On Nontotients

ZHANG MINGZHI

Department of Mathematics, Sichuan University, Chengdu, Sichuan Province, People's Republic of China

Communicated by Hans Zassenhaus

Received February 15, 1991; revised August 15, 1991

Let $\phi(x)$ be Euler's totient function. If the equation $\phi(x) = n$ has no solution, then n is called a nontotient. In this paper, we prove that a nontotient can have an arbitrary divisor and we give two sorts of odd numbers such that for the odd number k of the first sort, $2^x \cdot k$ is a nontotient for a given positive integer α while for the odd number k of the second sort, $2^x \cdot k$ is a nontotient for arbitrary positive integer α .

Let $\phi(x)$ be Euler's totient function. If the equation

$$\phi(x) = n \tag{1}$$

has no solution, then n is called a nontotient.

The Lehmers [1] have calculated that the number of nontotients less than $9 \cdot 10^4$ is 26663.

In 1956 Schinzel [2] proved that $n = 2 \cdot 7^k$ is a nontotient for every positive integer k.

In 1961 Ore [3] noted that for every $\alpha \ge 1$, there exists an odd number k_{α} such that $n = 2^{\alpha} \cdot k_{\alpha}$ is a nontotient.

In 1963 Selfridge [3] proved that for every $\alpha \ge 1$, $k_{\alpha} \le 271129$.

In 1976 Mendelsohn [4] proved that there exist infinitely many primes p such that for every $\alpha \ge 1$, $n = 2^{\alpha}p$ is a nontotient. In fact Selfridge [3] had proved this before.

In 1989 Spyropoulos [5] gave some sufficient conditions for n to be a nontotient.

In this paper, we shall generalize Ore's result and give some sorts of nontotients. We first prove that a nontotient can have any divisor.

THEOREM 1. For every positive integer m, there exists a prime p such that mp is a nontotient.

Proof. Let all divisors of m be

$$d_1, d_2, ..., d_s$$

and the primes q_i $(1 \le i \le s)$ satisfy $m < q_1 < q_2 < \cdots < q_s$. Clearly, $(d_i, q_i) = 1$. Suppose the congruence

$$d_i x \equiv -1 \pmod{q_i} \qquad (1 \leqslant i \leqslant s) \tag{2}$$

has the solution $x \equiv b_i \pmod{q_i}$. It follows from the Chinese remainder theorem that the system of congruences

$$x \equiv b_1 \pmod{q_1}$$

 $x \equiv b_2 \pmod{q_2}$
...
 $x \equiv b_s \pmod{q_s}$

has the solution $x \equiv b \pmod{q_1 q_2 \cdots q_s}$. Clearly, $(b, q_1 q_2 \cdots q_s) = 1$. From Dirichlet's theorem on the primes in arithmetic progressions, it follows that there exists a prime $p > q_s$ such that

$$p \equiv b \pmod{q_1 q_2 \cdots q_s}. \tag{3}$$

Now, we show that p is the required prime.

If the equation $\phi(x) = mp$ has a solution x, then $p^2 \mid x$ or there exists a prime q such that $q \mid x$ and $p \mid q - 1$.

But if $p^2 \mid x$, then $p(p-1) \mid \phi(x) = mp$, and $p-1 \mid m$, which contradicts $p > q_s > m$.

If there exists a prime q such that $q \mid x$ and $p \mid q-1$, then $q-1=pd\mid \phi(x)=mp,\ d\mid m$, so that $d=d_i,\ q=pd_i+1>q_i$. But from (2) and (3) we have $q_i\mid pd_i+1$, a contradiction.

The proof is complete.

Theorem 1 generalizes Ore's result.

Let $n = 2^x k$, $2 \nmid k$. Obviously, if n is a nontotient, then 2'k $(0 \le t \le \alpha)$ is likewise a nontotient. Therefore, we shall try to find some sort of odd k such that $2^x k$ is a nontotient for a given α , or more generally, for all $\alpha \ge 1$.

For $\alpha = 1$, we can obtain

THEOREM 2. Let $n = 2p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_s^{\alpha_s}$, $2 < p_1 < p_2 < \cdots < p_s$, where p_i are primes. Then necessary and sufficient conditions for n to be a nontotient are

- (i) n+1 is composite;
- (ii) $p_s 1 \neq 2p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_s^{\alpha_{s-1}}$.

Proof. Suppose (i) and (ii) hold. If $\phi(x) = n$ has a solution, then $x = p^{\beta}$ or $x = 2p^{\beta}$, p > 2. Hence, $\phi(x) = p^{\beta-1}(p-1) = 2p_{\perp 1}^{\alpha_1}p_{\perp 2}^{\alpha_2}\cdots p_{\perp s}^{\alpha_s}$.

If $\beta = 1$, then n + 1 = p, a contradiction.

If $\beta > 1$, then p is the largest prime divisor of n, $p = p_s$, $\alpha_s = \beta - 1$, and $p - 1 = 2p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_s^{\alpha_{s-1}}$, a contradiction again. Hence, n is a nontotient.

Suppose (i) or (ii) does not hold.

If n+1 is a prime, then $\phi(n+1)=n$.

If
$$p_s - 1 = 2p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_s^{\alpha_s}$$
; then $\phi(p_s^{\alpha_s+1}) = n$.

The proof is complete.

Theorem 2 is effective for small n. For example, there are altogether 210 nontotients for $n \le 1000$, of which 156 numbers can be found by Theorem 2.

Let p be a prime, $n = 2^{\alpha}p$. Selfridge [3] noted that necessary and sufficient conditions for n to be a nontotient are that for $1 \le t \le \alpha$, $p \ne 2^t + 1$ and $2^tp + 1$ is composite. Starting from such n, we can obtain

- THEOREM 3. Let $n = 2^{\alpha}pp_1^{\alpha_1}p_2^{\alpha_2}\cdots p_s^{\alpha_s}$, where $p, p_1, p_2, ..., p_s$ are distinct odd primes and the numbers $2^{t}p+1$ $(1 \le t \le \alpha)$ are composite. Let q_t be a prime divisor of $2^{t}p+1$, and let M be the least common multiple of $q_1, q_2, ..., q_s$. If $p_1, p_2, ..., p_s$ satisfy:
 - (i) There exists an odd prime q such that $q \mid p-1$, and

$$q \neq p_i$$
 $(1 \leq i \leq s)$, or $2^{\beta} \mid p-1, \beta > \alpha$;

(ii) $p_i \equiv 1 \pmod{M} \ (1 \leq i \leq s).$

Then for any set of positive integers $\alpha_1, \alpha_2, ..., \alpha_s$, n is a nontotient.

Proof. If $\phi(x) = 2^{\alpha}pp_1^{\alpha_1}p_2^{\alpha_2}\cdots p_x^{\alpha_r}$ has a solution, then $p^2 \mid x$ or x has a prime divisor r = pd + 1.

If $p^2 | x$, then $p(p-1) | \phi(x)$, $p-1 | 2^{\alpha} p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_s^{\alpha_s}$, which contradicts (i).

If x has a prime divisor r = pd + 1, then $pd \mid \phi(x)$, therefore $d = 2^r p_1^{\beta_1} p_2^{\beta_2} \cdots p_s^{\beta_s}$, $0 \le t \le \alpha$, $0 \le \beta_i \le \alpha_i$. Hence $r = pd + 1 \equiv 2^t p + 1 \equiv 0 \pmod{q_t}$. This contradicts $r \ge 2^t p + 1 > q_t$.

The proof is complete.

EXAMPLE 1. Let p = 17, $\alpha = 2$. We can take $q_1 = 5$, $q_2 = 3$. From $31 = 61 = 151 = 1 \pmod{3.5}$ it follows that the integers

$$n = 2^2 \cdot 17 \cdot 31^{x_1} \cdot 61^{x_2} \cdot 151^{x_3}$$

are nontotients for all $\alpha_1, \alpha_2, \alpha_3 \ge 1$.

EXAMPLE 2. Let p = 47. Selfride [3] noted that $47 \cdot 2' + 1$ is composite for $1 \le t \le 582$, but is prime for t = 583. If we take $\alpha = 30$, then it is easy to verify that $47 \cdot 2' + 1$ ($1 \le t \le 30$) is divided by one of the primes of the set $\{3, 5, 7, 11, 13, 19\}$. Since 2282281, 3993991, and 5135131 are primes and $2282281 \equiv 3993991 \equiv 5135131 \equiv 1 \pmod{3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 19}$, we have that the integers

$$n = 2^{30} \cdot 47 \cdot 2282281^{\alpha_1} \cdot 3993991^{\alpha_2} \cdot 5135131^{\alpha_3}$$

are nontotients for all $\alpha_1, \alpha_2, \alpha_3 \ge 1$.

Now we consider the odd k such that $2^{\alpha} \cdot k$ are nontotients for all $\alpha \ge 1$.

THEOREM 4. Let k be an odd number such that the numbers $2^{\alpha} \cdot k$ are nontotients for all $\alpha \ge 1$. If $k = k_1 k_2$, $(k_1, k_2) = 1$, then either $2^{\alpha} \cdot k_1$ are nontotients for all $\alpha \ge 1$ or $2^{\alpha} \cdot k_2$ are nontotients for all $\alpha \ge 1$.

Proof. Suppose not. Then there exist α_1 and α_2 such that $\phi(x) = 2^{\alpha_1} \cdot k_1$ has a solution $x = x_1$ and $\phi(x) = 2^{\alpha_2} k_2$ has a solution $x = x_2$ and we assume that each α_i is the smallest.

Let $p = 2^l + 1$ be a Fermat prime, if $p \mid x_i$ (i = 1, 2), then $p^2 \mid x_i$. In fact, if $x_i = py_i$, $(p, y_i) = 1$, then

$$\phi(x_i) = 2^i \phi(y_i) = 2^{\alpha_i} k_i$$

$$\phi(y_i) = 2^{\alpha_i - i} k_i.$$

This contradicts the assumption that α_i is the minimum.

Let $(x_1, x_2) = d$, then $\phi(d) \mid (\phi(x_1), \phi(x_2)) = 2^{\min\{\alpha_1, \alpha_2\}}$, and $\phi(d) = 2^{\beta}$ for some $\beta \le \min\{\alpha_1, \alpha_2\}$. Therefore, $d = 2^t$ or $d = 2^t p_1 p_2 \cdots p_s$, where p_i are distinct Fermat primes. But the second case cannot occur. In fact, $p_i \mid x_1, x_2$ implies $p_i^2 \mid x_1, x_2$, and $p_i^2 \mid d$, a contradiction. Hence $d = 2^t$.

Assume that $x_1 = 2^t \cdot y_1$, $2 \nmid y_1$, then $(y_1, x_2) = 1$. From $\phi(x_1) = 2^{t-1} \cdot \phi(y_1) = 2^{x_1} k_1$, we have that $\phi(y_1) = 2^{x_1 + t + 1} k_1$. Hence

$$\phi(y_1 x_2) = \phi(y_1) \cdot \phi(x_2) = 2^{\alpha_1 + \alpha_2 - t + 1} k_1 k_2,$$

a contradiction.

The proof is complete.

From Theorem 4 we naturally consider the case $k = p^{\beta}$ first. As noted above, for $\beta = 1$ the existence and infiniteness of such p are known. Sierpinski [3] has noted that for the prime p = 271129 and every positive integer α , $2^{x}p + 1$ is divided by one of the primes of the set $\{3, 5, 7, 13, 17, 241\}$. Clearly, every prime p which satisfies the congruence $p \equiv 271129 \pmod{3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \cdot 241}$ has the same covering set of primes as 271129 and the number of such primes is infinite from Dirichlet's theorem on the primes in arithmetic progressions. Similarly, Selfridge [1]

noted that $2^{\alpha} \cdot 78557 + 1$ is divided by one of the primes of the set $\{3, 5, 7, 13, 19, 37, 73\}$. Therefore, every prime p which satisfies the congruence $p \equiv 78557 \pmod{3 \cdot 5 \cdot 7 \cdot 13 \cdot 19 \cdot 37 \cdot 73}$ has the same covering set of primes as 78557.

Starting from such primes, we can obtain

THEOREM 5. Let $p, q_1, q_2, ..., q_r$ be distinct odd primes such that p is not a Fermat prime and for every $t \ge 1$, there exists a q_i $(1 \le i \le r)$ such that $q_i \le 2^t p + 1$ and $2^t p + 1 \equiv 0 \pmod{q_i}$. Let the primes p_i $(1 \le j \le s)$ satisfy:

- (i) There exists an odd prime q such that $q \mid p-1$ and $q \neq p_j$ $(1 \leq j \leq s)$;
 - (ii) $p_i \equiv 1 \pmod{q_1 q_2 \cdots q_r}$.

Then for any set of positive integers α , α_1 , α_2 , ..., α_s , the integers

$$n=2^{\alpha}pp_1^{\alpha_1}p_2^{\alpha_2}\cdots p_s^{\alpha_s}$$

are nontotients.

We omit the proof of Theorem 5, since it is similar to that of Theorem 3.

EXAMPLE. Let p = 271129, where $S = \{3, 5, 7, 13, 17, 241\}$ is the covering set of primes. Take $p_1 = 78293671$, $p_2 = 100663291$, $p_3 = 111848101$. Then from $p_1 \equiv p_2 \equiv p_3 \equiv 1 \pmod{3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \cdot 241}$ it follows that the integers

$$n = 2^{\alpha} \cdot 271129 \cdot 78293671^{\alpha_1} \cdot 100663291^{\alpha_2} \cdot 111848101^{\alpha_3}$$

are nontotients for any set of positive integers α , α_1 , α_2 , α_3 .

ACKNOWLEDGMENT

The author thanks the referee for his helpful suggestions.

REFERENCES

- R. K. Guy, "Unsolved Problems in Number Thery," pp. 42, 51, Springer-Verlag, New York, 1980.
- 2. A. Schinzel, Sur l'équation $\phi(x) = m$, Elem. Math. 11 (1956), 75–78.
- 3. J. L. SELFRIDGE AND P. T. BATEMAN, Solution to problem 4995, Amer. Math. Monthly 70 (1963), 101-102.
- 4. N. S. MENDELSOHN, The equation $\phi(x) = k$, Math. Mag. 49 (1976), 37-39.
- 5. K. SPYROPOULOS, Euler's equation $\phi(x) = k$ with no solution, J. Number Theory 32 (1989), 254-256.