} \tag{1.12}
\end{equation*}
$$

Since

$$
\begin{equation*}
z\left(\mathcal{D}^{n+p-1} f(z)\right)^{\prime}=(n+p) \mathcal{D}^{n+p} f(z)-(n+2 p) \mathcal{D}^{n+p-1} f(z) \tag{1.13}
\end{equation*}
$$

this last condition (1.11) can be rewritten in yet another equivalent form

$$
\begin{align*}
z^{p}\left\{(n+p) \mathcal{D}^{n+p} f(z)-(n+2 p) \mathcal{D}^{n+p-1} f(z)\right\} & =-\frac{p+\{p B+(p-\alpha)(A-B)\} h(z)}{1+B h(z)} \tag{1.14}\\
(z \in \mathcal{U} ; h \in \Lambda ;-1 \leq B<A \leq 1 ; 0 & \leq \alpha<p ; n>-p ; p \in \mathbb{N})
\end{align*}
$$

It should be remarked in passing that the special class $\Omega_{n, p}(A, B ; 0)$ was considered earlier by Uralegaddi and Somanatha [6]. Furthermore, various other subclasses of the class Σ_{p}, defined in terms of the modified Ruscheweyh derivative (1.2), were studied recently (cf., e.g., [8-10]).

Each of the following results (Lemma 1 and Lemma 2 below) will be required in our present investigation. Lemma 2, in particular, is popularly known as Jack's Lemma.
Lemma 1. A function $f \in \Sigma_{p}$ is in the class $\Omega_{n, p}(A, B ; \alpha)$ if and only if

$$
\begin{equation*}
\left|z^{p+1}\left(\mathcal{D}^{n+p-1} f(z)\right)^{\prime}+m\right|<M, \quad(z \in \mathcal{U}) \tag{1.15}
\end{equation*}
$$

where (and in what follows)

$$
\begin{equation*}
m:=\alpha+\frac{(p-\alpha)(1-A B)}{1-B^{2}} \quad \text { and } \quad M:=\frac{(p-\alpha)(A-B)}{1-B^{2}}, \quad(-1<B<A \leq 1) \tag{1.16}
\end{equation*}
$$

Proof. Suppose that $f \in \Omega_{n, p}(A, B ; \alpha)$. We then find from (1.11) and (1.16) that

$$
\begin{equation*}
z^{p+1}\left(\mathcal{D}^{n+p-1} f(z)\right)^{\prime}+m=-M \omega(z) \tag{1.17}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega(z):=\frac{B+h(z)}{1+B h(z)}, \quad(z \in \mathcal{U}) \tag{1.18}
\end{equation*}
$$

Clearly, since $h \in \Lambda$, we have

$$
\begin{equation*}
|\omega(z)|<1, \quad(z \in \mathcal{U}) \tag{1.19}
\end{equation*}
$$

and the desired inequality (1.15) follows immediately.
Conversely, suppose that inequality (1.15) holds true. Then

$$
\begin{equation*}
\left|\frac{z^{p+1}\left(\mathcal{D}^{n+p-1} f(z)\right)^{\prime}+m}{M}\right|<1, \quad(z \in \mathcal{U}) \tag{1.20}
\end{equation*}
$$

where m and M are given by (1.16).
Setting

$$
\begin{equation*}
g(z)=-\frac{z^{p+1}\left(\mathcal{D}^{n+p-1} f(z)\right)^{\prime}+m}{M}, \quad(z \in \mathcal{U}) \tag{1.21}
\end{equation*}
$$

and

$$
\begin{align*}
h(z) & =\frac{g(z)-g(0)}{1-g(z) g(0)} \\
& =-\frac{z^{p+1}\left(\mathcal{D}^{n+p-1} f(z)\right)^{\prime}+p}{p B+(p-\alpha)(A-B)+B z^{p+1}\left(\mathcal{D}^{n+p-1} f(z)\right)^{\prime}}, \quad(z \in \mathcal{U}), \tag{1.22}
\end{align*}
$$

it is easily seen that $h \in \Lambda$.
Upon rearranging (1.22), we arrive at condition (1.11). Hence $f \in \Omega_{n, p}(A, B ; \alpha)$.
Lemma 2. (See [11,12].) Let the (nonconstant) function $w(z)$ be analytic in \mathcal{U} with $w(0)=0$. If $|w(z)|$ attains its maximum value on the circle $|z|=r<1$ at a point $z_{0} \in \mathcal{U}$, then

$$
\begin{equation*}
z_{0} w^{\prime}\left(z_{0}\right)=c w\left(z_{0}\right) \tag{1.23}
\end{equation*}
$$

where c is a real number and $c \geq 1$.
We shall also make use of the integral operator $\mathcal{J}_{\mu, p}$ analogous to the Bernardi-Libera-Livingston integral operator (cf., e.g., [4]), which we define here by (see also [8, p. 162, equation (2.11)])

$$
\begin{equation*}
\left(\mathcal{J}_{\mu, p} f\right)(z):=\frac{\mu}{z^{\mu+p}} \int_{0}^{z} t^{\mu+p-1} f(t) d t, \quad\left(\mu>0 ; p \in \mathbb{N} ; f \in \Sigma_{p}\right) \tag{1.24}
\end{equation*}
$$

2. AN INCLUSION PROPERTY OF THE CLASS $\Omega_{n, p}(A, B ; \alpha)$

Applying Lemma 1 and Lemma 2, we shall first prove the main inclusion property of the class $\Omega_{n, p}(A, B ; \alpha)$, which is given by the following.

Theorem 1. For any integer $n>-p(p \in \mathbb{N})$,

$$
\begin{equation*}
\Omega_{n+1, p}(A, B ; \alpha) \subset \Omega_{n, p}(A, B ; \alpha) . \tag{2.1}
\end{equation*}
$$

Proof. Let $f \in \Omega_{n+1, p}(A, B ; \alpha)$ and suppose that

$$
\begin{equation*}
z^{p}\left\{(n+p) \mathcal{D}^{n+p} f(z)-(n+2 p) \mathcal{D}^{n+p-1} f(z)\right\}=-\frac{p+\{p B+(p-\alpha)(A-B)\} w(z)}{1+B w(z)}, \tag{2.2}
\end{equation*}
$$

where the function $w(z)$ is either analytic or meromorphic in \mathcal{U}. Clearly, $w(0)=0$.
Upon differentiating both sides of (2.2) with respect to z and making use of identity (1.13), we obtain

$$
\begin{align*}
z^{p+1}\left(\mathcal{D}^{n+p} f(z)\right)^{\prime}= & -\frac{p+\{p B+(p-\alpha)(A-B)\} w(z)}{1+B w(z)} \\
& -\frac{(p-\alpha)(A-B)}{n+p}\left[\frac{z w^{\prime}(z)}{\{1+B w(z)\}^{2}}\right] . \tag{2.3}
\end{align*}
$$

Therefore,

$$
\begin{align*}
z^{p+1}\left(\mathcal{D}^{n+p} f(z)\right)^{\prime}+m= & \frac{m-p-\{(p-m) B+(p-\alpha)(A-B)\} w(z)}{1+B w(z)} \\
& -\frac{(p-\alpha)(A-B)}{n+p}\left[\frac{z w^{\prime}(z)}{\{1+B w(z)\}^{2}}\right] \tag{2.4}
\end{align*}
$$

where m is defined by (1.16).
Now let r^{*} denote the distance, from the origin, of the nearest pole of $w(z)$ in \mathcal{U}. Then $w(z)$ is analytic in

$$
|z|<r_{0}=\min \left\{r^{*}, 1\right\} .
$$

By Lemma 2, there exists a point z_{0} in the closed disk

$$
|z| \leq r, \quad\left(0<r<r_{0}\right)
$$

such that

$$
\begin{equation*}
z_{0} w^{\prime}\left(z_{0}\right)=c w\left(z_{0}\right), \quad(c \geq 1) . \tag{2.5}
\end{equation*}
$$

From (2.4) and (2.5), we readily get

$$
\begin{equation*}
z_{0}^{p+1}\left(\mathcal{D}^{n+p} f\left(z_{0}\right)\right)^{\prime}+m=\frac{N\left(z_{0}\right)}{D\left(z_{0}\right)}, \tag{2.6}
\end{equation*}
$$

where, for convenience,

$$
\begin{gather*}
\left(\mathcal{D}^{n+p} f\left(z_{0}\right)\right)^{\prime}:=\left.\left(\mathcal{D}^{n+p} f(z)\right)^{\prime}\right|_{z=z_{0}}, \tag{2.7}\\
N\left(z_{0}\right)=(n+p)(m-p)-[(n+p)\{2(p-m) B+(p-\alpha)(A-B)\} \\
-c(p-\alpha)(A-B)] w\left(z_{0}\right)-(n+p)\{(p-m) B+(p-\alpha)(A-B)\} B\left\{w\left(z_{0}\right)\right\}^{2}, \tag{2.8}
\end{gather*}
$$

and

$$
\begin{equation*}
D\left(z_{0}\right)=(n+p)\left[1+2 B w\left(z_{0}\right)+B^{2}\left\{w\left(z_{0}\right)\right\}^{2}\right] . \tag{2.9}
\end{equation*}
$$

Suppose that it were possible to have

$$
\begin{equation*}
\max _{|z|=r}|w(z)|=\left|w\left(z_{0}\right)\right|=1 \tag{2.10}
\end{equation*}
$$

for some $r\left(0<r<r_{0} \leq 1\right)$. Then, in view of the identities

$$
\begin{equation*}
p-m=B M \quad \text { and } \quad p B+(p-\alpha)(A-B)-B m=M \tag{2.11}
\end{equation*}
$$

for m and M defined by (1.16), we have

$$
\begin{equation*}
\left|N\left(z_{0}\right)\right|^{2}-M^{2}\left|D\left(z_{0}\right)\right|^{2}=\xi+2 \eta \Re\left\{w\left(z_{0}\right)\right\}, \tag{2.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi=c(p-\alpha)(A-B)\left\{c(p-\alpha)(A-B)+2(n+p)\left(1+B^{2}\right) M\right\} \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta=2 c(n+p)(p-\alpha)(A-B) B M . \tag{2.14}
\end{equation*}
$$

It is easily observed from (2.12) that

$$
\begin{equation*}
\left|N\left(z_{0}\right)\right|^{2}-M^{2}\left|D\left(z_{0}\right)\right|^{2}>0, \tag{2.15}
\end{equation*}
$$

provided that

$$
\xi \pm 2 \eta>0 .
$$

From (2.13) and (2.14) we do find that

$$
\xi+2 \eta=c(p-\alpha)(A-B)\left\{c(p-\alpha)(A-B)+2(n+p)(1+B)^{2} M\right\}>0
$$

and

$$
\xi-2 \eta=c(p-\alpha)(A-B)\left\{c(p-\alpha)(A-B)+2(n+p)(1-B)^{2} M\right\}>0 .
$$

Thus it follows from (2.6) and (2.15) that

$$
\left|z_{0}^{p+1}\left(\mathcal{D}^{n+p} f\left(z_{0}\right)\right)^{\prime}+m\right|>M,
$$

which, in view of Lemma 1, contradicts our assumption that

$$
f \in \Omega_{n+1, p}(A, B ; \alpha) .
$$

So we cannot have $\left|w\left(z_{0}\right)\right|=1$. Consequently,

$$
|w(z)| \neq 1, \quad\left(|z|<r_{0}\right) .
$$

Since $w(0)=0,|w(z)|$ is continuous, and $|w(z)| \neq 1$ in $|z|<r_{0}, w(z)$ cannot have a pole on $|z|=r_{0}$. Therefore, $w(z)$ is analytic in \mathcal{U} and satisfies the inequality

$$
|w(z)|<1, \quad(z \in \mathcal{U})
$$

It follows from (2.2) and (1.14) that

$$
f \in \Omega_{n, p}(A, B ; \alpha),
$$

which evidently completes the proof of Theorem 1.

3. AN INCLUSION PROPERTY ASSOCIATED WITH THE CLASS-PRESERVING INTEGRAL OPERATOR $\mathcal{J}_{\mu-p+1, p} \quad(\Re(\mu)>p-1 ; p \in \mathbb{N})$

In this section, we shall prove an inclusion property of the class $\Omega_{n, p}(A, B ; \alpha)$ associated with the class-preserving integral operator $\mathcal{J}_{\mu-p+1, p}$ defined by (1.24). We first state the following.

Theorem 2. If $f \in \Omega_{n, p}(A, B ; \alpha)$, then the function

$$
\begin{equation*}
F(z):=\left(\mathcal{J}_{\mu-p+1, p} f\right)(z), \quad(\Re(\mu)>p-1 ; p \in \mathbb{N}) \tag{3.1}
\end{equation*}
$$

also belongs to the same class $\Omega_{n, p}(A, B ; \alpha)$.
Proof. It is easily verified that the function $F(z)$ defined by (3.1) satisfies the identity

$$
\begin{equation*}
z\left(\mathcal{D}^{n+p-1} F(z)\right)^{\prime}=(\mu-p+1) \mathcal{D}^{n+p-1} f(z)-(\mu+1) \mathcal{D}^{n+p-1} F(z) \tag{3.2}
\end{equation*}
$$

Now let us suppose that

$$
\begin{equation*}
-z^{p+1}\left(\mathcal{D}^{n+p-1} F(z)\right)^{\prime}=\frac{p+\{p B+(p-\alpha)(A-B)\} w(z)}{1+B w(z)}, \tag{3.3}
\end{equation*}
$$

where the function $w(z)$ is either analytic or meromorphic in \mathcal{U}. Clearly, $w(0)=0$.
It follows readily from (3.2) and (3.3) that

$$
\begin{align*}
(\mu-p+1) \mathcal{D}^{n+p-1} f(z)= & (\mu+1) \mathcal{D}^{n+p-1} F(z) \\
& -z^{-p}\left[\frac{p+\{p B+(p-\alpha)(A-B)\} w(z)}{1+B w(z)}\right] . \tag{3.4}
\end{align*}
$$

Upon differentiating both sides of (3.4) and making use of (3.3), we obtain

$$
\begin{align*}
z^{p+1}\left(\mathcal{D}^{n+p-1} f(z)\right)^{\prime}= & -\frac{p+\{p B+(p-\alpha)(A-B)\} w(z)}{1+B w(z)} \\
& -\frac{(p-\alpha)(A-B)}{\mu-p+1}\left[\frac{z w^{\prime}(z)}{\{1+B w(z)\}^{2}}\right], \tag{3.5}
\end{align*}
$$

which readily yields

$$
\begin{align*}
z^{p+1}\left(\mathcal{D}^{n+p-1} f(z)\right)^{\prime}+m= & \frac{m-p-\{(p-m) B+(p-\alpha)(A-B)\} w(z)}{1+B w(z)} \\
& -\frac{(p-\alpha)(A-B)}{\mu-p+1}\left[\frac{z w^{\prime}(z)}{\{1+B w(z)\}^{2}}\right], \tag{3.6}
\end{align*}
$$

where m is defined, as before, by (1.16).
The assertion of Theorem 2 can now be deduced from (3.6) by employing the same technique as in our proof of Theorem 1 from (2.4).

In its special case when

$$
\begin{equation*}
\mu=n+2 p-1, \quad(n>-p ; p \in \mathbb{N}), \tag{3.7}
\end{equation*}
$$

the class-preserving operator involved in Theorem 2 would yield yet another inclusion property contained in the following.

Theorem 3. The function

$$
\begin{equation*}
F(z):=\left(\mathcal{J}_{n+p, p} f\right)(z), \quad(n>-p ; p \in \mathbb{N}) \tag{3.8}
\end{equation*}
$$

is in the class $\Omega_{n+1, p}(A, B ; \alpha)$ if and only if

$$
f \in \Omega_{n, p}(A, B ; \alpha)
$$

Proof. Under the special case (3.7), identity (3.2) reduces immediately to

$$
\begin{equation*}
z\left(\mathcal{D}^{n+p-1} F(z)\right)^{\prime}=(n+p) \mathcal{D}^{n+p-1} f(z)-(n+2 p) \mathcal{D}^{n+p-1} F(z) \tag{3.9}
\end{equation*}
$$

where $F(z)$ is now defined by (3.8).
Upon expressing the first member of (3.9) by means of identity (1.13), and then comparing the corresponding right-hand side with the second member of (3.9), we get (cf. [8, p. 164, equation (2.18)])

$$
\begin{equation*}
\mathcal{D}^{n+p} F(z)=\mathcal{D}^{n+p-1} f(z), \tag{3.10}
\end{equation*}
$$

and hence,

$$
\begin{equation*}
\left(\mathcal{D}^{n+p} F(z)\right)^{\prime}=\left(\mathcal{D}^{n+p-1} f(z)\right)^{\prime}, \quad(n>-p ; p \in \mathbb{N}) \tag{3.11}
\end{equation*}
$$

which obviously proves Theorem 3.

4. THEOREMS INVOLVING SHARP COEFFICIENT ESTIMATES AND CONVEXITY OF THE CLASS $\Omega_{n, p}(A, B ; \alpha)$

The following result provides sharp coefficient estimates for functions in the class $\Omega_{n, p}(A, B ; \alpha)$. Theorem 4. Let the function $f(z)$ defined by (1.1) be in the class $\Omega_{n, p}(A, B ; \alpha)$. Then

$$
\begin{equation*}
\left|a_{k}\right| \leq \frac{(p-\alpha)(A-B)}{(k-p+1) \delta(n, k)}, \quad\left(k \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\} ; k \neq p-1 ; p \in \mathbb{N}\right) \tag{4.1}
\end{equation*}
$$

where $\delta(n, k)$ is defined by (1.5).
The result is sharp with the extremal function $f(z)$ given by

$$
\begin{equation*}
-z^{p+1}\left(\mathcal{D}^{n+p-1} f(z)\right)^{\prime}=\frac{p+\{p B+(p-\alpha)(A-B)\} z^{k+1}}{1+B z^{k+1}}, \quad\left(k \in \mathbb{N}_{0}\right) \tag{4.2}
\end{equation*}
$$

Proof. Since $f \in \Omega_{n, p}(A, B ; \alpha)$, condition (1.11) can be rewritten in the form

$$
\begin{equation*}
\left(\mathcal{D}^{n+p-1} f(z)\right)^{\prime}=-z^{-p-1} \frac{p+\{p B+(p-\alpha)(A-B)\} h(z)}{1+B h(z)}, \tag{4.3}
\end{equation*}
$$

where the function $h(z)$ given by

$$
\begin{equation*}
h(z)=\sum_{j=1}^{\infty} b_{j} z^{j}, \quad(z \in \mathcal{U}) \tag{4.4}
\end{equation*}
$$

is in the class Λ defined by (1.12). Thus, upon writing (4.3) in the form

$$
\begin{equation*}
\left(\mathcal{D}^{n+p-1} f(z)\right)^{\prime}+p z^{-p-1}=-\left[\{p B+(p-\alpha)(A-B)\} z^{-p-1}+B\left(\mathcal{D}^{n+p-1} f(z)\right)^{\prime}\right] h(z) \tag{4.5}
\end{equation*}
$$

we find from (1.4) and (4.4) that

$$
\begin{align*}
& \sum_{k=0}^{\infty}(k-p+1) \delta(n, k) a_{k} z^{k-p} \\
& \quad=-\left[(p-\alpha)(A-B) z^{-p-1}+B \sum_{k=0}^{\infty}(k-p+1) \delta(n, k) a_{k} z^{k-p}\right] \sum_{j=1}^{\infty} b_{j} z^{j}, \tag{4.6}
\end{align*}
$$

where $\delta(n, k)$ is defined by (1.5).
Upon rewriting (4.6) in its equivalent form

$$
\begin{align*}
\sum_{k=0}^{\infty}(k-p+1) \delta(n, k) a_{k} z^{k-p}= & -(p-\alpha)(A-B) \sum_{k=0}^{\infty} b_{k+1} z^{k-p} \\
& -B \sum_{k=0}^{\infty}\left(\sum_{j=1}^{k}(k-j-p+1) \delta(n, k-j) a_{k-j} b_{j}\right) z^{k-p} \tag{4.7}
\end{align*}
$$

and equating the coefficients of z^{k-p} from both sides of (4.7), we obtain

$$
\begin{align*}
(k-p+1) \delta(n, k) a_{k}= & -(p-\alpha)(A-B) b_{k+1} \\
& -B \sum_{j=1}^{k}(k-j-p+1) \delta(n, k-j) a_{k-j} b_{j}, \quad\left(k \in \mathbb{N}_{0}\right), \tag{4.8}
\end{align*}
$$

where, as usual, an empty sum is to be interpreted as nil.
Formula (4.8) expresses the coefficient a_{k} in terms of $a_{0}, a_{1}, \ldots, a_{k-1}(k \in \mathbb{N})$. Hence, for $k \in \mathbb{N}_{0}$, it follows from (4.6) that

$$
\begin{align*}
& \sum_{j=0}^{k}(j-p+1) \delta(n, j) a_{j} z^{j+1}+\sum_{j=k}^{\infty} c_{j} z^{j+2} \\
& \quad=-\left[(p-\alpha)(A-B)+B \sum_{j=0}^{k-1}(j-p+1) \delta(n, j) a_{j} z^{j+1}\right] h(z), \quad\left(k \in \mathbb{N}_{0}\right) \tag{4.9}
\end{align*}
$$

for some complex numbers $c_{j}(j=k, k+1, k+2, \ldots)$. Since $|h(z)|<1(z \in \mathcal{U})$, by applying Parseval's identity (cf. [13, p. 100]), we get

$$
\begin{align*}
& \sum_{j=0}^{k}(j-p+1)^{2}\{\delta(n, j)\}^{2}\left|a_{j}\right|^{2} r^{2(j+1)}+\sum_{j=k}^{\infty}\left|c_{j}\right|^{2} r^{2(j+2)} \\
& \quad \leq(p-\alpha)^{2}(A-B)^{2}+B^{2} \sum_{j=0}^{k-1}(j-p+1)^{2}\{\delta(n, j)\}^{2}\left|a_{j}\right|^{2} r^{2(j+1)} \tag{4.10}\\
& \quad \leq(p-\alpha)^{2}(A-B)^{2}+B^{2} \sum_{j=0}^{k-1}(j-p+1)^{2}\{\delta(n, j)\}^{2}\left|a_{j}\right|^{2}, \quad(0<r<1)
\end{align*}
$$

Letting $r \rightarrow 1$ - in (4.10), we obtain the inequality

$$
\begin{align*}
& \sum_{j=0}^{k}(j-p+1)^{2}\{\delta(n, j)\}^{2}\left|a_{j}\right|^{2}+\sum_{j=k}^{\infty}\left|c_{j}\right|^{2} \\
& \quad \leq(p-\alpha)^{2}(A-B)^{2}+B^{2} \sum_{j=0}^{k-1}(j-p+1)^{2}\{\delta(n, j)\}^{2}\left|a_{j}\right|^{2} \tag{4.11}
\end{align*}
$$

which may be simplified as

$$
\begin{align*}
& (k-p+1)^{2}\{\delta(n, k)\}^{2}\left|a_{k}\right|^{2} \\
& \quad \leq(p-\alpha)^{2}(A-B)^{2}-\left(1-B^{2}\right) \sum_{j=0}^{k-1}(j-p+1)^{2}\{\delta(n, j)\}^{2}\left|a_{j}\right|^{2} \tag{4.12}\\
& \quad \leq(p-\alpha)^{2}(A-B)^{2}, \quad\left(k \in \mathbb{N}_{0}\right) .
\end{align*}
$$

The main assertion of Theorem 4 follows immediately from (4.12).
Next we give a sufficient condition, in terms of the coefficients, for a function to be in the class $\Omega_{n, p}(A, B ; \alpha)$ when $-1 \leq B<0$.
Theorem 5. Let the function $f(z)$ defined by (1.1) be analytic in the punctured unit disk \mathcal{U}^{*}. Also let $-1 \leq B<0$. If

$$
\begin{equation*}
\sum_{k=0}^{\infty}(k-p+1)(1-B) \delta(n, k)\left|a_{k}\right| \leq(p-\alpha)(A-B) \tag{4.13}
\end{equation*}
$$

where $\delta(n, k)$ is defined by (1.5), then

$$
f \in \Omega_{n, p}(A, B ; \alpha), \quad(-1 \leq B<0 ; B<A \leq 1)
$$

The result is sharp with the extremal function $f(z)$ given by

$$
\begin{gather*}
f(z)=z^{-p}+\frac{(p-\alpha)(A-B)}{(k-p+1)(1-B) \delta(n, k)} z^{k-p+1} \tag{4.14}\\
\left(k \in \mathbb{N}_{0} ; k \neq p-1 ; p \in \mathbb{N} ;-1 \leq B<0 ; B<A \leq 1\right)
\end{gather*}
$$

Proof. Suppose that inequality (4.13) holds true. Then, for $z \in \mathcal{U}$, we find from (1.4) that

$$
\begin{align*}
\left|z^{p+1}\left(\mathcal{D}^{n+p-1} f(z)\right)^{\prime}+p\right| & =\left|\sum_{k=0}^{\infty}(k-p+1) \delta(n, k) a_{k} z^{k+1}\right| \tag{4.15}\\
& \leq \sum_{k=0}^{\infty}(k-p+1) \delta(n, k)\left|a_{k}\right| r^{k+1}
\end{align*}
$$

and

$$
\begin{align*}
& \left|\{p B+(p-\alpha)(A-B)\}+B z^{p+1}\left(\mathcal{D}^{n+p-1} f(z)\right)^{\prime}\right| \\
& \quad=\left|(p-\alpha)(A-B)+B \sum_{k=0}^{\infty}(k-p+1) \delta(n, k) a_{k} z^{k+1}\right| \tag{4.16}\\
& \quad \geq(p-\alpha)(A-B)+B \sum_{k=0}^{\infty}(k-p+1) \delta(n, k)\left|a_{k}\right| r^{k+1}
\end{align*}
$$

since $-1 \leq B<0(0<r<1)$. Letting $r \rightarrow 1$ - in (4.15) and (4.16), if we appropriately combine the resulting inequalities, we obtain

$$
\begin{align*}
& \left|z^{p+1}\left(\mathcal{D}^{n+p-1} f(z)\right)^{\prime}+p\right|-\left|\{p B+(p-\alpha)(A-B)\}+B z^{p+1}\left(\mathcal{D}^{n+p-1} f(z)\right)^{\prime}\right| \\
& \quad \leq \sum_{k=0}^{\infty}(k-p+1)(1-B) \delta(n, k)\left|a_{k}\right|-(p-\alpha)(A-B) \tag{4.17}\\
& \quad \leq 0
\end{align*}
$$

by virtue of condition (4.13). We thus find from (4.17) that

$$
\begin{equation*}
\left|\frac{z^{p+1}\left(\mathcal{D}^{n+p-1} f(z)\right)^{\prime}+p}{\{p B+(p-\alpha)(A-B)\}+B z^{p+1}\left(\mathcal{D}^{n+p-1} f(z)\right)^{\prime}}\right| \leq 1, \quad(z \in \mathcal{U}) \tag{4.18}
\end{equation*}
$$

which is easily seen to be equivalent to condition (1.11). Hence $f \in \Omega_{n, p}(A, B ; \alpha)$ under the hypotheses of Theorem 5 .

The equality in (4.13) is attained for the extremal function $f(z)$ given by (4.14), since

$$
\begin{equation*}
\left|\frac{z^{p+1}\left(\mathcal{D}^{n+p-1} f(z)\right)^{\prime}+p}{\{p B+(p-\alpha)(A-B)\}+B z^{p+1}\left(\mathcal{D}^{n+p-1} f(z)\right)^{\prime}}\right|=1, \quad(z=1), \tag{4.19}
\end{equation*}
$$

where $f(z)$ is given by (4.14).
Remark. The converse of Theorem 5 is not true. Consider the function $f(z)$ given by (1.1) for which the following condition holds true:

$$
\begin{align*}
& z^{p+1}\left(\mathcal{D}^{n+p-1} f(z)\right)^{\prime}=\frac{p+\{p B+(p-\alpha)(A-B)\} z}{1+B z}, \tag{4.20}\\
& (z \in \mathcal{U} ;-1 \leq B<0 ; B<A \leq 1 ; 0 \leq \alpha<p ; p \in \mathbb{N}) .
\end{align*}
$$

It is evident that $f \in \Omega_{n, p}(A, B ; \alpha)$. Furthermore, it is easily verified for this function that

$$
\begin{equation*}
a_{k}=\frac{(p-\alpha)(A-B)(-B)^{k}}{(k-p+1) \delta(n, k)}, \quad\left(k \in \mathbb{N}_{0} ; k \neq p-1 ; p \in \mathbb{N}\right) \tag{4.21}
\end{equation*}
$$

It follows from (4.21) that

$$
\begin{align*}
\sum_{k=0}^{\infty}(k-p+1)(1-B) \delta(n, k)\left|a_{k}\right| & =(p-\alpha)(A-B) \sum_{k=0}^{\infty}(1-B)(-B)^{k} \tag{4.22}\\
& >(p-\alpha)(A-B), \quad(-1 \leq B<0 ; B<A \leq 1),
\end{align*}
$$

which obviously contradicts condition (4.13) of Theorem 5.
Finally, we state a theorem which exhibits the fact that the class $\Omega_{n, p}(A, B ; \alpha)$ is convex. The proof is fairly straightforward and is left as an exercise for the interested reader.
Theorem 6. Suppose that each of the functions $f(z)$ and $g(z)$ is in the class $\Omega_{n, p}(A, B ; \alpha)$. Then the function $h(z)$ defined by

$$
\begin{equation*}
h(z):=\mu f(z)+(1-\mu) g(z), \quad(0 \leq \mu \leq 1) \tag{4.23}
\end{equation*}
$$

is also in the same class $\Omega_{n, p}(A, B ; \alpha)$.

REFERENCES

1. S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49, 109-115, (1975).
2. P.L. Duren, Univalent Functions, Volume 259, Grundlehren der Mathematischen Wissenschaften, SpringerVerlag, New York, (1983).
3. S. Owa, M. Nunokawa and H.M. Srivastava, A certain class of multivalent functions, Appl. Math. Lett. 10 (2), 7-10, (1997).
4. H.M. Srivastava and S. Owa, Editors, Current Topics in Analytic Function Theory, World Scientific, Singapore, (1992).
5. M.D. Ganigi and B.A. Uralegaddi, Subclasses of meromorphic close-to-convex functions, Bull. Math. Soc. Sci. Math. R.S. Roumanie, (N.S.) 33 (81), 105-109, (1989).
6. B.A. Uralegaddi and C. Somanatha, Certain classes of meromorphic multivalent functions, Tamkang J. Math. 23, 223-231, (1992).
7. H.S. Al-Amiri and P.T. Mocanu, On certain subclasses of meromorphic close-to-convex functions, Bull. Math. Soc. Sci. Math. R.S. Roumanie, (N.S.) 38 (86), 3-15, (1994).
8. N.E. Cho and S. Owa, On certain classes of meromorphically p-valent starlike functions, In New Developments in Univalent Function Theory, (Edited by S. Owa), (Japanese), Kyoto, August 4-7, 1992; Surikaisekikenkyusho Kokyuroku, Volume 821, pp. 159-165, Research Institute for Mathematical Sciences, Kyoto University, Kyoto, (1993).
9. M.K. Aouf and H.M. Srivastava, A new criterion for meromorphically p-valent convex functions of order alpha, Math. Sci. Res. Hot-Line 1 (8), 7-12, (1997).
10. S.R. Kulkarni, U.H. Naik and H.M. Srivastava, A certain class of meromorphically p-valent quasi-convex functions, Pan Amer. Math. J. 8 (1), 57-64, (1998).
11. I.S. Jack, Functions starlike and convex of order α, J. London Math. Soc. 3 (2), 469-474, (1971).
12. S.S. Miller and P.T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65, 289-305, (1978).
13. Z. Nehari, Conformal Mapping, McGraw-Hill, New York, (1952).
