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Abstract With an aim to enhance the photocatalytic activity, Pt loaded TiO2–Al-MCM-41 cata-

lysts with high surface area were synthesized by a multistep route. The waste of the rice processing,

rice husk (RH), was used as the precursor for the extraction of silica. The diffuse reflectance and

photoluminescence spectroscopy revealed the extension of the absorption edge in the visible region

and exciton trapping nature of the dispersed platinum. The structural analysis was carried out by

XRD, whereas X-ray photoelectron spectroscopy identified the chemical states of the components

of the synthesized powders. The BET surface area measurements revealed the reduction in the sur-

face area and pore volume with the increasing platinum loading. TEM micrographs showed the uni-

form distribution of TiO2 and Pt nanoparticles at the surface of Al-MCM-41. The photocatalytic

efficiency of the synthesized powders as photocatalysts was obtained for the removal of 100 ppm

CN� from aqueous solution in fluorescent blue light exposure. Compared to unsupported TiO2,

the Pt-loaded catalysts exhibited substantially high activity for the removal of CN�. A plausible

mechanism for the removal of cyanide ions was proposed. The catalysts showed excellent stability

and reproducibility in the successive use.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1 The chemical composition of RHA determined by

XRF.

Chemical compositions of RHA wt%

SiO2 89.00

Al2O3 1.20

Fe2O3 1.28

K2O 1.22

CaO 1.00

C 18.24

2 M.W. Kadi et al.
1. Introduction

Photocatalysis is viewed as the potential remediation technology for

reducing the concentration of hazardous and carcinogenic pollutants

in domestic and industrial wastewater streams (Qamar et al., 2015;

Aslam et al., 2016a). Although no doubt TiO2 has long been consid-

ered as an attractive choice because of its physicochemical properties,

availability and low cost, its transparency in the visible region restricts

its widespread applications (Cao et al., 2013; Farrokhi et al., 2013).

Successive efforts with the variable results were reported in the litera-

ture for extending its spectral response and enhancing its photocat-

alytic activity in the visible region. The incorporation and loading of

the noble metals, transition metals, and metals, in an attempt to

shorten the band gap and make the material an efficient photocatalyst

when exposed to visible light, is an area of interest in this regard (Deng

et al., 2012; Mohamed and Baeissa, 2013). Another dimension is the

dispersion of nanoparticles of active photocatalysts on supports with

a high specific surface area for better interaction of substrate and har-

vesting of incident photons. The use of advantageous physiochemical

properties of the support in the reaction mixture is regarded as an

additional advantage (Fan et al., 2008; Huang et al., 2008; Xie et al.,

2007, 2008; Yuan et al., 2005, 2008).

Ordered mesoporous materials provide a support medium for

metal oxide catalysts and dopants for enhancement of their efficiency.

Since its discovery in 1992, MCM-41 has been used as a catalyst in

many reactions with the incorporation of metals into its structure.

MCM-41 has attracted particular attention and widely used as catalyst

hosts for nanomaterials synthesis because of their high specific surface

area, uniform pore size and ordered mesoporous channels. It has been

documented that the insertion of Al in MCM-41 results in the intro-

duction of ample acidic sites (Ciesla and Schuth, 1999; Junges et al.,

1995).

Mesoporous aluminosilicate, Al-MCM-41, is well known to show

remarkable acidic properties. Since its pore sizes are larger than those

of zeolites, bulky organic substrates can contact acidic sites of meso-

porous aluminosilicates. Therefore, Al-MCM-41 molecular sieves have

been used to catalyze several organic transformations under vapor or

liquid phase reaction conditions (Ito et al., 2011; Iwanami et al.,

2012; Ma et al., 2012; Selvaraj et al., 2005; Taguchi and Schüth,

2005). The high specific surface area of Al-MCM-41 makes it a suitable

support for photocatalytic processes. Another important research

effort is the exploration of low-cost materials, in particular, waste

materials for the production of a product of value.

Although cyanide leaching remains the overwhelming option for

treating gold ores because of its economy and simplicity of the process,

it suffers from toxic and its use poses long-term environmental and dis-

posal problems (Dadgar, 1989; Hiskey and Atluri, 1988). Cyanides are

used in a number of chemical synthesis and metallurgical processes (as

simple salts or cyanide complexes). Cyanides are highly toxic and must

be destroyed or removed from wastewaters prior to discharge. The

most common method for treating free or simple cyanide is the alka-

line chlorination process. However, chlorination of cyanide results in

highly toxic intermediates of cyanogen chloride. These compounds

together with the residual chloride create additional environmental

problems. Consequently, there is a growing need for alternative,

non-chlorine methods for destroying cyanides.

The current study was designed to develop an efficient high surface

area visible light active photocatalyst for the removal of highly toxic

cyanide ions from water. Al-MCM-41 due to its characteristic surface

area and the availability of the surface charges is regarded as an effec-

tive support for the better dispersion, spectral response and enhanced

absorption of photocatalysts. Adopting an innovative approach, Al-

MCM-41 was derived from the silica extracted from the invaluable rice

husk. Titania (TiO2), was loaded on the Al-MCM-41 as the base pho-

tocatalyst followed by incorporation of Pt to produce an efficient pho-

tocatalyst with a wide-enough band gap that allows the direct

absorption of visible photons. The efficiency of the prepared catalyst

was tested to remove CN� ion from model wastewater.
Please cite this article in press as: Kadi, M.W. et al., The effect of Pt nanoparticles d
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2. Experimental section

The details of the raw materials, chemicals and procedures
adopted for the extraction of silica from waste RH, synthesis

of Al-MCM-41(aluminum-silicates), incorporation of TiO2

nanoparticles (NPs) into the synthesized Al-MCM-41, loading
of synthesized TiO2–Al-MCM-41 with Pt NPs and evaluation

of the photocatalytic activity of the synthesized catalysts for
the removal of cyanide (CN�) ions from the aqueous medium
are summarized below.

2.1. Silica extraction

The RH obtained from the rice field was thoroughly washed
with tap water initially and finally rinsed with deionized water

for the removal of accumulated dust and soil. The other chem-
icals used for the extraction of silica from RH were HCl (37%,
Merck), sodium aluminate (54% Al2O3 + 41% Na2O, techni-

cal grade), NaOH (99%, Carlo-Erba) and KOH (85%, Sigma–
Aldrich).

The washed and dried RH was refluxed with HCl to reduce

the metallic impurities to the minimal level (Chang et al.,
2009). The extraction of silica as sodium silicate with other
organic moieties was carried out by stirring the acid treated
RH (after drying) with sodium hydroxide solution (Adam

and Fua, 2008). The resultant sodium silicate was converted
to silica by adding appropriate amounts of mineral acid. The
mixture of converted sodium silicate and allied organics from

the rice husk was pyrolyzed at 800 �C at a heating and cooling
rate of 5 �C/min for 6 h in a muffle furnace (Carbolite) to
remove the organic contents. The ashing parameters were sim-

ilar to those already described in the literature (Chandrasekhar
et al., 2006). The processed RH to RHA was subjected to X-
ray fluorescence (XRF) analysis for the estimation of the ele-

mental composition of the probable ingredients using an
XRF spectrophotometer (Ultima-IV, Rigaku Corporation,
Tokyo, Japan). The composition of the as-obtained RHA is
presented in Table 1.

2.2. Synthesis of Al-MCM-41

The silica extracted from the RH was used to synthesize Al-

MCM-41. In a representative synthesis, 53 g silica (synthesized
in the previous step) was dissolved in 100 cm3 of NaOH solu-
tion (prepared by dissolving 4.4 g of NaOH in 100 ml distilled

water) and stirred with 6 g cetyl trimethyl ammonium bromide
(CTAB) for one hour and referred to as ‘‘Mixture A”. The
‘‘Mixture B” was prepared by stirring 1.0 g Al2(SO4)3 (98%,

Merck) in 20 cm3 of 0.5 cm3 concentrated H2SO4 solution till
istribution on the removal of cyanide by TiO2 coated Al-MCM-41 in blue light
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Figure 1 The comparison of the solid state absorption spectra of

Al-MCM-41, TiO2, Ti–Al-MCM-41, 0.05% Pt/Ti–Al-MCM-41,

0.10% Pt/Ti–Al-MCM-41, 0.15% Pt/Ti–Al-MCM-41 and 0.20%

Pt/Ti–Al-MCM-41. The inset shows the exploded view in 370–

470 nm region.
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clear solution. The mixture B was added to the mixture A
under constant stirring to obtain a gel. The gel was transferred
to autoclave for hydrothermal treatment under autogenous

pressure at 110 �C, for a period of 72 h. The products were fil-
tered, washed with deionized water and dried at 110 �C for
24 h. The as-synthesized samples were calcined at 540 �C for

10 h. The heating and cooling rates were maintained at 5 �C/
min.

2.3. Synthesis of TiO2–Al-MCM-41

The TiO2–Al-MCM-41 was synthesized by conventional ion
exchange technique. In a typical synthesis, 1.0 g of Al-MCM-

41 was soaked in 100 cm3 solution of 0.03 M potassium
titanium-oxalate and stirred for 24 h. The Ti4+-exchanged
Al-MCM-41 zeolite sample was filtered, washed with double
distilled water to remove the physically adsorbed Ti3+ species

and dried for 24 h in hot air oven at 100 �C. The repeated
washing is essential to avoid possible aggregation of Ti4+ spe-
cies on the external surface during the calcination process. The

resulted Ti4+-exchanged zeolite (TiO2–Al-MCM-41) was cal-
cined at 500 �C for 5 h with a heating rate of 5 �C/min. The
synthesized TiO2 loaded Al-MCM-41 was labeled as ‘‘Ti–Al-

MCM-41” in the figures and the coming sections.

2.4. Synthesis of Pt/TiO2–Al-MCM-41 catalyst

Incipient wetness impregnation was used to introduce different
wt% of Pt on the surface of Ti–Al-MCM-41. For impregnat-
ing Pt on Ti–Al-MCM-41, the appropriate amount of Ti–Al-

MCM-41 was soaked in 100 cm3 of a chloroplatinic acid hex-
ahydrate solution and stirred for 24 h at room temperature.
The excessive H2O was removed by a rotary evaporator. The

Ti–Al-MCM-41 loaded with 0.05%, 0.10%, 0.15% and
0.20% Pt were synthesized and labeled as 0.05% Pt/Ti–Al-
MCM-41, 0.10% Pt/Ti–Al-MCM-41, 0.15% Pt/Ti–Al-

MCM-41 and 0.20% Pt/Ti–Al-MCM-41.

2.5. Characterization of synthesized catalysts

The solid-state absorption spectra of the synthesized powders
in the wavelength range of 200–800 nm were recorded by a
Perkin Elmer UV–visible diffuse reflectance spectrophotome-
ter (Lambda 650). The band edge positions of the catalysts

were estimated by plotting (F(R) � ht)1/2 versus photon energy
(ht), where F(R) is the Kubelka–Munk transformation of %R
data. The photoluminescence (PL) emission spectra of the syn-

thesized powders were recorded by a fluorescence spectrofluo-
rophotometer, RF-5301 PC, Shimadzu, Japan, at an excitation
wavelength of 325 nm while the fluorescence emissions were

recorded in the range of 350–470 nm. These synthesized pow-
ders were characterized by X-ray diffraction, using an Ultima-
IV, Rigaku Corporation, Tokyo, Japan, diffractometer with

Cu Ka radiation (k = 1.5418 Å wavelength at 40 kV accelerat-
ing voltage and 30 mA current).

2.6. Photocatalytic studies

The procedure adopted for the estimation of the photocat-
alytic activity of the synthesized catalysts in the removal of
cyanide ions (CN�) under blue light irradiation was similar
Please cite this article in press as: Kadi, M.W. et al., The effect of Pt nanoparticles d
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to that reported earlier (Baeissa, 2014). In a typical experi-
ment, a Pyrex glass cylindrical batch reactor equipped with a
150 W blue fluorescent lamp and a UV cutoff filter was used

for the photocatalytic studies. In a typical experiment,
300 cm3 of the photocatalyst–cyanide suspension containing
the optimized amount of the catalysts was exposed to fluores-

cent blue light. The optimization of the amount of the catalyst
was performed prior to actual photocatalytic studies. The sus-
pension was kept in dark to establish the adsorption and des-

orption equilibrium. To avoid the evolution of HCN gas, prior
to exposure, the pH of the cyanide solution was adjusted to
10.5. The experiments were performed in the natural environ-
ment without applying any restriction of pressure and temper-

ature. The samples were collected from the reactor every 5 min
in the initial 20 min followed by 10 min till 70 min. After
removing the powder by using the disposable 0.22 lm syringe

filters, the CN�
(aq) concentration was estimated by volumetric

titration with AgNO3, using KI as titrant. The removal effi-
ciency of CN� was measured by the comparison of the change

in concentration of cyanide ion before and after the exposure.

3. Results and discussion

The solid state absorption spectra of Al-MCM-41, TiO2, Ti–
Al-MCM-41 and Ti–Al-MCM-41 loaded with 0.05%, 0.1%,
0.15% and 0.20% Pt nanoparticles are presented in Fig. 1.

Al-MCM-41 was found completely transparent in the scanning
wavelength range of 200 nm to 800 nm. Compared to pure
TiO2, a redshift in the absorption edge was observed for
TiO2 loaded Al-MCM-41. Probably the better dispersion of

TiO2 at the surface of Al-MCM-41 compared to the bulk
resulted in the better spectral response. The view of the nor-
malized absorption spectra of all the powders is presented in

the inset of Fig. 1, where an extension of the absorption edge
in the visible region is observed with the increase of Pt loading.
As the Pt nanoparticles absorb the light with its wavelength

below 300 nm (Luo and Imae, 2007), the direct absorption of
istribution on the removal of cyanide by TiO2 coated Al-MCM-41 in blue light
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Figure 2 The PL spectra of TiO2, Ti–Al-MCM-41, 0.05% Pt/Ti–

Al-MCM-41, 0.10% Pt/Ti–Al-MCM-41, 0.15% Pt/Ti–Al-MCM-

41 and 0.20% Pt/Ti–Al-MCM-41.
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photons cannot be contributed by surface Pt nanoparticles but
by the modified band structures of the surface TiO2. The con-
duction band of TiO2 is dominantly composed of 3d orbitals of

Ti4+ whereas the O2� (2p) levels constitute the valence band.
Probably, the presence of electron rich Pt (5d9 6s1) in the vicin-
ity provides the active sites for the low energy transitions from

the conduction band of TiO2 to Pt at the surface. The magni-
tude of the absorption increases with the increase in the surface
density of Pt nanoparticles. Additionally, the role of d–d tran-

sitions between the closely spaced Ti4+ and Pto states for
enhanced absorption cannot be neglected. The band edges of
the synthesized powders were obtained by plotting (F(R) �
ht)1/2 versus photon energy (ht), where F(R) is the Kubelka–

Munk transformation of the %R (reflectance) data. The eval-
uated band gaps of the synthesized powders are presented in
Table 2. The evaluated band gap value of �3.1 eV for TiO2

powder was in accordance with the literature values
(Navarro et al., 2009). A gradual decrease in the band gap
was observed with the increasing Pt loading.

The comparison of the PL spectra of Pure TiO2, Ti–Al-
MCM-41 and 0.05%, 0.1%, 0.15% and 0.20% Pt nanoparti-
cles loaded Ti–Al-MCM-41 powders is presented in Fig. 2.

For pure TiO2, the intense emission band appears at 402 nm
(3.1 eV) that corresponds to the de-excitation from
Ti4+(3d) ? O(2p). The observed value is in accordance with
the literature for rutile TiO2 (Abazović et al., 2009) and further

confirms the evaluation of the band gaps by UV–visible diffuse
reflectance spectroscopy. Due to the probable matrix and the
dispersion effect, a redshift of 9 nm in the emission band was

observed for TiO2 loaded Al-MCM-4. For the Pt-loaded pow-
ders, a substantial decrease in the intensity of the emission
band at 411 nm was noticed. This observation is valuable from

photocatalysis as it suggests the electron trapping ability of the
species present in the vicinity. The successive decrease in the
intensity of the emission band clearly indicates the enhanced

charge trapping with the increasing Pt loading. A significant
decrease of �60% in the intensity for 0.20% Pt/Ti–Al-
MCM-41 was observed.

The XRD patterns of Al-MCM-41, Ti–Al-MCM-41 and

0.05%, 0.1%, 0.15% and 0.20% Pt nanoparticles loaded Ti–
Al-MCM-41 powders in the 2h range of 2–8� are presented
in Fig. 3. The characteristic reflections in the XRD pattern

of MCM-41 correspond to (100), (110) and (200) hexagonal
planes and are regarded as the characteristic of highly ordered
MCM-41 (Savidha et al., 2003). The sharpness of the (100)

reflection in the XRD pattern of the Al-MCM-41 reveals that
the insertion of Al does not disturb the ordered hexagonal
structure (Chang et al., 2011). The reduction in peak intensity
of Ti–Al-MCM-41 sample compared with that of Al-MCM-41
Table 2 The evaluated band gaps of the synthesized materials.

Sample Band gap energy (eV)

Al-MCM-41 Non-absorptive

Ti–Al-MCM-41 3.15

TiO2 3.02

0.05% Pt/Ti–Al-MCM-41 2.94

0.10% Pt/Ti–Al-MCM-41 2.89

0.15% Pt/Ti–Al-MCM-41 2.79

0.20% Pt/Ti–Al-MCM-41 2.72
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indicates the surface coverage of MCM-41 with the deposition
of TiO2. Although the successive decrease in the intensity indi-
cated the increased surface coverage by Pt nanoparticles, how-

ever, the retention in the peak position negates any significant
change in the ordered MCM-41 structure. Due to the highly
ordered crystalline nature and low concentration, the reflec-

tions due to TiO2 were masked by that of Al-MCM-41. The
careful analysis of very low-intensity reflections at 25.23�,
37.56� and 48.32� revealed the formation of anatase phase
(JCPDS 21-1272). Among the additional reflections, the reflec-

tion at 2h values of 27.4� evidenced the formation of rutile
TiO2 in the minor proportion.

The variations in the BET specific surface area (m2/g) and

the pore volumes (cm3/g) of the synthesized powders in com-
parison with A-MCM-41 are presented in the Fig. 4. All the
synthesized powders exhibit high BET surface area of

>800 m2/g, which is the characteristic of mesoporous materi-
als. Compared to Al-MCM-41, a successive decrease in the
surface area for both TiO2 and Pt deposited TiO2 was noticed,
suggesting the independence of the nature of the deposited
Figure 3 The XRD patterns of Al-MCM-41, Ti–Al-MCM-41,

0.05% Pt/Ti–Al-MCM-41, 0.10% Pt/Ti–Al-MCM-41, 0.15% Pt/

Ti–Al-MCM-41 and 0.20% Pt/Ti–Al-MCM-41 in the 2h range of

2–8�.

istribution on the removal of cyanide by TiO2 coated Al-MCM-41 in blue light
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materials. The decrease of pore volumes was also observed
with TiO2 loading on the Al-MCM-41 as well as the increase
of Pt loading on Ti–Al-MCM-41 for all the catalysts as a result

of the coverage of the pores by the dispersed entities.
The deconvoluted peaks of Al2p, Si2p, Ti2p, O1s and Pt4f,

and the components of Pt dispersed Ti–Al-MCM-41, acquired

for 0.20% Pt loaded sample are presented in Fig. 5a–e. The
deconvolution of Al2p revealed a single peak centered at
74.12 eV and represented the Al in 3+ oxidation state. Simi-

larly, a single Si2p peak positioned at 102.92 eV was desig-
nated to Si in 4+ oxidation states in zeolites. Due to the
spin–orbit coupling, the Ti2p appears as a doublet composed
of Ti2p3/2 and Ti2p1/2. The deconvolution of both the compo-

nents reveals no additional peak. The Ti2p1/2 and Ti2p3/2
appeared at the binding energy values of 464.33 eV and
458.53 eV. The observed values were in close agreement with

those reported for Ti4+ in TiO2 (NIST-XPS database). The
deconvolution of the high-resolution scanning of O1 s core
levels reveals additional peaks due to the various chemical

environments. The intense peak centered at 531.53 eV was
assigned to the hydroxyl groups associated with Al3+ whereas
the low-intensity peak at 532.8 eV was identified as the oxygen

groups attached to Si4+. Another low-intensity peak at
529.0 eV was assigned to the oxygen grouped with Ti4+. The
deconvolution of the split Pt4f core levels shows no additional
peak except for the split Pt4f7/2 at 71.4 eV and Pt4f5/2 at

74.62 eV. The peak positions of the Pt4f split levels confirm
the presence of Pt in zero valent states.

The comparison of the HRTEM images of Al-MCM-41,

Ti–Al-MCM-41 and Pt loaded Ti–Al-MCM-41 powders is
presented in Fig. 6. The image of Al-MCM-41 shows the uni-
formly shaped particles of variable sizes ranged between 10

and 30 nm. The TEM image of Ti–Al-MCM-41 shows that
the loaded TiO2 particles, pointed by the yellow arrows, are
prominent at the surface of Al-MCM-41. The TiO2 particles

with an estimated particle size of <10 nm are well dispersed
on the whole surface. As pointed by the red arrows, the images
of the Pt-loaded Ti–Al-MCM-41 powder revealed the uniform
distribution of Pt nanoparticles. An increase in the particle

density can be observed with the increased Pt loading. No sig-
Figure 4 The variations in the BET surface area (m2/g) and the

pore volumes (cm3/g) of the synthesized powders in comparison

with Al-MCM-41.

Please cite this article in press as: Kadi, M.W. et al., The effect of Pt nanoparticles d
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nificant change in the morphology of Al-MCM-41 particles
was observed with TiO2 or Pt loading.

The aqueous phase photocatalysis in the natural environ-

ment is based on the generation of the reactive oxygen species
(ROS) with the absorption of photons by the semiconductor
particles. The superoxide anion radicals (O2

��) and hydroxyl

radicals (�OH) are regarded as the primary ROS generated as
a consequence of oxygen reduction and water oxidation,
respectively. The suitability of the potential of the valence

and conduction band edges is the crucial criterion that predicts
the populations of these species in the medium. Another
important parameter is the pH value of the system that sup-
ports the lifetime of these species in the system. The generation

of these ROS can be represented by the following equations
(Aslam et al., 2014, 2016b; Hameed et al., 2015):

ðO2Þads þ e�cb ! O��
2 ð1Þ

H2Oþ hþvb ! H2O
þ ð2Þ

H2O
þ ! HO� þHþ ð3Þ

Although the further interaction of these primary ROS with

the water molecules generates a cascade of a variety of other
species including H2O

� and H2O2, their specific role in interact-
ing with the substrates present in the system is not well-

defined. Besides oxidizing the adsorbed H2O molecules, the
oxidation of the adsorbed substrates by the photon to generate
holes (h+) is also well documented (Hoffmann et al., 1995).

Prior to the practical photocatalytic studies, rough experi-
ments with the minimal amount of 0.5 g/l of the catalysts were
carried out to approximate the optimum performance catalyst.
Based on the rough estimation, the amount of the catalyst for

prime removal of CN� ion in the total span of 60 min was
optimized by performing the experiments with the variable
amounts of the 0.20% Pt loaded catalyst ranging from 0.4

g/l to 1.6 g/l with a step of 0.2 g/l till 1.2 g/l and 0.4 g/l after-
ward. The comparison of time-dependent CN� removal profiles
for each catalyst loading is presented in Fig. 7. A gradual incre-

mental linear increase in the removal efficiency was observed
with the increasing catalyst loading till 1.2 g/l. Although the
removal of CN� experiences a mild increase afterward for
1.6 g/l loading, the increment was not as substantial as in the

case of 1.2 g/l. The increased activity elaborated the enhanced
absorption of photons with the increasing catalyst particle
density that is saturated at the catalyst loading of 1.2 g/l.

The further increase beyond 1.2 g/l probably results in the
decrease of the total number of effective photons due to
the shielding by the excessive catalyst particles. To elucidate

the above discussion further, the comparison of the variations
in the removal of CN� ions at the intervals of 10 min, 30 min
and 60 min as a function of the catalyst loading is presented in

the inset of Fig. 7.
The activity of the synthesized photocatalysts was com-

pared for the removal of cyanide ions in the aqueous phase.
The experiments were performed in the natural experiment.

Based on the observations of the preceding study, the opti-
mized amount of 1.2 g/l of each catalyst was used in the pho-
tocatalytic removal experiments. The dark experiments

revealed a comparatively high adsorption of CN� substrate
on pure and Pt-dispersed Ti–Al-MCM-41 catalysts as com-
pared to pure TiO2 powder. Compared to �13% for the bare

TiO2, �21% adsorption of CN� ions was observed on pure
istribution on the removal of cyanide by TiO2 coated Al-MCM-41 in blue light
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Figure 5 The de-convoluted narrow angle core level XPS scans of (a) Al2p (b) Si2p (c) Ti2p (d) O1s and (e) Pt4f acquired for 0.20% Pt/

Ti–Al-MCM-41 for the estimation of variations in oxidation states.
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and Pt-dispersed Ti–Al-MCM-41 powders. The higher surface
area of the Al-MCM-41 supported catalysts with significantly

higher number of active sites compared to pure TiO2 powder
can be regarded as the plausible cause of this effect. Interest-
ingly, no significant effect of the Pt dispersion was observed.
The comparison of the photocatalytic removal of CN� ions

as a function of time over unsupported TiO2, Ti–Al-MCM-
41 and Pt dispersed Ti–Al-MCM-41 under blue light (450–
500 nm) irradiation, is presented in Fig. 8a. In the initial
Please cite this article in press as: Kadi, M.W. et al., The effect of Pt nanoparticles d
exposure. Arabian Journal of Chemistry (2016), http://dx.doi.org/10.1016/j.arabjc.2
10 min of blue light exposure, the unsupported TiO2 removed
�3%, whereas Ti–Al-MCM-41, 0.05% Ti–Al-MCM-41,

0.10% Ti–Al-MCM-41, 0.15% Ti–Al-MCM-41 and 0.20%
Ti–Al-MCM-41 removed �6%, �28%, �43%, �51% and
�52% of the CN� substrate, respectively. In half-hour of
exposure, �6% of the CN� was removed by unsupported

TiO2, whereas double amount was removed by TiO2 dispersed
on Al-MCM-41. The removal of the CN- in the same period
for 0.05% Ti–Al-MCM-41, 0.10% Ti–Al-MCM-41, 0.15%
istribution on the removal of cyanide by TiO2 coated Al-MCM-41 in blue light
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Figure 6 The HRTEM images of Al-MCM-41, Ti–Al-MCM-41 and Pt loaded Ti–Al-MCM-41 catalysts. The yellow arrows in the image

of Ti–Al-MCM-41 identify the TiO2 NPs whereas the red arrows highlight the Pt NPs.
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Ti–Al-MCM-41 and 0.20% Ti–Al-MCM-41 was 44%, 63%,
75% and 76%, respectively. Compared to the 14% and 21%

removal for the unsupported and Al-MCM-41 supported
TiO2, the Pt-loaded Ti–Al-MCM-41 removed 66%, 85%,
99.5% and 100% of CN� ions in 70 min of blue light exposure.

The effect of the Pt loading on the rate of CN� removal was
estimated by applying the Langmuir–Hinshelwood kinetic
model for pseudo-first order reactions. The plots of the ln

(Co/C) versus the blue light exposure time are presented in
Fig. 8b. The validation of the kinetic model with the linear
increase in the rate of removal of CN� ions was observed
for pure TiO2, Ti–Al-MCM-41, 0.05% Pt/Ti–Al-MCM-41

and 0.10% Pt/Ti–Al-MCM-41 catalysts, whereas a deviation
was observed for 0.15% and 0.20% Pt loaded Ti–Al-MCM-
41. These annotations led to the conclusion that the Lang-
Please cite this article in press as: Kadi, M.W. et al., The effect of Pt nanoparticles d
exposure. Arabian Journal of Chemistry (2016), http://dx.doi.org/10.1016/j.arabjc.2
muir–Hinshelwood kinetic model does not hold well for fast
experiments. Interestingly the rate of CN� removal by the

TiO2 dispersed on Al-MCM-41 was higher than that of the
unsupported TiO2. The higher surface area of Ti–Al-MCM-
41 as well as the extension of the absorption edge in the visible

region (the inset of Fig. 1), regulates a higher number of pho-
tons for the photocatalytic process. The higher removal rate
indicates the supporting role of the Pt nanoparticles dispersed

Ti–Al-MCM-41 in enhancing the photocatalytic activity. The
observation suggests that the surface Pt nanoparticles facilitate
the enhanced absorption of photons by lowering the conduc-
tion band edge and also serve as the trap and transfer centers

for the excited electrons. The photoexcited electrons from the
conduction band of the TiO2 are initially trapped in
5d9 + 6s1 states of the Pt and finally transferred to the
istribution on the removal of cyanide by TiO2 coated Al-MCM-41 in blue light
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Figure 7 The effect of the catalyst loading (0.20% Pt/Ti–Al-

MCM-41) on the photocatalytic removal (%) whereas the inset

shows the variations in percentage cyanide with the changing

catalyst loading.

Figure 8 The effect of the Pt loading on the (a) percentage

removal and (b) the rate of removal of cyanide ions.

Scheme 1 The plausible mechanism of CN� removal.
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adsorbed O2. The reduction of the adsorbed oxygen (Eq. (1))
results in the formation of superoxide anion radicals (O2

��).

The desorption of the superoxide anion radicals (O2
��) from
Please cite this article in press as: Kadi, M.W. et al., The effect of Pt nanoparticles d
exposure. Arabian Journal of Chemistry (2016), http://dx.doi.org/10.1016/j.arabjc.2
the surface and their mobility in the solution is already estab-
lished (Kwon and Yoon, 2009). As a consequence of the trap-
ping of the conduction band electrons by the Pt states, the

extended lifetime of the photogenerated holes (h+) results in
the enhanced production of hydroxyl radicals (�OH) by water
oxidation (Eqs. (2) and (3)). The escalated rate of CN�

removal for the higher Pt loadings of 0.15% and 0.20%, espe-
cially with the decreasing concentration indicates the availabil-
ity of higher ROS for each CN�. The above-mentioned

discussion can be summarized pictorially as given in Scheme 1.
A few studies are available in the literature that describes

the photocatalytic removal of CN� ions from the aqueous
medium. Approximately all the studies were based on the nar-

ration of the results or the parametric effect on the photocat-
alytic removal of cyanide. The removal mechanism is rarely
discussed. The illustrated mechanism in the literature

(Ibrahim et al., 2013; Phillips, 1983) for the oxidation of
CN� in the presence of O2 is narrated by the set of equations
below:

TiO2 þ 2hm ! TiO2ðhþ þ 2e�Þ ð4Þ

1

2
O2 þ 2e�cb þH2O ! 2HO� ð5Þ

2HO� þ 2hþ ! 2HO� ð6Þ

CN� þ 2HO� ! OCN� þH2O ð7Þ

2OCN� þO2 ! CO2 þN2 ð8Þ
Based on the lifespan and generation mechanism of hydro-

xyl radicals (Pichat, 2013), the above-mentioned mechanism

does not properly validate the removal of CN� ions. Consider-
ing the negatively charged nature of the cyanide ions, the pres-
ence of the ROS (superoxide anions and hydroxyl radicals)

and the photon generated oxidation site (i.e. h+ in the photo-
catalytic system), it might be presumed that oxidation is the
only plausible pathway for the removal of CN� ions. It is

anticipated that the removal of CN� in the photocatalytic sys-
tem is a multistep process initiated by the interaction of CN�

ions with the photogenerated holes (h+). This leads to the for-
mation of the neutral CN� radicals that are further interacted

by the superoxide anion and hydroxyl radicals for mineraliza-
tion. The same may be illustrated by the following equations:

CN� þ hþ ! CN� ð9Þ

CN� þO��
2 ! CO2 þNO�

3 ð10Þ
istribution on the removal of cyanide by TiO2 coated Al-MCM-41 in blue light
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Figure 9 The photocatalytic performance and reusability of the

catalyst (0.20% Pt/Ti–Al-MCM-41) in successive five cycles.
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As presented in Fig. 9, the stability and reusability of 0.20%

Pt loaded Ti–Al-MCM-41 was investigated for five successive
cycles under identical experimental conditions. The catalyst
shows a stable response with the acceptable variations in the

activity.

4. Conclusion

The study demonstrated that the waste materials such as rice husk can

be utilized for the extraction of the raw materials for the valuable

products. The Al-MCM-41 derived from the silica, extracted from

the rice husk, was compatible with that produced by the costly chem-

ical. The distribution of TiO2 at the high surface area material such as

Al-MCM-41 resulted in the enhanced activity compared to low surface

area unsupported powder. The presence of the Pt nanoparticles in the

low fraction at the surface of TiO2 supported on the high surface area

Al-MCM-41 not only extends its light spectral response but also facil-

itates the enhanced production of ROS for its higher photocatalytic

CN� removal efficiency. Along with the ROS generated in the system,

the photogenerated holes also participate in the CN� removal process.

Acknowledgments

This project was funded by the Deanship of Scientific Research
(DSR), King Abdulaziz University, Jeddah, under Grant No.
50-130-35-HiCi. The authors, therefore, acknowledge with

thanks DSR for technical and financial support.

References
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