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The enumeration of points on (or off) the union of some linear or affine subspaces
over a finite field is dealt with in combinatorics via the characteristic polynomial
and in algebraic geometry via the zeta function. We discuss the basic relations
between these two points of view. Counting points is also related to the l-adic
cohomology of the arrangement (as a variety). We describe the eigenvalues of the
Frobenius map acting on this cohomology, which corresponds to a finer decomposi-
tion of the zeta function. The l-adic cohomology groups and their decomposition into
eigenspaces are shown to be fully determined by combinatorial data. Finally, it is
shown that the zeta function is determined by the topology of the corresponding
complex variety in some important cases. � 1997 Academic Press

1. INTRODUCTION

This paper is concerned with subspace arrangements over general (in
particular finite) fields and with their enumerative and cohomological
invariants. In this introduction we will summarize the main results. We
begin with a review of some algebraic geometry.

Let V be a d-dimensional projective variety over the field Fq of order
q= p:. (We will not assume that a variety is irreducible.) For each
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extension field Fqs , s�1, let Ns be the number of points on V over Fqs . The
zeta function of V is the formal power series

Z(V ; t)=exp \ :
s�1

Ns
ts

s+ .

Let l be a prime number, l{ p, and Ql the field of l-adic numbers.
Let Hi (V, Ql) be the l-adic e� tale cohomology groups of Grothendieck
[D4, G4, G5]. These are finite-dimensional vector spaces over Ql , a field
of characteristic zero. Furthermore, Hi (V, Ql)=0 unless 0�i�2d.

The Frobenius map F : V � V, defined by (x1 , ..., xn) [ (xq
1 , ..., xq

n),
induces a linear action F : Hi (V, Ql) � Hi (V, Ql) for each 0�i�2d. Let
:ij be the eigenvalues of this map. The Grothendieck�Lefschetz fixed point
formula [G5] implies that Ns=�i, j (&1) i :s

i, j , which is equivalent to the
decomposition of the zeta function,

Z(V ; t)=
P1(t) P3(t) } } } P2d&1(t)

P0(t) P2(t) } } } P2d (t)
, where Pi (t)=`

j

(1&:ij t).

Note that Pi (t) # Ql[t], and this polynomial might, seen a priori, depend
on l. However, this is not the case and the coefficients of Pi (t) are in fact
algebraic integers. Deligne [D1] showed that |:ij |=qi�2 if V is smooth.

In this paper we determine the polynomials Pi (t) for the case when V is
a union of linear subspaces. It turns out that Pi (t) is then determined by
combinatorial data in the following way.

Let A=[K1 , ..., Kt] be an arrangement of linear subspaces in projective
(n&1)-space over Fq , and let VA denote their union (a singular projective
variety). Let LA denote the partially ordered set of all nonempty inter-
sections Ki1

& } } } & Kim
, 1�i1< } } } <im�t, ordered by reverse inclusion.

Let ; � j
i denote the rational i th Betti number of the (simplicial) order

complex homology of the subposet [x # L A | j�dim(x)<n&1].

Theorem 1.1. For the union of a d-dimensional projective subspace
arrangement A over Fq we have

Pi (t)= `
d

j=0

(1&q jt); � j
i&2 j.

The formula can be seen as a sharpening or Frobenius-equivariant ver-
sion of a recent formula for Hi (VA , Ql) due to Yan [Ya]. Theorem 1.1
will be proved with a cohomological argument that is valid for arbitrary
fields. In particular, a unified setting will be given for earlier results such as
Yan's theorem and the complex version of Ziegler and Z8 ivaljevic� [ZZ].
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One can also consider l-adic cohomology and eigenvalues of Frobenius
on the complement (rather than the union) of a projective arrangement. Or
one could consider these questions for arrangements of affine subspaces of
affine n-space over Fq . Of the four possible combinations, affine�projective
and union�complement, we have chosen here to concentrate on unions in
the projective case and complements in the affine case. Formulas covering
all cases, and also punctured affine arrangements, are given in the paper.

We will now state the result in the affine case. Let A be an arrangement
in An=Fn

q with union VA and complement MA =Fn
q"VA . Let :ij be

the eigenvalues of the induced Frobenius map on l-adic cohomology
with compact supports F : H i

c(MA , Ql ) � H i
c(MA , Ql). Let Pi(t)=

> j (1&:ij t) as before. Let ; � j
i =� ;i (0� , x), where ;i (0� , x) denotes the i th

rational Betti number of the order complex homology of the open interval
(0� , x) in LA , and the sum is over all x # LA such that dim(x)= j.

Theorem 1.2. For the complement of a d-dimensional affine subspace
arrangement A over Fq we have

Pi (t)= `
d

j=0

(1&q jt); � j
i&2 j&2 .

A corresponding decomposition of H i
c(M A , Ql) without the eigenvalue

information was given by Yan [Ya] and in the real case earlier by Goresky
and MacPherson [GM]. For the special case of hyperplane arrangements
Theorem 1.2 specializes to say that Frobenius acts on H i

c(MA , Ql) for
n�i�2n with only one eigenvalue, namely qi&n, and for all other i these
cohomology groups vanish, a result earlier obtained by Lehrer [Le] (see
also Kim [Ki]).

The paper is organized as follows: Some definitions and facts about
subspace arrangements and the combinatorics of intersection semilattices
are reviewed in Section 2. In Section 3 we discuss counting points on (or
off) subspace arrangements over finite fields. Some formulas relating zeta
functions to the characteristic polynomials of intersection semilattices are
given, along with some related facts. The proofs of the main cohomogical
results outlined above are given in Section 4. Specifically, Theorems 1.1 and
1.2 appear as part of Theorems 4.8 and 4.9. For arrangements A defined
by forms with integer coefficients we can consider both the arrangement Aq

over Fq (q= p:), obtained by reduction modulo p, and the complex
arrangement AC . In the final section we discuss connections between the
zeta function of Aq and the Betti numbers of AC , showing that in some
important cases they mutually determine each other.

Valuable conversations with P. Deligne and K. S. Sarkaria are gratefully
acknowledged.
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2. PRELIMINARIES

Let F be a field. By an affine subspace arrangement we mean a finite
collection of affine subspaces in Fn. Similarly, by a projective subspace
arrangement we mean a finite collection of linear subspaces in projective
(n&1)-space FPn&1. An arrangement of either kind is essential if the inter-
section of all subspaces is empty. An affine arrangement is called central if
all subspaces contain the origin. There is an obvious one-to-one corre-
spondence between central arrangements in Fn and projective arrangements
in FPn&1. An arrangement (of either kind) is d-dimensional if d is the
maximal dimension of one of its subspaces.

For an arrangement A=[K1 , ..., Kt] we denote by VA the variety
K1 _ } } } _ Kt . Also, we let LA =[Ki1

& } } } & Kim
{<] be the intersection

semilattice, the family of all nonempty intersections of subarrangements
ordered by reverse inclusion. The semilattice LA has a least element 0�
(equal to the whole space Fn or FPn&1, as the case may be), and if A is
central (or equivalent to a central arrangement) then there is also a
greatest element 1� (equal to K1 & } } } & Kt). We refer to [Bj] for a general
introduction to the theory of subspace arrangements.

Let P be a poset (short for ``partially ordered set'') and x, y # P, x< y.
Then [x, y]=[z # P | x�z� y] and (x, y)=[z # P | x<z< y] are the
closed and open intervals. Also, for p # P let P<p (resp. P�p) be the subset
consisting of those elements of P which are less than p (resp. less than or
equal to p). We assume familiarity with the Mo� bius function +(x, y) of P
(see [S2]).

With a poset P we associate its order complex 2(P) consisting of all
chains x0<x1< } } } <xk . This is a simplicial complex, so we obtain
(simplicial) homology groups Hi (P)=Hi (2(P) ; Z), Betti numbers ;i (P)=
rankZ Hi (P), Euler characteristic /(P), etc.

A tilde will always denote reduced homology (Betti numbers, Euler
characteristic): H� i , ;� i , /~ . Recall Ph. Hall's theorem [S2, p. 120],

+(x, y)=/~ (2(x, y)) (2.1)

for all x< y in P.
We will sometimes use the following arrangements, the ``k-equal

arrangements of type A, B, and D'' [BL, BSag, BWe], to provide
examples:

An, k=[xi1
=xi2

= } } } =xik
| 1�i1< } } } <ik�n]

Dn, k=[=1xi1
==2xi2

= } } } ==k xik
| 1�i1< } } } <ik�n, =i # [+1, &1]]

Bn, k=Dn, k _ [xj1
= } } } =xjk&1

=0 | 1� j1< } } } < jk&1�n].
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3. CHARACTERISTIC POLYNOMIAL AND ZETA FUNCTION

In this section we will develop some of the basic facts about counting
points on (or off) arrangements over finite fields. The tool for this in
combinatorics is the characteristic polynomial of the arrangement and
in algebraic geometry the zeta function. We will make the relationship
between these notions explicit and prove a few related facts.

The following is a version of the combinatorical ``principle of inclusion-
exclusion.''

Proposition 3.1. Let [Hi]i # I be a family of subsets of a finite set E.
Let L be the semilattice of nonempty intersections of subfamilies, ordered by
reverse inclusion. Then

card \E&.
i # I

Hi+= :
x # L

+(0� , x) card(x).

Proof. For each e # E let xe be the intersection of all Hi containing e.
If e # Hi for some i # I, then xe {0� and the right-hand side will count e
altogether �0� �x�xe

+(0� , x)=0 times. Otherwise, xe=0� and e will be
counted +(0� , 0� )=1 time. K

For an affine arrangement A in Fn let

PA (t)= :
x # LA

+(0� , x) tdim(x) (3.1)

define the characteristic polynomial of A. Such polynomials have long been
studied for hyperplane arrangements [OT, Za] and for other graded
posets [S2]; they were generalized to subspace arrangements in [Bj, BL].

Proposition 3.2. Let q be a prime power, and let A be an affine
subspace arrangement in Fn

q . Then:

PA (q)=card(Fn
q"VA ).

Proof. If x is an affine subspace then card(x)=qdim(x), so this is a
special case of Proposition 3.1. K

Remark. This result is well known for hyperplane arrangements; see the
``critical problem'' in [CR] and also [OT, p. 51]. The extension to
subspace arrangements has independently been found by Athanasiadis
[At]. A similar result (in a somewhat different setting) appears in Blass
and Sagan [BlS].
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Now, let A be a projective arrangement in FPn&1 and define

P*A (t)= :
x # LA

+(0� , x)(1+t+t2+ } } } +tdim(x)). (3.2)

Proposition 3.3. Let A be a projective arrangement in FqPn&1. Then:

P*A (q)=card(FqPn&1"VA ).

Proof. This follows from Proposition 3.1, since card(x)=1+q+ } } } +
qdim(x) for projectives subspaces x. K

Note that for projective A, if A� is the corresponding central
arrangement in Fn, then

PA� (t)=(t&1) P*A (t). (3.3)

This follows from the preceding propositions, since every point in the
complement of A corresponds to q&1 points in the complement of A� .

We will call P*A (t) the reduced characteristic polynomial of a projective
arrangement A. Its coefficient are (up to sign) the reduced Euler charac-
teristics of the j-truncations of the intersection semilattice L A , defined by

L � j
A =[x # L A"[0� ] | dim(x)� j].

Proposition 3.4. Let P*A (t)=�n&1
j=0 cj t j. Then cj=&/~ (L � j

A ).

Proof. Relations (2.1) and (3.2) imply that

/~ (L � j
A )=& :

dim(x)� j

+(0� , x)=&cj . K

It follows from the definition that the characteristic polynomial of a
d-dimensional affine arrangement in Fn has the structure

PA (t)=c0+c1 t+ } } } +cdtd+tn, with cd<0. (3.4)

Similarly, the reduced characteristic polynomial of a d-dimensional
projective arrangement in FPn&1 has the structure

P*A (t)=c0+c1 t+ } } } +cdtd+td+1+ } } } +tn&1, with cd�0. (3.5)

Hence, there are only d+1 essential coefficients c0 , ..., cd in each case.
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Example. The 3-equal arrangement A=A6, 3 gives for its four-
dimensional affine version,

PA (t)=&26t2+45t3&20t4+t6,

and for its three-dimensional projective version,

P*A (t)=26t2&19t3+t4+t5.

Let A be an affine subspace arrangement in Fn
q , for some prime power q.

Consider the field extensions Fq /Fq s /F� q , where F� q denotes an algebraic
closure of Fq . Then A can also be considered as an arrangement in F� n

q ,
defined by equations with coefficients in Fq , and its intersection with Fn

qs for
all the intermediate fields is well defined.

For arbitrary subsets X�F� n
q define the zeta function of X as the formal

power series,

Z(X ; t)=Zq(X ; t)=exp \ :
s�1

card(X & Fn
q s)

ts

s + .

The analogous definition is made in the projective case of the zeta
function for subsets X�F� qPn&1:

Z(X ; t)=Zq(X ; t)=exp \ :
s�1

card(X & Fqs Pn&1)
ts

s + .

The following lemma will be useful. It is no doubt well known but we
lack an appropriate reference.

Lemma 3.5. If

P(t)= :
d

j=0

cj t j, then exp \ :
s�1

P(qs)
ts

s += `
d

j=0

(1&q jt)&cj.

Proof. Taking the logarithm and the derivative of both sides reduces
the identity to the summing of a linear combination of geometric series.
The constant lost by taking the derivative is determined by putting t equal
to 0. K

There is the following connection between characteristic polynomials and
zeta functions.

165SUBSPACE ARRANGEMENTS



File: 607J 164708 . By:CV . Date:22:07:01 . Time:08:54 LOP8M. V8.0. Page 01:01
Codes: 2825 Signs: 1817 . Length: 45 pic 0 pts, 190 mm

Theorem 3.6. (i) Let A be an affine arrangement in Fn
q , with

characteristic polynomial PA (t)=�n
j=0 cjt j. Then

Z(F� n
q"VA ; t)= `

n

j=0

(1&q jt)&cj.

(ii) Let A be a d-dimensional projective arrangement in FqPn&1, with
reduced characteristic polynomial P*A (t)=�n&1

j=0 cjt j. Then

Z(VA ; t)= :
d

j=0

(1&q jt)cj&1.

Proof. Note that the intersection semilattice of A is the same over all
fields Fq s (cf. the proof of Lemma 5.1). Hence, part (i) is an immediate
consequence of Proposition 3.2 and Lemma 3.5.

Similarly, for part (ii) Proposition 3.3 gives

card(VA & Fq s Pn&1)=
qsn&1
qs&1

&P*A (qs)= :
n&1

j=0

(1&cj) qsj.

Now, by (3.5) we have that cj=1 for j=d+1, ..., n&1. Hence the result
follows from Lemma 3.5. K

The zeta function for the union of a d-dimensional projective
arrangement can because of Proposition 3.4 also be stated in this form:

Z(VA ; t)= `
d

j=0

(1&q jt)&/(L
A

� j). (3.6)

It is known from the work of Dwork [Dw] that the zeta function of
any affine or projective variety over Fq is a rational power series with
coefficients in N. In the theory of formal power series there is a slightly
stronger concept. A series is called N-rational if it can be produced from
N-polynomials by finitely many times applying the operations of addition,
multiplication and quasi-inverse (this is defined as f +f 2+ f 3+ } } } for
series f such that f (0)=0). The point is that subtraction is never allowed.
See Eilenberg [Ei] and Reutenauer [Re] for more about this concept.
Reutenauer [Re] points out that it follows from the work of Deligne [D1]
that the zeta function of a smooth variety is in fact N-rational. The same
can be said about the zeta functions considered here, indeed Reutenauer's
observation is true without the assumption of smoothness.

Theorem 3.7. The zeta function of any algebraic variety X defined over
the finite field Fq is N-rational.
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Proof. A theorem of Soittola [So] says that a rational series with
coefficients in N is N-rational if it has a real pole :>0 such that |;|>:
for all other poles ;. Assume first that X is absolutely irreducible, i.e., is
irreducible over an algebraic closure of Fq . Then the estimate by Lang and
Weil [LW, Theorem 1] gives that the number Ns of points of X over an
extension field of cardinality qs fulfills a uniform estimate |Ns&qds|�
O(qs(d&1�2)), where d is the dimension of X. This gives that Z(X ; t)&
1�(1&qdt) is holomorphic in the disc |t|<q1�2&d, and hence, all the poles
of Z(X ; t) except q&d have absolute value larger than q&d.

In the more general case when X is irreducible but not necessarily
absolutely irreducible, the functions on X algebraic over Fq form a finite
extension field Fqn . As then X has points over a field Fq m only if n | m we
see that Z(X ; t)=Z(X$ ; tn), where X$ is X considered as a variety over Fq n .
Since the substitution t [ tn preserves N-rationality we reach the conclusion
also in this case.

In the most general case we note that the zeta function is multiplicative
over disjoint unions of subvarieties and that any variety is the disjoint
union of finitely many irreducible varieties. K

Remark. Instead of using the result of Lang and Weil we could have
made an appeal to Deligne's theorem. However, the former predates the
latter and is considerably more elementary.

It is a well-known fact for affine and projective hyperplane arrangements,
originally due to G.-C. Rota, that the coefficients of the corresponding
characteristic polynomial ``alternate in sign,'' meaning that cj cj+1�0 for all
j; cf. [S2, p. 126]. This has via Theorem 3.6 consequences for the structure
of the zeta function. We will now show that the same is true for certain
subspace arrangements.

Let us say that an intersection semilattice LA is hereditary if whenever
x # LA"[0� ] and dim(x)>0 there exists y # L A such that y>x and
dim( y)=dim(x)&1. We will say that L A is mod-2-pure if either all
maximal chains are of even length or all maximal chains are of odd length.
We will consider the concept of CL-shellability known; see [BW1, BW2]
for all details.

Theorem 3.8. Suppose LA is hereditary, mod-2-pure, and CL-shellable.

(i) If A is affine and d-dimensional with characteristic polynomial
PA (t)=�d

j=0 cj t j+tn, then (&1)d& j cj�0 for all 0� j�d.

(ii) If A is projective and d-dimensional with reduced characteristic
polynomial P*A (t)=�d

j=0 cj t j+�n&1
j=d+1 t j, then (&1)d& j cj�0 for all

0� j�d.
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Proof. Suppose that all maximal chains in LA are of even length. The
case of odd length is handled similarly.

(i) Let x{0� . The interval [0� , x] is CL-shellable [BW1, Lemma 5.6],
and being hereditary implies that the length of any maximal chain in [0� , x]
has the same parity as dim(x). Hence, by [BW1, Proposition 5.7]
(&1)dim(x) +(0� , x)�0. Hence, (&1) j cj�0 for all 0� j<n. Combine this with
the fact (3.4) that cd<0.

(ii) Let 0� j�d. The truncation L� j
A is CL-shellable because of being

hereditary and [BW2, Theorem 10.11], and the length of any maximal chain
in L � j

A _ [0� ] has the same parity as j. Hence, by Hall's theorem
(2.1), [BW1, Proposition 5.7] and Proposition 3.4: (&1) j+1 /~ (L � j

A )=
(&1) j cj�0 for all 0� j�d. Finally, we know (3.5) that cd�0. K

Remarks. (i) Examples of subspace arrangements covered by Theorem 3.8
are hyperplane arrangements, the k-equal arrangements An, k and Bn, k for
even k [BSag, BW1], and several of the orbit arrangements A* shown to
be CL-shellable by Kozlov [Ko].

(ii) Theorem 3.8 is not true for general subspace arrangements. For
example, take a planar arrangement A of two intersecting lines and two
points not incident with these lines. In the affine version this has charac-
teristic polynomial PA (t)=t2&2t&1, and in the projective version we get
P*A (t)=&t&2. Note that in these cases LA is not mod-2-pure but has the
other two required properties.

(iii) If the condition ``mod-2-pure'' is strengthened to ``pure'' (all
maximal chains have the same length), then Theorem 3.8 would remain
valid with the condition ``CL-shellable'' relaxed to ``Cohen�Macaulay.'' The
proof is similar, using well-known results about Cohen�Macaulay com-
plexes. This version of the theorem would however not cover An, k and Bn, k

which are not in general pure.

4. THE Ql -COHOMOLOGY OF SUBSPACE ARRANGEMENTS

We will now consider the computation of the cohomology of a subspace
arrangement, and in particular its e� tale cohomology. Most of the results that
we will prove are well known in the case of an arrangement over the real
or complex numbers, and are at least partially to be found in the literature
(cf. [Ya]) over a general field (including positive characteristic). The new
contribution is that we keep track of the action of the Galois group of the
base field, which has important arithmetic significance. As the general
``philosophy of weights'' (cf. [D3]) would predict, we can use the same
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argument to get the mixed Hodge structure in the complex case, a result
which seems to be new (except for the case of hyperplane configurations
which is due to Kim [Ki]). In this paper we will also be concerned only
with results on rational cohomology. In that case one can use the action of
the Galois group (or the rational mixed Hodge structure) on cohomology
to very quickly get to the desired result.

As we are dealing with varieties over arbitrary fields (our main interest
being the case of finite fields) we are forced to deal with e� tale cohomology
of algebraic varieties instead of classical cohomology, since the latter makes
sense only over the real or complex numbers. Its construction is based on
the realization that to define the usual cohomology one needs access not to
the topological space itself but only the category of sheaves on it. Although
neither the topological space underlying a complex algebraic variety nor its
category of sheaves can be constructed algebraically, a category with
properties very similar to this category of sheaves can be constructed in a
purely algebraic fashion. In general this theory is most definitely not equiv-
alent to the category of sheaves on a topological space, and Grothendieck
and his collaborators [G4] introduced an axiomatization under the name
of topos that covers both these new categories and the category of sheaves
on a topological space. The category associated to an algebraic variety (or
more generally a scheme) then goes under the name e� tale topos. Our
technical results would be most naturally formulated in terms of toposes
and diagrams of them, but in the interest of concreteness we will confine
ourselves to algebraic varieties (and implicitly their e� tale toposes).

Remark. It should be noted that in the case of a reasonable topological
space the topological space itself can be recovered from the category of
sheaves on it, hence not only is knowledge of the category of sheaves on
a (reasonable) topological space enough to be able to compute its
cohomology, it actually is equivalent to knowledge about the topological
space itself. For the reader interested in details we can add that
``reasonable'' in this context means that every irreducible (not the union of
two nonempty closed subsets) closed subset is the closure of a unique
point��a condition almost always fulfilled in practice.

The construction of e� tale cohomology is quite involved. The original
work of Grothendieck and his collaborators [D4, G4, G4a, G5] is still the
only place where a detailed treatment of its technical properties can be
found. The monographs [FK] and [Mi] are easier to approach, but deal
mainly with the case of smooth varieties. We will make a thumbnail sketch
of how the l-adic e� tale cohomology groups H i

e� t(X, Ql) that we shall use
are constructed.

The analogy between the e� tale topos and the category of sheaves on the
space underlying a complex algebraic variety is a very close one, although
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there are some definite differences. The most important is that the ``e� tale
topology'' is not fine enough to capture the ordinary cohomology with
integer coefficients; one has to use finite coefficients. This is not an artifact
of the e� tale topos but depends on the fact that one wants an algebraically
defined cohomology. Consider, for instance, the fact that the first cohomol-
ogy group, with integer coefficients, of C* :=C"[0] is Z. This reflects the
fact that there is a nontrivial covering space of C* with structure group Z,
given by exp: C � C*. As the exponential function is transcendental this
makes no algebraic sense, whereas the first cohomology group with Z�nZ-
coefficients describes covering spaces with structure group Z�nZ. In the case
of C* these are described using n th roots, which are eminently algebraic
functions. One is therefore forced, to begin with, to work with cohomology
with finite coefficients. In that case one obtains a theory very close to
the classical topological one. In fact, a basic theorem [G4a, Exp. XVI,
Theorem 4.2] says that for any algebraic variety X over the complex
numbers and any finite group A we have a natural isomorphism of abelian
groups H i

e� t(X, A)$H i
cl(X, A), where the subscripts cl (as in ``classical'')

and e� t denote respectively the ordinary cohomology of the topological
space underlying X and the e� tale cohomology. (This isomorphism is in fact
induced by a map from the topos of sheaves on the topological space of X
to the e� tale topos and hence preserves supplementary structures such as
cup products.)

Having e� tale cohomology for finite coefficients one then defines, for an
algebraic variety X over an algebraically closed field, H i

e� t(X, Zl), l a prime,
to be the inverse limit � n H i

e� t(X, Z�lnZ). Using the result above on
equality of e� tale and classical cohomology for complex varieties X and the
universal coefficient theorem, one then gets H i

e� t(X, Zl)$H i
cl(X, Z)�Z l . If

X is defined over a field F which is not algebraically closed, then (using a
not quite standard notation) we define H i

e� t(X, Zl) to be the e� tale cohomol-
ogy of X considered as an algebraic variety over some algebraic closure of
the base field. The fact that X is defined over F is then reflected in the fact
that we have a natural action of the Galois group of F on H i

e� t(X, Zl), of
which we will see examples later on. Finally, we put H i

e� t(X, Ql) :=
H i

e� t(X, Zl) }Zl
Ql , which then is a finite-dimensional vector space over

the field Ql . We will also normally dispense with the e� t subscript (the
comparison theorem guarantees that confusion should only rarely result.)

Remark. When the base field is not algebraically closed one may also
consider the e� tale cohomology of X as a variety over the base field. That
cohomology will be an appropriate mixture of the e� tale cohomology of X
as an algebraic variety over an algebraic closure and the Galois cohomol-
ogy of the base field. As we will not be interested in it we have chosen to
use H i

e� t(X, Zl) to denote the object which interests us.
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If we consider an arrangement A of subspaces, VA is by definition their
union. If there are only two of them we would have the Mayer�Vietoris
long exact sequence relating the cohomology of the arrangement, the two
linear spaces covering it, and their intersection. In the general case one gets
a Mayer�Vietoris spectral sequence.

The closest analogue of the Mayer�Vietoris long exact sequence would
be a spectral sequence starting with an E1-term. We prefer to start at the
E2-term which, as usual, is more intrinsic. Starting from a covering of an
algebraic variety by closed subvarieties, one may consider the cohomology
of these subvarieties and their intersections. It forms a diagram of abelian
groups over the ordered set of intersections of covering subvarieties. (We
will follow the convention of [ZZ] in that an ordered set is considered as
a category with morphisms p � q iff p�q, so that a diagram [Xp] over the
poset has morphisms Xp � Xq when p�q.) The E2-term will involve the
inverse limit and its right-derived functors of this diagram, and we begin by
recalling a standard way of computing such limits.

Lemma 4.1. Let C be a category and F a diagram of abelian groups.
Then the groups �*C F are the cohomology groups of the complex S*(F )
whose ith component is the product

` FX0

X0 ww�
f
0 X1 ww�

f
1 } } } ww�

fi&1 Xi

and whose differential is the alternating sum of the maps obtained by
composing two subsequent morphisms and from the structure map f 0* :
FX0

� FX1
.

Proof. This is shown in [Ro]. K

Lemma 4.2. Let [Xp] be a covering, closed under intersections, of an
algebraic variety X by closed subvarieties. Let P be the poset of these sub-
varieties ordered by reverse inclusion. Then there is the Mayer�Vietoris
spectral sequence,

E i, j
2 =�

P

j Hi (Xp , A) O H i+ j (X, A) (4.1)

for any finite abelian group A.

Proof. Let ip : Xp � X be the inclusion map. We may consider the
complex

0 � A � `
p

ip*A � `
p�q

ip*A � } } }
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of sheaves on X, where A is considered as the constant sheaf on X and on
the subvarieties Xp . To show that this is an exact sequence it is enough to
show that it is exact on all fibers. For a given point x # X the fiber at x of
this complex is the (extended) cochain complex with values in A of the
(abstract) simplex with vertices the set of those p for which x # Xp . The
simplex being contractible, this is exact. Now, using that H i (X, ip*A)=
Hi (Xp , A), as ip is a closed embedding, and the spectral sequence of a
resolution, we arrive at the Mayer�Vietoris spectral sequence. K

We will now apply this result to the rational cohomology of a subspace
arrangement. For this we need to recall some known facts about the action
of the Galois group on e� tale cohomology. The best control on the
Galois action is obtained when one ignores torsion, so we will look only
at e� tale cohomology with Ql -coefficients (as defined above). It turns out
that in positive characteristic the properties of this cohomology is quite
pathological when l is equal to the characteristic of the base field, so from
now on we will assume that the prime l is invertible in the base field.
Furthermore, the properties of the Galois action on cohomology is
simplest to formulate when the base field is finite, so for the moment we
will make that assumption and let q denote the cardinality of the field.
Then the Galois group is topologically cyclic (meaning that is has a dense
subgroup generated by one element) with a canonical generator called the
Frobenius element. It is the inverse of the map which raises an element of
an algebraic closure to is q th power.

Remark. Often it is this map itself rather than its inverse that is called
the Frobenius element, in matters cohomological the present choice is
the more suitable, however. The situation is somewhat confusing since the
definition of the Frobenius map in cohomology could appear to give the
opposite impression. However, there is a subtle distinction between the q th
power as a generator of the Galois group of Fq , and the q th power as an
algebraic map on, for instance, affine space. More precisely, both induce
actions on the cohomology of a variety defined over Fq and these actions
are each other's inverses. For a more thorough discussion of this relation
see [D4, pp. 76�81].

We have seen that the action of the Galois group on Ql -cohomology
of a variety defined over Fq is given by a single linear map, usually called
the Frobenius map. As a first invariant of such a map one may look at the
eigenvalues (defined over some algebraically closed overfield and counted
with the multiplicity in which it appears as zeros of the characteristic
polynomial). The following definition may look very strong.

Definition 4.3. Let F be a linear map of a finite dimensional vector
space V over a field of characteristic zero, and let q be a positive integer.
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(i) F is said to be pure of weight n (wrt to q) if all of its eigenvalues
are algebraic numbers, all of whose algebraic conjugates have (complex)
absolute value qn�2.

(ii) F is said to be mixed if V has a filtration by F-stable subspaces
such that F is pure of some weight on each successive subquotient of the
filtration (where the weight may depend on the subquotient). The set of
the weights of these subquotients will be called the weights of F.

Remarks. (i) The condition that all the algebraic conjugates of an
algebraic number have the same absolute value is very strong. For instance,
if one bounds the degree and the absolute value then there are only finitely
many such numbers. This is seen by bounding the coefficients of the minimal
polynomial, coefficients that are also integers.

(ii) It is implicit in the definition that the set of weights of a mixed
linear operator is independent of the choice of filtration, since the set of
weights can be immediately read off from the eigenvalues of F.

A deep result of Deligne [D1a, 3.3.8] says that if X is smooth and
proper (over a finite field of cardinality q) then its degree n Ql-cohomol-
ogy is pure of weight n, and without any assumptions the cohomology is
mixed.

Example. (i) Affine space is the simplest example, we have H0(An, Ql)
=Ql and the rest of the cohomology groups are equal to zero. The
Frobenius map acts as the identity on this vector space and is hence pure
of weight zero.

(ii) For the projective line we have H 1(P1, Ql)=0, and H0(P1, Ql)
=Ql , with F acting again as the identity, whereas H 2(P1, Ql) is more
interesting. As a Ql -vector space it is one-dimensional. The Galois group
of the base field acts by the inverse of the cyclotomic character. The
cyclotomic character is the character of the Galois group for which an element
_ acts by multiplication by the l-adic number by which _ acts on roots of
unity of order any power of l. In particular, when the base field is finite (of
cardinality q) the Frobenius element acts by multiplication by q on H2(P1, Ql).
Therefore the weight is indeed 2.

In general we denote by Ql(i) the one-dimensional Ql-vector space on
which the Galois group acts by multiplication by the ith power of the
cyclotomic character. Then from the fact (which can be proved by some of
the methods used in the classical case) that the cohomology of N-dimen-
sional projective space is a truncated polynomial ring and the fact that the
Frobenius map preserves multiplication, one sees that H2i (PN, Ql)=
Ql (&i) when i�N (and all other cohomology groups are zero), which
confirms that it is indeed pure of weight 2i.
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(iii) Let us consider the multiplicative group Gm :=A1"[0]. Then
H1(Gm , Ql)=Ql(&1), which is not pure of weight 1 but rather of weight 2.
This does not contradict Deligne's theorem as Gm , although smooth, is not
proper.

More generally, punctured affine space An"[0] behaves cohomologically
as an odd-dimensional sphere with H0(An"[0], Ql)=Ql , H2n&1(An"[0], Ql)
=Ql(&n), and the other cohomology groups equal to zero.

(iv) One can also introduce e� tale cohomology with compact support,
see below. Intuitively this is the reduced cohomology of the one-point
compactification��only that this does not make sense in our setting since
the one-point compactification, even if defined, is not usually an algebraic
variety. For the affine spaces one has that there is only a single nonzero
cohomology group for cohomology with compact support: H 2n

c (An, Ql)=
Ql(&n).

In all of these examples each weight was associated to only one cohomo-
logy group. In the case of projective space that follows from Deligne's
theorem, in the others it seems to be more of an accident. In any case, they
are all situations to which the following theorem applies. Before going into
its formulation we want to comment on the cohomology of 1-point compacti-
fications, which occurs prominently in the study of subspace arrangements.

The 1-point compactification of a complex algebraic variety X need not
be an algebraic variety. If one is interested only in its cohomology a
substitute may be found, the cohomology with compact support. For this
one chooses some realization of X as an open subset of some proper variety
j : X/�X� and then one considers the e� tale cohomology Hi (X� , j!A), where
j!A is the sheaf on X� that is equal to A on X and has fibre 0 at all points
of X� outside of X (``the extension by zero''). This turns out to be independ-
ent of the choice of j and computes in the case that the base field is the
complex numbers the reduced cohomology of the 1-point compactification.
For these cohomology groups the notation H i

c(X, A) is used. (Properly
speaking we should also add the subscript e� t, as the cohomology with
compact support makes excellent sense also in the classical case. In the
interest of readability we will dispense with that.) There is now an analogue
of the spectral sequence of Lemma 4.2 for cohomology with compact support,
the proof is the same (the essential point is that when one embeds X as an
open subset of a proper variety one gets at the same time a compactifica-
tion of all the Xp by taking their closures in the compactification of X ).

Theorem 4.4. Let X be an algebraic variety that is the union of a family
of closed subvarieties [Xp], closed under intersection. Suppose that there is
a function , from N, the natural numbers, to subsets of the integers such that
different numbers are taken to disjoint sets and that the degree i cohomology
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of each Xp is mixed with weights in ,(i). Then, with the notations of Lemma 4.2,
the spectral sequence of (loc. cit.) degenerates at the E2 -term. The same is
true if instead cohomology with compact support is considered.

Proof. Let us first assume that the base field is finite. If we can prove
that E i, j

2 is mixed with weights in ,(i) we are finished, since then all the dif-
ferentials di, j

k at the Ek-term, for k�2, will be between spaces of disjoint
weights. However, Lemma 4.1 presents E i, j

2 as a subquotient of spaces with
weights in ,(i).

For the case of a general base field there are standard techniques for
reducing to the case of a finite base field, for which we refer to for instance
[BBD, 6.1] rather than repeating them here. Very quickly described, one
first uses that base extension from one algebraically closed field to an
algebraically closed overfield does not change cohomology to reduce to the
case where the base fields is finitely generated over the prime field. Then
there is a specialization to a finite field, which again does not change
cohomology. K

Remarks. (i) The idea that one could use weights to show that spectral
sequences degenerate is not new. One of its first uses can be found in [D2],
where it is applied to the study of the cohomology of the complement of
a divisor with normal crossings in a smooth and projective variety. However,
there one is using the mixed Hodge structure on classical cohomology
rather than the Galois action on e� tale cohomology. The arguments of (loc.
cit.) were one of the major inspirations for our theorem.

(ii) The theorem applies to the cohomology (including cohomology
with compact support) of an affine subspace arrangement, as there only the
cohomology of affine spaces are involved and we have seen that they fulfill
the required condition. It also applies to projective subspace arrangements,
again the cohomology of projective spaces fulfills the condition. Another
case is a punctured central arrangement, where one considers the arrange-
ment minus a central point (this is the algebraic analogue of the spherical
arrangement associated to a central arrangement over the reals).

To apply this result to the various cases of subspace arrangements we
need to compute the cohomology of some diagrams of abelian groups.
Recall from Section 2 the definition of the order complex 2(P) of a poset
P, and of subposets of type P<p and P�p .

Proposition 4.5. Let P be a finite poset and let A be an abelian group.

(i) Let Q be an order ideal (i.e., a subset of P such that any element
of P less than an element of Q is also in Q), and let FA, Q be the diagram
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which is 0 outside of Q and constant with value A on Q. Then we have a
natural isomorphism

� j FA, Q $H j (2(Q), A).

(ii) Let p # P and FA, p be the diagram with value A on p and 0
elsewhere. Then we have a natural isomorphism

� jFA, p $H� j&1(2(P<p), A).

(For this formula, recall that the reduced cohomology of the empty complex
is A in degree &1 and 0 otherwise.)

Proof. For part (i) we simply use Lemma 4.1, which shows that the
higher inverse limits can be computed using a complex which is also the
cochain complex of 2(Q) with values in A. As for (ii), we have a natural
inclusion FA, p

/�FA, P�p
, whose quotient is FA, P<p

. Using the long exact
sequence of higher inverse limits, part (i) and the fact that 2(P�p) is
contractible, we immediately reach the desired conclusion. K

Example. (i) Consider the cohomology of an affine arrangement A.
The only nontrivial cohomology group of affine spaces is H0(&, A)=A,
so the spectral sequence degenerates to the isomorphism Hi (VA , A)$
Hi (2(LA "[0� ]), A).

(ii) If A is central we may remove the central point to get an
arrangement of punctured affine spaces (in the real or complex case it is
homotopic to the associated spherical arrangement). Again the condition of
Theorem 4.4 is fulfilled. Furthermore, H2i (&, Ql) is zero for i>0 and Ql

for i=0, and H2i&1(&, Ql) is Ql(&i) on i-dimensional elements of
the intersection lattice and zero otherwise. This then is a direct sum of
diagrams of the type considered in the proposition. Hence, letting
P=LA "[0� ] we get

� j H0(&, Ql)=H j (2(P), Ql)
(4.2)

� j H 2i&1(&, Ql)= �
dim p=i

H� j&1(2(P<p), Z)�Ql(&i).

(iii) If A is a projective arrangement, then H 2*+1(&, A)=0 and
H2i (&, A) is the constant diagram on the elements of dimension greater
than or equal to i. Thus, we may again use the proposition to compute the
higher inverse limits and get

� j H 2i (&, Ql)=H j (2(P�i), Z)�Ql(&i), (4.3)

where P=LA "[0� ] and P�i :=[ p # P : dim( p)�i].
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(iv) Once more let A be an affine arrangement, but this time
consider cohomology with compact support. As has been noted, we get a
spectral sequence also in that case and from the computation of the cohomo-
logy with compact support of affine space, we get that Hc

2*+1(&, Ql)=0
and that H 2i

c (&, Ql) is Ql(&i) on i-dimensional elements of the intersection
lattice and zero otherwise. As in the central affine case we get

� j H 2i
c (&, Ql)= �

dim p=i

H� j&1(2(P<p), Z)�Ql(&i). (4.4)

Even if one sticks to the case of the base field being the complex numbers
there are advantages to considering diagrams of algebraic varieties. For
algebraic varieties over the complex numbers there is an additional struc-
ture on its cohomology alluded to previously��its mixed Hodge structure.

To give the definition of this notion we first recall that a Hodge structure
of weight n consists of a finitely generated abelian group HZ and a decreas-
ing finite filtration F m of H Z �C by complex subvector spaces such that
F� m, the complex conjugate of F m (the complex conjugation being induced
by that of the second factor in the tensor product), is a complementary
subspace to F n&m+1. We then recall [D2, 2.3.1] that a mixed Hodge
structure is a finitely generated abelian group HZ , together with one
increasing finite filtration Wp of subvector spaces of H Q :=H Z }Z Q and
one decreasing finite filtration F m by C-subvector spaces of HC :=
HZ }Z C, such that for every i the filtration induced by F m on
Wi �Wi&1�C forms a Hodge structure of weigh i. The class (with the
obvious morphisms) of mixed Hodge structures form an abelian category.
We also use the term set of weights of a mixed Hodge structure for the set
of integers for which Wi {Wi&1 . If instead one looks at only a rational
vector space HQ without a choice of H Z one speaks about a rational
Hodge structure.

Example. Let Z(i) be the mixed Hodge structure with HZ =Z,
0=W2i&1/W2i=Q, and 0=F i+1/F i=C; and similarly for Q(i), a
rational Hodge structure. This notation will be used to describe the mixed
Hodge structures relevant to subspace arrangements after the next theorem.

There is a very strong analogy between mixed Hodge structure and the
action of the Galois group on e� tale cohomology. Parts of the analogy
can actually be proven��for instance, if one considers the cohomology of
a complex algebraic variety, then the filtration on rational cohomology
induced from the Hodge structure coincides with the weight filtration with
respect to the Galois action. We illustrate this analogy by giving another
proof of the degeneration of the Mayer�Vietoris spectral sequence when the
base field is the complex numbers.
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Theorem 4.6. Let X be a complex algebraic variety that is the union of
a family of closed subvarieties [Xp], closed under intersection. Suppose that
there is a function , from N, the natural numbers, to subsets of the integers
such that different numbers are taken to disjoint sets and that the degree i
cohomology of each Xp has weights, with respect to its mixed Hodge structure,
in ,(i). Then, with the notation of Lemma 4.2, the spectral sequence of (loc.
cit.) with Q-coefficients degenerates at the E2 -term.

Proof. We first need to prove that the spectral sequence is a spectral
sequence of rational mixed Hodge structures. For this we note another way
of constructing it. Namely, we consider the simplicial complex variety sXv

for which sXj is the disjoint union of the Xi0
over the index set [i0�

i1� } } } �ij] with the obvious structure maps. The spectral sequence (cf.
[D2a, 5.3.3.3]) applied to the constant sheaf Z of this simplicial variety
converges to the cohomology of X and has an E1 -term which is the
standard complex for computing � P [H i (&, Z)], and hence gives our
spectral sequence from the E2 -term on. According to [D2a, 8.3.5] this is
a spectral sequence of mixed Hodge structures which becomes a spectral
sequence of rational mixed Hodge structures when tensored with Q.

If we can prove that E i, j
2 is mixed with weights in ,(i) we are finished,

since then all the differentials di, j
k , for k�2, will be between rational mixed

Hodge structures of disjoint weights. However, Lemma 4.1 presents E i, j
2 as

a subquotient of spaces with weights in ,(i). K

Remark. We have the following computations of the mixed Hodge
structure on the cohomology of affine space, punctured affine space and
projective space, completely analogous to the action of the Frobenius on
e� tale cohomology:

H0(An, Z)=Z(0),

H0(An"[0], Z)=Z(0),

H2n&1(An"[0], Z)=Z(n),

H2i (Pn, Z)=Z(i), i�n.

Hence the theorem may be applied to subspace arrangements.

Having developed the necessary general tools, we now want to collect
our results as applied to subspace arrangements over finite fields. In that
case one extra refinement is possible which is given in the following lemma.

Lemma 4.7. Let assumptions be as in Theorem 4.4 and assume that the
base field is finite. Then there is a canonical isomorphism between H*(X, Ql)
and the E2 -term of the spectral sequence. This isomorphism preserves the
action of the fundamental group of the base field.
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Proof. We may use the action of the Frobenius map to split up
H*(X, Ql) as a sum of generalized eigenspaces under it. Since each such
eigenspace occurs in just one row of the E2-term we get the canonical
isomorphism. K

Remark. It is not possible to conclude from what we have proven so far
that this result remains true for a general field or has an analogue for
mixed Hodge structures. The reason for this is that it would be possible
for the extensions provided by the spectral sequence to be nontrivial, there
are indeed nontrivial extensions between the Galois representations (resp.
mixed Hodge structures) involved. It will be proved elsewhere that in the
case of subspace arrangements these possibilities are not realized and in
fact the isomorphisms of the theorem exist for Zl -cohomology (resp. for
cohomology with its mixed Hodge structure).

We now collect the various results obtained so far about the cohomology
of unions VA of subspace arrangements over finite fields. To simplify
statements of formulas in this and the following theorem we introduce, just
as in the classical case, reduced l-adic cohomology H� *(X, Ql). This differs
from ordinary cohomology for all varieties X only in one dimension,
namely H� 0(X, Ql)=H0(X, Ql)�Ql when X is nonempty and H� &1(X, Ql)
=Ql when X is empty.

Theorem 4.8. Let A be a subspace arrangement over a finite field,
d : LA � Z the dimension function of its intersection semilattice and P :=
LA "[0� ].

(i) If A is an affine arrangement then we have a canonical isomorphism

H*(VA , Zl)$H*(2(P), Zl),

which respects the action of the Frobenius map if it is assumed to act trivially
on the right-hand side.

(ii) If A is an affine arrangement then we have a canonical isomorphism

Hc*(VA , Ql)$ �
p # P

H� *&2d( p)&1(2(P<p))�Ql(&d( p)),

which respects the Frobenius action if it is assumed to act trivially on the
cohomology of the order complexes 2(P<p).

(iii) If A is a central arrangement then we have a canonical isomorphism

H� *(VA "[0], Ql)$ �
p # P

H� *&2d( p)(2(P<p))�Ql(&d( p)),
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which respects the Frobenius action if it is assumed to act trivially on the
cohomology of the 2(P<p).

(iv) If A is a projective arrangement then we have a canonical isomorphism

H*(VA , Ql)$ �
0� j

H*&2j (2(P � j))�Ql(& j),

where P� j :=[ p # P : d( p)� j], which respects the Frobenius action if it is
assumed to act trivially on the cohomology of the 2(P� j).

Proof. This follows from the results 4.2, 4.4, 4.5, and 4.7, together with
(4.2), (4.3), and (4.4). K

Finally we also collect the consequences of our results for the cohomology
of the complements of subspace arrangements over finite fields.

Theorem 4.9. Let A be a subspace arrangement in a space of n dimen-
sions over a finite field, d : LA � Z the dimension function of its intersection
semilattice, and MA the complement of the union VA . Furthermore, let
P=LA "[0� ].

(i) If A is affine we have canonical isomorphisms

Hc*(M A , Ql)$ �
p # P

H� *&2d( p)&2(2(P<p))�Ql(&d( p)),

when V {2n and H 2n
c (MA , Ql)$Ql(&n), and

H� *(MA , Ql)$ �
p # P

H� 2n&V&2d( p)&2(2(P<p))�Ql(d( p)&n).

(ii) If A is projective we have canonical isomorphisms

Hc*(MA , Ql)$ �
0� j�n

H� *&2 j&1(2(P� j))�Ql(& j),

when V{2n and H 2n
c (MA , Ql)$Ql(&n), and

H� *(MA , Ql)$ �
0� j�n

H� 2n&V&2j&1(2(P� j))�Ql( j&n).

All these isomorphisms respect the action of Frobenius if it is assumed to act
trivially on the order complexes occurring in the right-hand sides.

Proof. One enjoyable property of the cohomology with compact support
is ``additivity'' for a closed subvariety and its complement. More precisely,
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for a variety Y, a closed subvariety F and its complement U we have (cf.
[G4a, Exp. XVII, 5.1.16.3]) a long exact sequence

0 � H 0
c(U, Ql) � H 0

c(Y, Ql) � H 0
c(F, Ql)

� H 1
c(U, Ql) � H 1

c(Y, Ql) � H 1
c(F, Ql) � } } } ,

where the maps H i
c(Y, Ql) � H i

c(F, Ql) are the restriction maps. If we
apply this to an affine arrangement, using the computation of the coho-
mology of affine space as well as that of the union VA , we get that
H 2n

c (MA , Ql ) = H 2n
c ( An , Ql ) = Ql ( &n ) and that H i

c ( MA , Ql ) =
H i&1

c (VA , Ql) for i{2n. Now, MA is a smooth variety and so we may
apply the Poincare� duality theorem [G4a, Exp. XVIII, 3.2.6.1], which says
that the cup-product Hi (MA , Ql) }Ql

H 2n&i
c (MA , Ql) � H 2n

c (MA , Ql)
composed with the trace map H 2n

c (MA , Ql) � Ql(&n) gives a perfect
pairing. This gives that Hi (MA , Ql) is canonically isomorphic to
H 2n&i

c (MA , Ql)*�Ql(&n). Using this formula, the relation H i
c(MA , Ql)

=H i&1
c (VA , Ql) for i{2n, Theorem 4.8 (ii) and the universal coefficient

formula applied to the cohomology of the 2(P<p), we get the first part of
the theorem.

As for the second, we consider again the long exact sequence of
cohomology with compact support, using that for a proper variety it is
equal to cohomology without compact support, so that we can use
Theorem 4.8(iv). Now, it is clear that the restriction map H2i (Pn, Ql) �
H2i (VA , Ql) maps Ql(&i) to 1�Ql(&i)�H0(2(P�i))�Ql(&i). This is
evidently an injection when i�m, where m is the maximal dimension of
subspaces in A, so the long exact sequence splits up into the desired
isomorphisms for cohomology with compact support. Using duality gives
the formula for cohomology without compact support. K

Remark. Analogs of the formulas in Theorems 4.8 and 4.9 for arrange-
ments over the real and complex numbers were proved by Goresky and
MacPherson [GM], Ziegler and Z8 ivaljevic� [ZZ], and others. Some of
these formulas in e� tale cohomology version appear in the paper by Yan
[Ya], however without the decomposition into eigenspaces under Frobenius.

5. ARRANGEMENTS OVER THE INTEGERS

In this section we shall be concerned with arrangements specified by
integer forms. Let a Z-arrangement (affine, resp. projective) mean an
arrangement A=[K1 , ..., Kt] where each subspace Ki is specified by a cer-
tain collection of linear forms (general, resp. homogeneous) with integer
coefficients. Thus, a Z-arrangement is really a list of linear forms over Z
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partitioned into t groups. With a Z-arrangement A we associate, on the
one hand, the complex subspace arrangement AC (affine or projective, as
the case may be) obtained by interpreting the given Z-forms over C and,
on the other hand, the subspace arrangement Aq over the finite field Fq

obtained from the Z-forms by reduction modulo p for arbitrary prime
powers q= p:.

Remark. We could here equally well replace Z with an arbitrary number
ring. Except for trivial notational changes nothing in the arguments to
follow would need to be modified.

Lemma 5.1. Let A be a Z-arrangement and p a prime. Let = be the
identity map on the set of subspaces of A. Then the following conditions are
equivalent:

(i) = extends to a dimension-preserving isomorphism LA C
$L Ap

;

(ii) = extends to a dimension-preserving isomorphism LA C
$LAp : ,

for all :�1;

(iii) rankC [l1 , ..., lg]=rankFp
[l1 , ..., lg] for any collection l1 , ..., lg

of linear forms from A, containing for each subspace either all of its defining
forms or none of them.

Proof. The implications (ii) O (i) O (iii) are immediate. For (iii) O (ii)
one checks that the linear algebra in Fp: of the given forms (reduced
modulo p) takes place in the subfield Fp . K

We shall call a prime p good with respect to a Z-arrangement A if it
satisfies the conditions of the lemma, otherwise bad. Part (iii) shows that
for a given A there is only a finite number of bad primes (these being the
divisors of a finite collection of determinants in the li 's). In the special case
when A is a hyperplane arrangement condition (iii) can be expressed by
saying that A determines the same matroid over C and over Fp .

Example. The k-equal arrangements defined in Section 2 are Z-arrange-
ments, and An, k has no bad primes, while Bn, k and Dn, k have the bad
prime 2.

Let A be a d-dimensional projective Z-arrangement and q= p:, where p
is a good prime. Let LA =LA C

$LAq
and L� j

A =[x # LA | dim(x)� j]"[0� ].
Define

; � j
i =dimQ Hi (L � j

A , Q). (5.1)

These order homology Betti numbers of the j-truncated intersection lattices
are possibly nontrivial only in the range 0�i�d& j�d. We will call the
triangular array (; � j

i ) the beta triangle of A.

182 BJO� RNER AND EKEDAHL



File: 607J 164725 . By:CV . Date:22:07:01 . Time:08:54 LOP8M. V8.0. Page 01:01
Codes: 2025 Signs: 889 . Length: 45 pic 0 pts, 190 mm

A formula of Ziegler and Z8 ivaljevic� , [ZZ, Proposition 2.15; WZZ,
Corollary 6.7], which is the complex analog of Theorem 4.8(iv), shows that

;C
i :=dimQ Hi (VA C

, Q)= :
d

j=0

; � j
i&2 j , (5.2)

and from formula (3.6) we have that

Z(VAq
; t)= `

d

j=0

(1&q jt)�(&1)i+1 ;i
�j

. (5.3)

Thus both the rational Betti numbers of the union of the complex arrange-
ment AC and the zeta function of the discrete arrangement Aq are
governed by the same primitive combinatorial data, namely the beta
triangle of A.

Example. Here is the beta triangle (; � j
i ) of A6, 3 in the (i, j) Cartesian

plane:

20

1 26

1 10 10

1 0 0 0

It follows that A6, 3 has Betti numbers ;C=(1, 0, 1, 10, 11, 26, 20) as a
complex variety, and zeta function

Z(VA6, 3
; t)=

(1&q2t)25

(1&t)(1&qt)(1&q3t)20

as a variety over Fq . Furthermore, from Theorem 1.1 we have that

P0(t)=1&t

P1(t)=1

P2(t)=1&qt

P3(t)=(1&qt)10

P4(t)=(1&qt)10 (1&q2t)

P5(t)=(1&q2t)26

P6(t)=(1&q3t)20.
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We will now show that for an important class of Z-arrangements
the Betti numbers ;C

i of the complex variety and the zeta function of the
Fq -variety determine each other. This is clearly not true in general.

The intersection semilattice LA is said to be rationally Cohen�Macaulay
if for all x< y in L� A =L A _ [1� ], where 1� is a new top element, we
have

H� i (2(x, y), Q)=0 for all i<dim 2(x, y).

This definition is via a theorem of Reisner equivalent to the Cohen�
Macaulayness of the Stanley�Reisner ring of L A . See Stanley [S1] for
more about this concept.

We will consider Z-arrangements A whose semilattice LA is both
Cohen�Macaulay and hereditary (defined in connection with Theorem 3.8).
Then every maximal chain in LA has the form x0>x1> } } } >xd>0� with
dim(xi)=i for 0�i�d. Examples are all hyperplane arrangements, many
of the orbit arrangements A* shown to the shellable by Kozlov [Ko], and
the arrangements corresponding to Cohen�Macaulay simplicial complexes
considered in Bjo� rner and Sarkaria [BSar]. The following generalizes the
main result of [BSar].

Theorem 5.2. Let A be a d-dimensional projective Z-arrangement such
that LA is Cohen�Macaulay and hereditary, and let q be a power of a good
prime. Then

Z(VAq
; t)= `

d

j=0

(1&qd& jt)(&1) j+1;C
2d& j&$j,

where $j=1 if j is odd and=0 otherwise.

Proof. We will use the fact [S1, Theorem III.4.5] that the truncated
posets L � j

A are Cohen�Macaulay for all 0� j�d. Thus, the beta triangle
(; � j

i ) has internal zeros, and ones along the i=0 boundary:

; � j
i ={1, if i=0, 0� j<d,

0, if 0<i<d& j.

Therefore formula (5.2) simplifies for 0� j�d as

;C
2d& j={; �d& j

j ,
; �d& j

j +1,
if j=0 or j is odd,
otherwise.
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These two formulas imply

:
i

(&1) i+1 ; �d& j
i ={;C

2d& j&1,
&;C

2d& j ,
if j is odd,
otherwise,

which because of formula (5.3) is equivalent to the theorem. K

Note that the rational Betti numbers ;C
2d& j for 0� j�d appearing in the

theorem are the only essential ones, since the structure of the beta triangle
in the Cohen�Macaulay case shows that for 0� j<d:

;C
j ={1, if j is even,

0, otherwise.

The preceding proof hinges on the very simple structure of the beta
triangle (; � j

i ) given by the almost total vanishing of Betti numbers in the
Cohen�Macaulay case. The beta triangle has simplified structure also for
some other arrangements, including the k-equal arrangements An, k and
Bn, k , as we will now show.

Let us say that an intersection semilattice LA is mod-m-pure if the
lengths of all maximal chains are congruent mod m.

Theorem 5.3. Suppose that LA is hereditary, mod-m-pure and CL-shellable.
Then ;� � j

i =0, unless i+ j#d (mod m).

Proof. Let 0� j�d. As in the proof of Theorem 3.8 we conclude that
L� j

A is CL-shellable and mod-m-pure. Furthermore, since L A is hereditary
and dim A=d there is in L � j

A a maximal chain xj>xj+1> } } } >xd with
dim(xi)=i for all j�i�d. Hence, all maximal chains of L� j

A have lengths
congruent to d& j (mod m), and by [BW1, Theorem 5.9] ;� � j

i {0 is
possible only if i#d& j (mod m). K

The intersection lattices of An, k and Bn, k satisfy these conditions with
m=k&2. The nontrivial part here is the CL-shellability, which was shown
in [BW1; BSag].

The material of this section has parallels in the affine case. The results
come out in essentially the same way, and we will not repeat the arguments.
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