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Let ¢(x) be Euler’s totient function. If the equation ¢(x)=n has no solution, then
n is called a nontotient. In this paper, we prove that a nontotient can have an
arbitrary divisor and we give two sorts of odd numbers such that for the odd
number k of the first sort, 2* -4 is a nontotient for a given positive integer x while
for the odd number 4 of the second sort, 2* - k is a nontotient for arbitrary positive
integer a. 1993 Academic Press, Inc.

Let #(x) be Euler’s totient function. If the equation

$(x)=n (1)

has no solution, then » is called a nontotient.

The Lehmers [1] have calculated that the number of nontotients less
than 9-10* is 26663.

In 1956 Schinzel [2] proved that n=2.7° is a nontotient for every
positive integer k.

In 1961 Ore [3] noted that for every a > 1, there exists an odd number
k, such that n=2%-k, is a nontotient.

In 1963 Selfridge [3] proved that for every a = 1, k, <271129.

In 1976 Mendelsohn [4] proved that there exist infinitely many primes
p such that for every «a > 1, n=2%p is a nontotient. In fact Selfridge [3]
had proved this before.

In 1989 Spyropoulos [5] gave some sufficient conditions for » to be a
nontotient.

In this paper, we shall generalize Ore’s result and give some sorts of
nontotients. We first prove that a nontotient can have any divisor.

THEOREM 1. For every positive integer m, there exists a prime p such
that mp is a nontotient.
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Proof. Let all divisors of m be
d,,d,, .. d,

and the primes ¢, (1 < i < ) satisfy m < ¢, < ¢, < --- < ¢,. Clearly,
(d,, g;)=1. Suppose the congruence

d;x=—1(mod g,) (1<i<gys) (2)

has the solution x =5, (mod g;). It follows from the Chinese remainder
theorem that the system of congruences

x=b, (mod ¢,)

xX=b, (mod ¢,)

b

h'e (mod g,)

K}

has the solution x=4 (mod q,q9,---q,). Clearly, (b, ¢,9,---¢q,)=1. From
Dirichlet’s theorem on the primes in arithmetic progressions, it follows that
there exists a prime p > g, such that

p=b (mod g,q,---q,) (3)

Now, we show that p is the required prime.

If the equation ¢(x)=mp has a solution x, then p? | x or there exists a
prime ¢ such that g | x and p|g—1.

But if p° | x, then p(p—1)]| ¢(x)=mp, and p—1|m, which contradicts
p>q,>m.

If there exists a prime g such that ¢g|x and p|g—1, then ¢g— 1=
pd| ¢(x)=mp, d| m, so that d=d,, q= pd,+ 1 > g,. But from (2) and (3)
we have ¢, | pd,+ 1, a contradiction.

The proof is complete.

Theorem 1 generalizes Ore’s result.

Let n=2%k, 2} k. Obviously, if n is a nontotient, then 2’k (0<r<a)is
likewise a nontotient. Therefore, we shall try to find some sort of odd k&
such that 2%k is a nontotient for a given a, or more generally, for all a > 1.

For 2 =1, we can obtain

THEOREM 2. Let n=2piipy---p¥, 2<p,<p,<--- < p,, where p, are
primes. Then necessary and sufficient conditions for n to be a nontotient are

(i) n+1is composite;

Ay

(i) p,—1#2pypT - pi ).
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Proof. Suppose (i) and (ii) hold. If ¢(x)=n has a solution, then x = p*
or x=2p" p>2 Hence, g(x)=p' "(p—1)=2p7'pF .- p™

If B=1, then n+ 1 = p, a contradiction.

If #>1, then p is the largest prime divisor of n, p=p,, 2,=f—1, and
p—1=2py'p5 ... p* 1, a contradiction again. Hence, » is a nontotient.

Suppose (i) or (ii) does not hold.

If 7+ 1 is a prime, then ¢g(n+1)=n.

If p,—1=2p7p¥---pr | then g(p>*")=n

The proof is complete.

Theorem 2 is effective for small ». For example, there are altogether
210 nontotients for # <1000, of which 156 numbers can be found by
Theorem 2.

Let p be a prime, n=2%p. Selfridge [3] noted that necessary and
sufficient conditions for »n to be a nontotient are that for 1 <<z,
p#2'+1 and 2'p+ 1 is composite. Starting from such », we can obtain

X

THEOREM 3. Let n=2%pp{'p3--- pX, where p, p\, ps, .., p, are distinct
odd primes and the numbers 2'p+ 1 (1 <t <) are composite. Let q, be a
prime divisor of 2'p+ 1, and let M be the least common multiple of

Gis G2 s Gue I D1 P2y s p,osatisfy:

(1) There exists an odd prime g such that g | p— 1, and
q#p; (1<i<s), or 28| p—1,8>x

(1) p;,=1(mod M) (1 <i<ys).
Then for any set of positive integers o, &, ..., %, 11 i$ a HOAtotient.

Proof. 1f ¢(x)=2%pp¥p¥ .- p» has a solution, then p*| x or x has a
prime divisor r = pd + 1.

If p*| x, then p(p—1)|¢(x), p—112*p3'p3--- p™, which contradicts
(1).

If x has a prime divisor r=pd+ 1, then pd|¢(x), therefore
d=2'plhph...ph 0<1<«, 0<p,<a,. Hence r=pd+1=2p+1=0
(mod ¢,). This contradicts r=2p+1>g¢,.

The proof is complete.

ExamMpLE 1. Let p=17, x=2 We can take ¢,=5, ¢,=3. From
3t=61=151=1 (mod 3 -5} it follows that the integers

n=27.17-31*.61%.151%

are nontotients for all o, o,, 2,2 1.
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ExaMpLE 2. Let p=47. Selfride [3] noted that 47-2'+ 1 is composite
for 1 << 582, but is prime for t = 583. If we take x = 30, then it is easy to
verify that 47-2'+ 1 (1 <1< 30) is divided by one of the primes of the set
13.5,7, 11,13, 19}. Since 2282281, 3993991, and 5135131 are primes and
2282281 =3993991 =5135131=1 (mod3-5-7-11-13.19), we have that
the integers

n=2%.47.2282281".3993991*.5135131=

are nontotients for all »,, «,, 2, = 1.
Now we consider the odd & such that 2* -k are nontotients for all a > 1.

THEOREM 4. Let k be an odd number such that the numbers 2° -k are
nontotients for all a2 1. If k=k k., (k,, ks )=1, then either 2* -k, are
nontotients for all =1 or 2* -k, are nontotients for all a = 1.

Proof.  Suppose not. Then there exist 2, and «, such that ¢(x)=2% -k,
has a solution x = x, and ¢(x) =2k, has a solution x = x, and we assume
that each x, is the smallest.

Let p=2'+1 be a Fermat prime, if p | x, (i=1, 2), then p*| x,. In fact,
if x,=pr,, (p, y,)=1, then

Blx)=2'9(y,) = 27k,
(y)=2% "k,

This contradicts the assumption that a; is the minimum.

Let (x,, x») =d, then ¢(d} | ($(x,), p(x,))=2™"=22 and ¢(d)=2" for
some f<min{x,, x,}. Therefore, d=2" or d=2'p, p,--- p,, where p, are
distinct Fermat primes. But the second case cannot occur. In fact,
p.1x,.x, implies p; | x,, x5, and p}? | d, a contradiction. Hence d=2".

Assume that x, =2"-3,, 2}y, then (y,,x,)=1. From ¢(x,)=
2" og(y,)=2%k,, we have that ¢(y,) =2 '"'k,. Hence

Py X)) =(y,) - Plxy)=20%x 1 lklkz,

a contradiction.
The proof is complete.

From Theorem 4 we naturally consider the case k = p” first. As noted
above, for f=1 the existence and infiniteness of such p are known.
Sierpinski [3] has noted that for the prime p=271129 and every
positive integer o, 2°p+ 1 is divided by one of the primes of the set
£3,5,7,13,17,241}. Clearly, every prime p which satisfies the congruence
p=271129 (mod 3-5-7-13-17-241) has the same covering set of primes
as 271129 and the number of such primes is infinite from Dirichlet’s
theorem on the primes in arithmetic progressions. Similarly, Selfridge [1]
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noted that 2*-78557+ 1 is divided by one of the primes of the set
{3,5,7,13,19,37,73}. Therefore, every prime p which satisfies the
congruence p= 78557 (mod 3-5-7.13-19.37.73) has the same covering
set of primes as 78557.

Starting from such primes, we can obtain

THEOREM 5. Let p, q,, 45, -, 4, be distinct odd primes such that p is not
a Fermar prime and for every t=1, there exists a q, (1 <i<r) such that
q;<2'p+1and2'p+1=0 (mod g,). Let the primes p; (1 < j<s) satisfy:

(i) There exists an odd prime g such that g|p—1 and g+ p,
(1<j<s)
(i) p;=1(modq.,q:---4,).

Then for any set of positive integers o, &, %5, ..., &, the integers
— VA A g X2 £
n=2pp'p3 - p3
are nontotients.

We omit the proof of Theorem 5, since it is similar to that of Theorem 3.

ExaMpLE. Let p=271129, where S={3,5,7,13,17,241) is the
covering set of primes. Take p,=78293671, p,=100663291, p,=
111848101. Then from p,=p,=py=1 (mod 3-5-7-13.17-241}) it follows
that the integers

n=2%.271129 .78293671* - 100663291*2 - 111848101

are nontotients for any set of positive integers «, a, o,, 2.
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