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Application of the Decomposition Method 
to Inversion of Matrices 
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Center for Applied Mathematics, University of Georgia, 
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AND 

R. RACH 

Dynalectron Corporation, Alamogordo, N. M. 88311 

The decomposition method (G. Adomian, “Stochastic Systems,” Academic Press, 
New York/London, 1983) is applied to inversion of matrices by approximation. 
0 1985 Academic Press, Inc. 

The decomposition method [ 1,2] has been applied by Adomian and his 
co-workers to dynamical systems which can be nonlinear and stochastic 
eliminating the need for a number of often nonphysical assumptions 
previously employed. This paper shows applicability to matrix inversion for 
deterministic or random matrices. In particular, it will be valuable in con- 
nection with the work of Adomian and Sibul on stochastic control theory 
c31. 

DISCUSSION 

We begin with the matrix equation AI) =x or 

where Ic/, x are column vectors and L!, L!, are matrices such that matrix 
products are defined. We assume A is given and we decompose A into 
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n + LI, in a convenient way. If A is a matrix whose elements are numbers 
we can let /1 be nearest integers. If A is stochastic, .4 can be an easily inver- 
tible deterministic matrix and /i, would contain the remainder. Formally 

l)=(A+/i,)-‘x. 

But previous work [ 1 ] shows we can write for ) A 1 # 0 

(A+/i,)-‘= f (-l)“(/i-‘n,)Y-‘. 
n=O 

THEOREM. (n+/i.)-‘(n+/i.)=Z if (n+n,)-’ is defined as 
Ci”=,(-l)‘(K9,)W’. 

Proof. 

=,~o(-l)‘(n’n,)fn-‘~+ f (-1)‘(/1-‘/1,)‘n-‘n, 
i=O 

= I. 

It is reasonable from the same work to expect 

(A+/i,)-‘= c (-l)“(L’n,)V-’ 
n=O 

i.e., we expect a good approximation in a reasonable number of terms. 
The method can be used for stochastic matrices as well letting ,4 be 

deterministic and invertible and /1, representing random terms. That the 
appropriate statistics can be obtained with no statistical separability 
problems was shown by Adomian and Sibul [3]. 

CONVERGENCE 

The 4 is to be chosen with the nearest integers to the given n = (/i + A,.) 
matrix so the element of A, may be quite small. Each term of a,, involves 
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an additional multiplication by LI -‘A,. Note that if we factor out the A-’ 
to the right, each multiplication by ,4 -‘A, reduces the magnitude since the 
elements of (i, are always < 1 because we take nearest integers for elements 
of /i. (The worst case for a particular element of A, is the value 0.50 but 
generally the values would be smaller.) We have, consequently, an alter- 
nating series with terms of decreasing magnitude. We have shown earlier 
that the series does indeed represent the inverse operator. 

PART II. DECOMPOSITION INTO DIAGONAL MATRICES 

Consider (Case I) 

/i= “I I 

(” i 
l2 =L-+R 

A 122 21 

where 

L= 

Though this will yield slower convergence (because this choice of L is 
farther from /1 than the nearest integers choice of Part I), the terms A;’ 
are much easier to compute in analogy to differential operators (see 
Adomian [ 11). We could alternatively (Case II) decompose n into 

Returning to Case I, 

A;‘=(-l)(L-‘R)L-’ 
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Inspection of the A;, terms shows that alternating terms are zero and the 
nonzero terms are successively multiplied by the multiplier Y = ~,2&,/~,,~22 
so we have a geometric progression. The smaller this term the faster the 
convergence. We must have ;1 ,23V2, < A,, A,,. We cannot have equality. If 
%,,A,, > A,, A,, we simply choose L and R as in Case II (the zero elements 
of L should be on the smallest diagonal). 

EXAMPLE. A = (f \). Choose L = (t y), R = (T A), then, 
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A;’ = (- 1)2(LPiR)(L?R) L-’ 

=(1;3 ‘6)(1;6 1r)=(1t2 l&) 

etc. 

The approximate inverse obtained from only seven terms, i.e., @, = 
C,6,0A,y1, is given by 

0.599 -0.198 
I( 

0.6 -0.2 
-0.198 0.398 x -0.2 0.4 

which is the exact inverse. 
Since the multiplier r here was l/6, each term of the geometric sequence 

of corresponding elements of the A; * are given by W- ’ where iz is the first 
element of the sequence. Since IF ’ = A/200 corresponds to 1% error, and 
( 1/6)3 = l/216, n = 4 is sufficient’ starting from A; ‘. Because of the alter- 
nating zeros, the estimate A;’ is sufficient as we have found. If we began 
with 

2 1 
A= 4 3 ( ) 

we have 

/1-l= l/2 0 
0 

( ) 0 l/3 

and since r = 213, 1(2/3)“-’ = A/200 requires n = 14 for < ;“/o error in the 
result. Because of the alternating zeros, it means calculation of 
approximately 26 terms to get a very good approximation to 

n-1 =( “: -p.‘) 

Since we know corresponding elements of ,4; l are a geometric sequence, 
let us now find an expression for ,4 -l. Consider again the 2 x 2 matrix as a 
generic form: 

’ If error in percent is (100/p), ir”-’ = A/p or n = (-In p/h r) + 1. 
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provided L,2L2, #A,,%,,. Assume the Case1 situation then Ji,,A,,I < 
IL,, ,&I. This is equivalent to saying the absolute value of the determinant 
of L is greater than the absolute value of the determinant of R. Since 
3,,,2,,/1,, JbZ2 is a multiplier r for the nonzero terms we write 

since the first nonzero terms are multiplied by Y successively. Now g is 
given by 

For Case II where 11,,&1 < 1L,2,&,/ 

where 

THEOREM. The inverse of the matrix A given by 

is given by 

where 
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where 

415 

EXAMPLE-CASE I. 

since r = 2/3 and G consequently equals l/[ 1 - (2/3)] = 3. 

EXAMPLE-CASE II. 

A,,= 1 2 

( 1 3 4 

A,’ = ( -JP :$)=(;22 42) 

since 0 = 3 again. 

Verification. 

If we wish to invert 

2 1 
A= 4 3 ( > 

using the method of Part II. Identifying this as Case I, 
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and since o = l/( 1 - $) = 3 

A..‘=(“; -3 

which is the correct inverse as easily verified. 

EXAMPLE (Case 11). 

A= ( 
5 10 
10 5 1 

cJ= f 
n=O & H=l-jl,4)=4j3 ( 1 

- 5(4/3 1 
100 L (4/3) 
10 

(4/3) 
10 

-I 

- 5(4/3) 
100 

2115 
-l/15 

2115 
- l/l5 

The case given by 

A= lo 1 
( 1 1 10 

should be rapidly convergent. We see that 

cr= 1 +O.Ol +0.0001+ ... = 10/9= 1.01 

/i-l= ( l.Ol/lO 

- 
- 1.01/100 1.01/100 > l.Ol/lO 

= 
( -0.0101 0.101 -0.0101 0.101 > 

and could be done quickly as well by summing ,4;- l for a few terms. 
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E~AMPLE-~x~ MATRIX. 

A= i 
2 0 1 

13 
0 

0 1 2 1 

A;‘= -[L-‘R,. i’s 1; ,i2, 

0 0 

= i 

-l/3 
0 

vcl,2 -7) [ ‘” p ,J ) 

0 0 -l/4 
= -l/6 0 0 

0 -l/6 0 

0 0 -l/2 0 0 -l/4 
A;’ = -113 0 0 -l/6 0 0 

0 -l/2 0 0 -l/6 0 

= 
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The approximation in only three terms is Q3 = A; I + A ; ’ + AT ’ given 
by 

112 l/12 0.50 
Qj3= -l/6 f/3 -0.17 

l/l2 -l/6 0.08 -0.17 

The correct inverse is 

6113 l/l3 -3113 
A-‘= -2113 4/13 l/13 

l/13 -2113 6113 

0.46 0.08 -0.23 
= -0.15 0.31 0.08 

0.08 -0.15 0.46 

which we are approaching rapidly, i.e., with only a three-term 
approximation. 

If we calculate the first 20 terms of @,, the elements of A ;;I, for example 
(to calculate GzO), are all less than 1 x lo-‘. Calculation of Q2, yields the 
elements of the correct inverse within 3 x lO-6o/A. 

3 X 3 matrices 

l/A,, 0 0 

/&‘=L-‘= i 0 l/&2 0 0 0 l/&3 i 
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Assume l~11&2&31 > I -M&3J31)+ MLM (Case 11, i.e., Wet LI > 
ldet RI. 

/I,‘=(-L-‘R)L-’ 

The product -L - ‘R is given by 

The -(L- ‘R) matrix multiplies Lp ’ to yield A; I. The same matrix mul- 
tiplies A ; l to yield A; l, etc. 

Systems of matrix equations. Consider the matrix equations 

Ax+By=f 

Cx+Dy=g 

where A, B, C, D are matrices, x, y, f, g are vectors and 

(q;-) (j=(:). 
If (;,) = 5 and (,‘) = u and finally 

=l- 

is in our general form. Generalizing, consider 
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X, y, z, G, , G2, Gj are 3 x 1 matrices (vectors) and the A, are 3 x 3 
matrices. 

Let A,= u,~+ M,~ where a, are deterministic and uli are stochastic. 
Similarly Gi = gj + yi. Now 

Denoting the 9 x 9 matrix of A,‘s by A and 

by x we can write 

Ax=G 

x= A -‘G. 

Inversion of random matrices. Consider 

=L+R 

Choose lILI( > IlRll as. (where the notation indicates absolute value of the 
determinants). Furthermore let L = L, + Lz where 

L,= a11 0 ( > 0 a22 

L,= 0 aI2 

( > a2l 0 . 

If ((L,(I > IILJ\ then L -I =C:=,(-l)“(L;‘LJ L, ’ where 

Li , = 

( 

l/al, 0 

0 l/a22 > 
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hence 

Depending on the elements of/i, i.e., whether /1 falls into Case I or Case II, 
we can sum and write the inverse as a single matrix for Lp’. Then 

/1-l= f (-l)“(L-‘R)“L-’ 
fl=O 

where R contains the random elements which require averaging. It is a 
straightforward step to compute the various statistical measures as defined 
in [l] such as the expected inverse (A -’ ) or the correlation of the inverse 
matrix. Adomian and Sibul [3] have already shown that statistical 
separability will hold on the various averagings. 
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