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1. Introduction

Interest on just infinite prgr groups (i.e. infinite prge groups with only fi-
nite proper prop images) has grown steadily during the last few years, the most
ambitious project in this area being the classification of the groups in this fam-
ily. It is expected that, as in the classification of finite simple groups, except for
some ‘sporadic’ groups, any just infinite ppogroup will lie into one of several
well-defined families. However, this theory is still in its first stages and no precise
conjectures have been posed by the moment. It is therefore natural to add some
extra conditions and the one we choose in this work is linearity. We need first to
give a precise meaning to a just infinite ppagroup being linear. According to the
classical definition, to be linear means of course to be a subgroup of the full linear
group of a given degree defined on a field, however this is not entirely appropriate
for our purposes since it is does not take any advantage of the topological nature
of a pro-p group. The following two definitions, notably the second one, are better
suited in our context.

Definition. Let G be a prop group. We shall say thaf¥ is linear if it is linear
over some commutative ring and th@tis ¢-linear if it is a closed subgroup of
GL, (A) for some commutative profinite ring.
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Recall that if A is a commutative profinite ring then GlA) is a profinite
group, and ifG is afinitely generated prp-group and also a subgroup of 314)
then G is automatically closed in Gl(A) [1, Corollary 1.21]. Note that just
infinite pro-p groups are finitely generated.

It seems reasonable that for ppogroups in general t-linearity should be
strictly stronger than linearity but no actual counterexamples are known. In [2]
it has been conjectured that a non-abelian free jpigroup is not t-linear. By
the moment we only know that it is not t-linear of degree 2 (see [3]) and it is
not linear oveil, [1] (see [4]). Yet, | suspect that this group is linear over some
field. In this paper our main interest is focused on the following question posed
by C.R. Leedham-Green.

Question. Is every linear just infinite prg> group linear ovefZ, or I, [¢]?

We have not been able to settle this question but we have proved that
counterexamples, if they exist, must have some interesting properties. Note that
soluble just infinite prop groups are linear ovef,. Therefore, our attention is
devoted to insoluble just infinite prp-groups. The following result will be very
useful for us and is also of certain interest by itself.

Proposition 1.1. Let G be a just infinite prop group. ThenG is insoluble if and
only if every non-trivial normal subgroup @f is open.

So we see that insoluble just infinite ppogroups are also just infinite as
abstract groups. This fact was proved for the Nottingham group by B. Klopsch [5].
Recall that a prgp group G is called hereditarily just infinite if every open
subgroup ofG is just infinite. If G is an insoluble prgs group then every open
subgroup is also insoluble and so Proposition 1.1 implies the following corollary.

Corollary 1.2. Let G be an insoluble hereditarily just infinite prp-group.
ThenG is hereditarily just infinite as an abstract group.

If x1,...,x, are elements in a ring, we define

Sn(X1, ..., Xp) = Z Sgr(U)xd(l) < Xo(n)s
oeSy,

where the sum is taken over all permutations of degraed sgiio) is the sign
of 0. We say that a ring satisfies tlwth standard identity, os, for short, if
sp(x1,...,x,) = 0 for any elementsy, ..., x, in the ring. It is easy to prove
that, for a commutative ring, M, (A) satisfiess, 2 ;. Actually, by the Amitsur—
Levitzki TheoremM,, (A) satisfiessz,. If R is a ring we set, (R) to be the ideal
of R generated bys, (a1, ...,a,) | a1, ...,a, € R}. Now we give a criterion for
a just infinite prop group to be linear.
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Theorem 1.3. Let G be a just infinite prop group. ThenG is linear if and only
if GN 1+ s2,(Z[G])) = {1} for somen. Moreover, in this casd; is linear over
some field.

Let A be the ideal ofZ[G] generated by and{g — 1| ¢ € G} ands2,(Z[G])
the closure ofs2, (Z[G]) in the A-adic topology ofZ[G]. Hence,s2,(Z[G]) =
(Nien(524(Z[G]) + A").

Theorem 1.4. LetG be a just infinite prop group. Then the following conditions
are equivalent

(i) GislinearoverZ, or F,[t].

(i) GN A+ s2,(Z[G])) = {1} for somen.

As a corollary of this theorem we obtain that t-linear just infinite prgroups
are linear ovelZ, or F,[].

Corollary 1.5. Let G be a t-linear just infinite prop group. ThenG is a closed
subgroup of of5L,,(Z,) or of GL,, (F,[¢]) for somem.

Another proof of this corollary is given in Section 4.

In view of Theorem 1.3 we define the following dgtof ideals of Z[G]: an
ideal I belongs tal, if it is maximal among the idealg containings,, (Z[G])
and satisfyingG N (1 + J) = {1}. We will see that ifG is an insoluble linear just
infinite pro-p group andl € I, thenZ[G]/I is a prime Noetherian PI ring. In the
case wherg is not t-linear we can say a bit more.

Theorem 1.6. LetG be a just infinite prop group. If G is linear but not t-linear
(linear overZ, or IF,[t]), then there exista > 0 such that for anyn > n the
family I, is not empty and for any € I,,,, Z[G]/I is a simple ring of finite
dimension over its centre.

In [6] the authors consider insoluble just infinite ppogroups which are
linear overZ, and they prove that these groups are open compact subgroups
of the groups ofQ,-rational points of semisimple algebraic groups. What can
we say about just infinite prp-groups which are linear ovét, [t]? The results
by Pink in [7] represent a breakthrough in the understanding of these groups.
One of the immediate corollaries of this work is an analoguegj]-linear
insoluble just infinite prop groups: any such group has an open subgroup which
is isomorphic to an open compact subgroup of the grouf¥ af(z))-rational
points of a semisimple algebraic group. Hérg((¢)) is the field of quotients of
F,[]. In particular,F, [¢]-linear insoluble just infinite prg> groups aref , []-
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analytic. The converse implication is proved in Section 5. Actually, assuming that
R satisfies some natural conditions, we prove the following theorem.

Theorem 1.7. LetG be anR-analytic just infinite prop group. ThenG is linear
overR (and so itis linear ovefZ, or F,[t]).

In Section 3 we consider the question of whepradic analytic prop group is
linear over a field of positive characteristic. In [8, p. 30, Proposition 5.6] A. Shalev
proved that gp-adic analytic prop group is linear oveF , [7] if and only if it is
virtually abelian (it answers a question posed in [9]). The proofis based on Pink’s
characterization of closed subgroups of @F, [¢]). In this paper we prove the
next result.

Theorem 1.8. Let G be ap-adic analytic prop group. ThenG is linear over a
field of positive characteristic if and only @ is virtually abelian.

The proof of this theorem is based on the properties of lattices in semisimple
algebraic groups over local fields. This very nice idea, as well as the main steps
of the proof, has been suggested to me by A. Lubotzky. | would like to thank him
for drawing to my attention to this beautiful world of ideas.

Finally, in Section 4 we prove that a finitely generated t-linear pigroup is
linear over some commutative Noetherian local prang and we conjecture that
two ‘minimal’ such rings have the same Krull dimension.

If R is a ring thenU(R) is the group of units oR. The derived series of a
group is denoted byG®}. The rest of the notation is standard. We refer the
reader to [1,6,10] for background on ppogroups and to [11] for background on
Pl rings. If G is finite p-subgroup of GL(K), for some fieldK , then the derived
length ofG is at most:. We shall use several times these facts, sometimes without
mentioning them explicitly.

2. Proofsof themain results
We begin this section with the proof of Proposition 1.1.

Proof of Proposition 1.1. SupposeG is insoluble and letH be a normal
subgroup and’ its closure inG. ThenT is an open subgroup and there exist
elementsiy, ..., hy € H suchthafl = (h1, ..., hy). SinceG is insoluble [T, T
is open inG. By using the same argument as in the proof of [1, Proposition 1.19],
we obtain thalT, T] = {[r1, h1] .. .[ta, hal | 11, ..., ts € T}, whencd T, T1 < H
andH is openinG.

Now suppose thatG is soluble. ThenG has an abelian normal open
subgroupA. We pick any non-identity element in A and takeH to be the
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smallest normal subgroup @ containingz. TheZ-rank of H is clearly finite, so
H cannot be open. O

Lemma 2.1. Let R be a ring and G an insoluble just infinite prgz group
contained inU (R). Then for any nilpotentided of R, GN (1 + 1) = {1}.

Proof. Suppose&; N (14 1) # {1}. Then by Proposition 1.1, this intersection is
an open subgroup af and since/ is nilpotent, it is a nilpotent subgroup. But
then G has to be soluble, which is a contradictiort

We shall need the following two results about PI rings.

Proposition 2.2[11, Theorem 13.6.4]Let R be a semiprime PI ring with centre
Z(R) andJ a non-trivial ideal ofR. Then,J N Z(R) # {0}.

The next proposition is an easy consequence of [11, Theorem 13.4.2].

Proposition 2.3. Let R be a prime PI ring satisfying a polynomial identity of
degree2n. Then there exists an embedding, preserving the ide®tity,M,,1(A),
whereA is afield.

Now, we are able to prove the next theorem.

Proof of Theorem 1.3. Suppose first that is linear. ThenG is a subgroup
of GL,(A) for some commutative ringdA. Hence we can construct a ring
homomorphism¢ : Z[G] — M, (A), such thatG N (1 + ker¢g) = {1}. Since
52, (Z[G)) < kerg, the ‘only if’ part of the theorem is proved.

Now supposes N (1 + s2,(Z[G])) = {1} for somen. If G is soluble thenG
is linear overZ, and we are done, so without loss of generality we can suppose
that G is not soluble. By using Zorn's Lemma, we obtain that there exists an
ideal I which is maximal with respect to the properties (Z[G]) < I and
GN @A+ 1) ={1}. PutR = Z[G]/I and identify G with a subgroup of the
group of units ofR. By Lemma 2.1,R contains no non-trivial nilpotent ideals
which implies by [11, Corollary 0.2.7] thaR is semiprime. Now, let/ = {0}
be an ideal ofR. SinceH = G N (1 + J) # {1}, Proposition 1.1 yields that!
is an open subgroup aff and soR/J is Noetherian. It is now clear thak
satisfies the ascending chain condition on ideals, which enables us apply [11,
Theorem 2.15] and conclude th&thas only finitely many minimal prime ideals.
By Proposition 1.1 we obtain th&} is the unique minimal prime ideal &, that
iS, R is prime. The result follows now from Proposition 2.3

Remark 2.4. Note also that the rin@ in the last proof not only is prime, but also
Noetherian by [11, Theorem 13.6.15].
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The proof of Theorem 1.4 requires the following lemma.

Lemma 2.5. LetG be a justinfinite prop group andk a closed ideal oF ,[G]]
such thatG N (1 + K) = {1}. Then there exists a closed idelakcontaining K
maximal with respect to the proper@yn (14 I) = {1}.

Proof. All we have to do is to explain why Zorn’s Lemma can be applied here.
We take an ascending chain of closed ideal§ pfG] containingk, {Ix}, such
thatG N (1 + I) = {1} for all indicesk and claim that the closurg of the union

of the ideals in the chain also satisfies the additional cond@fion(1+ J) = {1}.
Indeed, otherwise the riri, [G]/J would be finite, whence would be finitely
generated as, say leff,,[G]-module. We take the unique maximal ide¥dl of
F,[G] and note that = I; + M J for somek. But then, by Nakayama’'s Lemma,
Ir = J, which is a contradiction. O

Proof of Theorem 1.4. The proof that (i) follows from (ii) is as in the previous
theorem.

We assume now that (ii) holds and, without loss of generality, thas
insoluble. LetA be the completion ofZ[G]/s2,(Z[G]) in the A /s2,(Z]G])-
adic topology. IfA = A/pA is finite thenA is finitely generated a&,-module
and soG is linear overZ,. So, we can suppose thatis infinite. In this case,
G is embedded iU/ (A), and by Lemma 2.5, there exists a closed ideaf A
satisfyingG N (1+ I') = {1} and maximal with this property. PR = A/I and
let A be the unique maximal ideal &f. We regardG as a subgroup df (R).

The ringR is semiprime becauself is a nilpotent ideal oR, so is its closure,
which must be trivial by Lemma 2.1 and the maximalityofrhus Proposition 2.2
can be applied to pick a non-zero elemenin A N Z(R). We claim that the
annihilator ofz is trivial. Actually, any non-trivial closed ideal contains a power
of z but no power ot annihilateg itself because is semiprime, hence the only
possibility for the annihilator of is to be trivial. Now, we seK to be the ideal
Nien 2 R. If K # {0} a power ofz, sayz-, lies in K and thenzt = az*+1 for
somea € R. But this is impossible because the annihilatot @g trivial andz is
notinvertible. Therefor& = {0}. Now, R/zR is finite SoR is a finitely generated
freeF, [z]-module and this implies that is linear overF ,[:]. O

Proof of Corollary 1.5. As we will see in Section 4 we can suppose thatis

a pro-p ring. The inclusion mag; € M, (A) can be extended t4[G] and this
extension is continuous map#fiG] is endowed with theA-adic topology. This
implies thatsy, (Z[G]) maps to zero, which allows as to appeal to the implication
(i) = (i) of Theorem 1.4 to obtain the conclusion desired

Proof of Theorem 1.6. By way of contradiction, suppose th& = Z[G]/I is
not simple for somd € I,,,. We have seen in the proof of Theorem 1.3, tRat
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is prime. We conside6G as a subgroup of/ (R). SinceR is not simple, there
exists a proper non-zero idedlof R contained in the ideal oR generated by
{g — 1| g € G*D} and by Proposition 2.2, we can take4k € J N Z(R). The
element; enjoys following properties:

(i) Forany properideak of R there existd € N such that! € K.
(i) MNienz'R=10}.

We prove now these claims.

() Let K1/K be the prime radical oR/K. By the construction ok, H =
G N (14 Kj) is not trivial and is open irG. SinceR /K1 is a semiprime PI ring
we obtain, by Proposition 2.3, tha/ K1 can be embedded ir; M1 (4;), where
eachA; is afield. HenceG/H)™'+D = {1}, that is,G ™'+ < H. But this means
thatJ € Kj and, in particular; € K. SinceK;/K is the prime radical oR /K,
there exist$ € N such that/ € K.

(i) Since R is prime, the annihilator of is trivial. Hence, as in the proof of
Theorem 1.4, we obtain th@d; . z' R = {O}.

Now we want to show that = (), ' R = {0}. Indeed, if this is not the case,
eachP; = G N (14 7'L) is an open subgroup of; and not all of them are equal
because their intersection reduces in fac{lp So for somej there exists an
elementg =1+2z/x € P;\ Pj11,wherex € L. Takel such thagpl € Pj+1. Then
p'x = zy for somey e L. But it is clear from the definition of. that p'L = L
and the annihilator of/ is trivial, becauser is prime, thus multiplication by’
induces a bijection of., and the equality’x = zy implies thatx € zL, which is
a contradiction becauge¢ P;;1. HenceL = {0}.

We setH = G N (1+ Rz). Now we reach the final contradiction both in the
casespR = {0} and pR # {0}. In the former case, sincR/Rz is a quotient of
F,[G/H], it follows that A* C Rz for somek € N. But (), Rz’ = {0}, so/
is closed inZ[G] with respect to theA-adic topology. Hencez,, (Z[G]) C 1
andG N (1 + 52, (Z[G])) = {1} which, by Theorem 1.4, means th@tis linear
overZ, or F,[t], against the hypothesis. Finally, iR # {0}, thenA* C pR
for somek € N and, sincg ;. p' R = {0}, I is closed which leads to the same
contradiction as before. We conclude ttRais simple and, since it is a Pl ring, it
is of finite dimension over its centre.C

3. Linear pro-p groupsover fields of characteristic p

Most of results in the previous section can be reformulated considering
linearity over rings of characteristic> 0. This is for instance the analogue of
Theorem 1.3 in this new context.
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Theorem 3.1. Let G be a just infinite prop group. ThenG is linear over a ring of
characteristics if and only if G N (1 + s2, (Fs[G])) = {1} for somen. Moreover,
in this caseG is linear over some field of characteristic

Now, we prove Theorem 1.8. The proof uses non-trivial tools related with the
Margulis super-rigidity theorem. We refer the reader to [12,13] for the definitions
and basic results.

Proof of Theorem 1.8 (A. Lubotzky). The ‘if’ part of the theorem is clear,
because a virtually abelian progroup contain&j, as a subgroup of finite index
andZ’, can be embedded i, [1]*.

Now, we shall prove the ‘only if’ part of the theorem by way of contradiction.
So, we suppose thai is linear over some field of characteristic- 0 and also
thatG is not virtually abelian. We split the proof in a number of steps.

Step 1. Every soluble subgrouf of G is virtually abelian.

Obviously, we can assume thats a closed subgroup @f. From the structure
of pro-p groups of finite rank we know that has a soluble torsion-free subgroup
H of finite index which, by the Kolchin—Malcev Theorem [14, Theorem 3.6],
is virtually triangular, i.e. it has a subgroup of finite ind&x conjugated to a
subgroup of the group of invertible triangular matrices. The commutator subgroup
of this group (the unitriangular group) is angroup, soK’ must be trivial.
Hences is virtually abelian.

Step 2. We may assume that is an open subgroup of the group@f,-rational
points ofSL1(D), whereD is a finite-dimensional divisiof@ ,-algebra.

We can embed; in GL,(Z,) and consider the Zariski closure 6f, which
we call G. Define byG(Q)) the group ofQ,-rational points ofG. Let GO be
the connected component Gf SinceGO(Qp) N G is open inG, without loss of
generality we can assume tl@atis connected.

Now, G is defined overQ,, whence there exists a semisimfilg-subgroup
L € G suchthalG =L R(G) (R(G) is the radical ofG). If L is trivial, thenG is
soluble, and so, we obtain a contradiction from Step 1. Therefore, we can assume
thatL is not trivial.

The intersectiorz NL(Q,) is an open subgroup &f(Q,). Therefore, we can
suppose thaG coincides withL. Next, a minimal connected normal subgroup
of G is almost simple, an@ is an almost direct product of its minimal connected
normal subgroups, whence without loss of generality we can assumé tisat
almost simple. Changin@ by its universal covering, we may also assume @at
is simply connected.
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From the first step we know that every soluble subgrougiofs virtually
abelian. Using this and that is open inG(Q),), we obtain that every connected
solubleQ,-subgroup ofG is abelian. Henc& is Q,-anisotropic. But we know
(see, for example, [13, Theorem 6.5]) that this implies Gat SL 1 (D) for some
finite-dimensional divisior,-algebraD.

Step 3. There exists a finite-dimensional divisi@subalgebra of D, such that
D =EQ,.

Let K be the center oD, R its ring of integers,P the maximal ideal ofR
andg the order of residue class fiel = R/P. The indexm of D is defined
by means ofn? = |D : K|. Let W be the unique maximal unramified extension
of K of degreem. Then W = K (w), wherew is a primitive (¢™ — 1)th root
of unity over K. The Galois group GaW/K) is cyclic of orderm, and has a
canonical generator, namely, the Frobenius automorphisinv /K . Recall that
o is defined by the equation(w) = w?. There exists a global fielff ¢ K, such
that K = FQ, (see, for example, [15, Exercise 17.9.2]). Hence we can find a
generatorr of P lying in F. It is known thatW can be embedded iP, and that
there exists an elemenk D* such that

m—1
D= Z Wz/, wherea =o"(a), a € W, andz" = .
j=0

Put E = Z;’-ZolF(w)Zj- We haveD = EQ, and E is a finite-dimensional
division Q-algebra.

As a consequence of the last step we obtain thas an open subgroup of
the group ofK -rational points of the non-commutative absolutely almost simple
F-groupH = SL1(E).

Now, let R be the set of all (inequivalent) valuations of the fidig and
let Roo C R be the set of all Archimedean valuations Bf Denote byF, the
completion of the fieldF" with the respect to the valuatiane R. If § C R, then
the ring

{xeF|lxly<lforallve R\ (ReUS)}

of S-integral elements of will be denoted byF'(S). LetT" =T"(H) be the set of
valuations v such thatH is anisotropic ovelr, (we know that this set is finite)
and letvy, vo ¢ T.

Step 4. If S ={v1,v2} URx \ T, thenH(F(S)) is not linear over any field of
positive characteristic.

This step follows directly from Theorem 3(ii) of [12, p. 4] bearing in mind that
H(F(S)) is an irreducible lattice i{g = [[,.gH(Fy), rankHg > 2 and for no
v € § the groupH has a nontriviaF, -anisotropic factor.
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Step 5. G is not linear over any field of positive characteristic.

Note that F(S) ¢ R andH(R) is compact and open i (K) (moreover,
H(K) is itself compact). Henc& N H(F(S)) is of finite index inH(F(S)).
From the previous step we conclude tdais not linear over any field of positive
characteristic. O

4. Linear dimension of finitely generated t-linear pro-p groups
First of all we prove the result mentioned in the proof of the Corollary 1.5.

Theorem 4.1. Let G be afinitely generated t-linear prp-group. TherG is linear
over some commutative Noetherian local proing.

Proof. Let A be a profinite ring ands < GL,(A). For each prime number
q define the subringly = {x € A | lim,—. ¢"x = 0}. ThenA =[], A, and
GL,(A) = ]—[q GL,(A4). Now let G, be the image of5 in GL,(A,) under the
qth projection map and,, is intersection of all open maximal ideals 4f. It is
easy to see thak, coincides with the Jacobson radical 4f. Now suppose that
q # p.If g € 1+ M,(J,) then lim,_, o g7" = 0 and s0G, N (1 + M, (J,)) is
trivial. HenceG, can be embedded [; GL,(K;), wherek; are finite fields of
characteristig;. Let F; be the image o6, in GL,(K;) under theith projection
map. It is well known thatF; has an abelian subgrouwy of index at mostf,
which depends only on. The rank ofA; is at mostn and soA; has a faithful
representation of degreeoverZ,[w;], wherew; is ann;th root of unity forn;
the exponent of groug;. ThereforeF; has a faithful representation of degreg
overZ,[w;]. HenceG, is linear of degreef over[[; Z,[w;] and soG < [[ G4
is linear over some prg-ring.

We are left to deal with the case whdnis pro-p ring. Let J be the Jacobson
radical of A and putH = G N (1 + M, (J)). SinceG/H can be embedded in
[, GL.(K;), whereK; are finite fields of characteristjg, G/H is finite.

SinceH <1+ M,(J), H=(1+b1,...,1+by), whereb; € M, (J). Let
{aj | j=1,...,k} be the set of elements af which appear in the matricés,
R the subring ofA generated byas,...,ax} and B the closure ofR in A.
Define a homomorphismp : Z[f1, ..., %] — A by means ofp(t;) = a;. Let M
be the ideal ofZ[z1, ..., %] generated by, 11, ..., %. Then¢ is a continuous
map if Z[t1, ..., ] has theM-adic topology. Therefore we can extepdto
Zp[[tl,...,tkﬂ.

We want to prove thaw(Z,[r,...,%]) = B and, in particular,B is a
Noetherian local prgs ring. SinceZ, [11, . . ., 1] is compact ane is a continuous
map,¢(Zp[t1, ..., t%]) is closed. Hence

B=R=¢Zlt,....tx]) CH(Zp[t1.....1]).
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The converse inclusion is obvious.
Now H is of finite index inG, soG is also linearoveB. 0O

Let A be a commutative Noetherian local pporing andG a pro-p group.
We will say that a homomorphis®: G — GL, (A) is minimalif ¢ is faithful
and for every non-trivial ideal of A the intersection op (G) and 1+ M, (1) is
different from 1. In this case we writé(¢) for the Krull dimension ofA. If d(¢)
is constant for every minimal homomorphigmwe call this constant number the
linear dimension of the grou@ and we denote it simply by ding .

Conjecture 1. Every finitely generated t-linear prp-group has linear dimension.

At this moment we can prove this conjecture only for insoluble t-linear just
infinite pro-p groups.

Theorem 4.2. Let G be an insoluble t-linear just infinite prp- group. Then
dim G =1.

Proof. Let¢:G — GL,(A) be a minimal homomorphism. By Lemma 24lis
semiprime. LetQ be an element ap (G D) different from the identity matrix
I, anda an element of the matri© — I, different from 0. Consider a maximal
ideal J of A which does not intersedt* | k € N}. It is well known thatJ is a
prime ideal ofA. Let G be the image ofG in GL,(A/J). If G is finite, then
G "D = {1} which contradicts: ¢ J. HenceG is infinite and sa/ = {0}.

The ring A satisfies the following property: every ideal afcontains a power
of some fixed element (in our case the eleméntRings with this property are
known to have Krull dimension 1 (see [16, Theorem 146]), so our theorem is
proved. O

5. Analyticjust infinite pro-p groups

Let R be a commutative Noetherian local ppading andm its maximal ideal.
We assume that the associated graded riog)ge oo o m” /m"*t1is anintegral
domain. The concept of aR-analytic group is defined in [1, Chapter 13], where
itis shown that every such group contains an open subgroup whitisiandard
To recall what this means, I€t be anR-standard group. Then the underlying set
of G may be “identified” with the cartesian produgt’)@ of d copies ofm/,
for somel € N. The numbet! > 0 is thedimensiorof G. The group operation is
given by aformal group law i.e. ad-tupleF = (Fy, ..., Fy) of power series over
R in 2d variables, as follows: for alt, y € G = (m!)@ we have

X-y=(F1%.Y), ..., Fa(Xx,y)).
The neutral element af is (0, ..., 0).



A. Jaikin-Zapirain / Journal of Algebra 255 (2002) 392-404 403

Proposition 5.1. LetG be anR-standard group. Thew/Z(G) is linear overR.

Proof. Let d be the dimension o&. SinceG is identified with (m/)@, A =
R[x1,...,x4] can be considered as a subring of the ring of functions ftem
to R. Define onA a structure ofR[G]-module by puttinga - y)(X) = a(yxy 1),
wherea € A andx,y € G. Fora = (a1, ..., ag), where eacly; is a non-negative
integer, pute| = Y «;. Since the group operation @& is given by a formal group
law, there existf; « € R[y1, - -, y4]] such that

Xioy=xi+ Y fia(xyt.. x50

|21

LetK betheideal oR[y1, ..., ys] generated by = { fi »}. SinceR[y1, ..., yd]
is Noetherian, there is a finite subgétof W which generatek . Denote bym
the maximum ofa| whenf; , € V. LetI = x;A. Thenforany: e N, I" is an
R[G]-submodule ofd. If y € G acts trivially on//I™*1 then f (y) = O for every
f eVandsof(y)=0foreveryf € K.Hencex;-y=ux; fori =1,...,d,which
meansy € Z(G). O

Proof of Theorem 1.7. Let H <, G be an R-standard group and pu¥ =
ﬂgeG Hs. It is clear thatN is also an open subgroup 6f. SinceN is hormal
and closed, soiZ(N). If Z(N) is open therG is soluble, and sp-adic analytic,
henceRr is finite extension ofZ, (see, for example, [1]), whenad€ is linear
over R. Suppose now thaZ (N) is trivial. Then N N Z(H) = {1} and so by
Proposition 5.1/ is linear overR. SinceN is of finite index inG, G is also
linear overkR. O

Note added in proof

Conjecture 1 is not true as the following example shows. It=
SL%(IF,,[[tl, t2,13]). Then the natural embedding: G — GL2(F[11, 12, 13]) is
minimal. On the other hand, by Remark VII.10.4 of O. Zariski and P. Samuel
(“Commutative Algebra,” Vol. Il), we can embel, [11, 2, 13] into F,[s1, s2].

This embedding induces another minimal representatiof — GL2(F, [s1, s2]).
HenceG does not have linear dimension.
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