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1. Introduction

Interest on just infinite pro-p groups (i.e. infinite pro-p groups with only fi-
nite proper pro-p images) has grown steadily during the last few years, the most
ambitious project in this area being the classification of the groups in this fam-
ily. It is expected that, as in the classification of finite simple groups, except for
some ‘sporadic’ groups, any just infinite pro-p group will lie into one of several
well-defined families. However, this theory is still in its first stages and no precise
conjectures have been posed by the moment. It is therefore natural to add some
extra conditions and the one we choose in this work is linearity. We need first to
give a precise meaning to a just infinite pro-p group being linear. According to the
classical definition, to be linear means of course to be a subgroup of the full linear
group of a given degree defined on a field, however this is not entirely appropriate
for our purposes since it is does not take any advantage of the topological nature
of a pro-p group. The following two definitions, notably the second one, are better
suited in our context.

Definition. Let G be a pro-p group. We shall say thatG is linear if it is linear
over some commutative ring and thatG is t-linear if it is a closed subgroup of
GLn(A) for some commutative profinite ringA.
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Recall that ifA is a commutative profinite ring then GLn(A) is a profinite
group, and ifG is a finitely generated pro-p group and also a subgroup of GLn(A)
thenG is automatically closed in GLn(A) [1, Corollary 1.21]. Note that just
infinite pro-p groups are finitely generated.

It seems reasonable that for pro-p groups in general t-linearity should be
strictly stronger than linearity but no actual counterexamples are known. In [2]
it has been conjectured that a non-abelian free pro-p group is not t-linear. By
the moment we only know that it is not t-linear of degree 2 (see [3]) and it is
not linear overFp❏t❑ (see [4]). Yet, I suspect that this group is linear over some
field. In this paper our main interest is focused on the following question posed
by C.R. Leedham-Green.

Question. Is every linear just infinite pro-p group linear overZp or Fp❏t❑?

We have not been able to settle this question but we have proved that
counterexamples, if they exist, must have some interesting properties. Note that
soluble just infinite pro-p groups are linear overZp . Therefore, our attention is
devoted to insoluble just infinite pro-p groups. The following result will be very
useful for us and is also of certain interest by itself.

Proposition 1.1. LetG be a just infinite pro-p group. ThenG is insoluble if and
only if every non-trivial normal subgroup ofG is open.

So we see that insoluble just infinite pro-p groups are also just infinite as
abstract groups. This fact was proved for the Nottingham group by B. Klopsch [5].
Recall that a pro-p groupG is called hereditarily just infinite if every open
subgroup ofG is just infinite. IfG is an insoluble pro-p group then every open
subgroup is also insoluble and so Proposition 1.1 implies the following corollary.

Corollary 1.2. Let G be an insoluble hereditarily just infinite pro-p group.
ThenG is hereditarily just infinite as an abstract group.

If x1, . . . , xn are elements in a ring, we define

sn(x1, . . . , xn)=
∑

σ∈Sn
sgn(σ )xσ(1) . . . xσ(n),

where the sum is taken over all permutations of degreen and sgn(σ ) is the sign
of σ . We say that a ring satisfies thenth standard identity, orsn for short, if
sn(x1, . . . , xn) = 0 for any elementsx1, . . . , xn in the ring. It is easy to prove
that, for a commutative ringA, Mn(A) satisfiessn2+1. Actually, by the Amitsur–
Levitzki Theorem,Mn(A) satisfiess2n. If R is a ring we setsn(R) to be the ideal
of R generated by{sn(a1, . . . , an) | a1, . . . , an ∈ R}. Now we give a criterion for
a just infinite pro-p group to be linear.
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Theorem 1.3. LetG be a just infinite pro-p group. ThenG is linear if and only
if G∩ (1+ s2n(Z[G]))= {1} for somen. Moreover, in this case,G is linear over
some field.

Let∆ be the ideal ofZ[G] generated byp and{g− 1 | g ∈G} ands2n(Z[G])
the closure ofs2n(Z[G]) in the∆-adic topology ofZ[G]. Hence,s2n(Z[G]) =⋂
i∈N
(s2n(Z[G])+∆i).

Theorem 1.4. LetG be a just infinite pro-p group. Then the following conditions
are equivalent:

(i) G is linear overZp or Fp❏t❑.
(ii) G∩ (1+ s2n(Z[G]))= {1} for somen.

As a corollary of this theorem we obtain that t-linear just infinite pro-p groups
are linear overZp or Fp❏t❑.

Corollary 1.5. LetG be a t-linear just infinite pro-p group. ThenG is a closed
subgroup of ofGLm(Zp) or of GLm(Fp❏t❑) for somem.

Another proof of this corollary is given in Section 4.
In view of Theorem 1.3 we define the following setIn of ideals ofZ[G]: an

ideal I belongs toIn if it is maximal among the idealsJ containings2n(Z[G])
and satisfyingG∩ (1+ J )= {1}. We will see that ifG is an insoluble linear just
infinite pro-p group andI ∈ In thenZ[G]/I is a prime Noetherian PI ring. In the
case whenG is not t-linear we can say a bit more.

Theorem 1.6. LetG be a just infinite pro-p group. IfG is linear but not t-linear
(linear overZp or Fp❏t❑), then there existsn � 0 such that for anym � n the
family Im is not empty and for anyI ∈ Im, Z[G]/I is a simple ring of finite
dimension over its centre.

In [6] the authors consider insoluble just infinite pro-p groups which are
linear overZp and they prove that these groups are open compact subgroups
of the groups ofQp-rational points of semisimple algebraic groups. What can
we say about just infinite pro-p groups which are linear overFp❏t❑? The results
by Pink in [7] represent a breakthrough in the understanding of these groups.
One of the immediate corollaries of this work is an analogue forFp❏t❑-linear
insoluble just infinite pro-p groups: any such group has an open subgroup which
is isomorphic to an open compact subgroup of the group ofFp((t))-rational
points of a semisimple algebraic group. HereFp((t)) is the field of quotients of
Fp❏t❑. In particular,Fp❏t❑-linear insoluble just infinite pro-p groups areFp❏t❑-
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analytic. The converse implication is proved in Section 5. Actually, assuming that
R satisfies some natural conditions, we prove the following theorem.

Theorem 1.7. LetG be anR-analytic just infinite pro-p group. ThenG is linear
overR (and so it is linear overZp or Fp❏t❑).

In Section 3 we consider the question of when ap-adic analytic pro-p group is
linear over a field of positive characteristic. In [8, p. 30, Proposition 5.6] A. Shalev
proved that ap-adic analytic pro-p group is linear overFp❏t❑ if and only if it is
virtually abelian (it answers a question posed in [9]). The proof is based on Pink’s
characterization of closed subgroups of GLn(Fp❏t❑). In this paper we prove the
next result.

Theorem 1.8. LetG be ap-adic analytic pro-p group. ThenG is linear over a
field of positive characteristic if and only ifG is virtually abelian.

The proof of this theorem is based on the properties of lattices in semisimple
algebraic groups over local fields. This very nice idea, as well as the main steps
of the proof, has been suggested to me by A. Lubotzky. I would like to thank him
for drawing to my attention to this beautiful world of ideas.

Finally, in Section 4 we prove that a finitely generated t-linear pro-p group is
linear over some commutative Noetherian local pro-p ring and we conjecture that
two ‘minimal’ such rings have the same Krull dimension.

If R is a ring thenU(R) is the group of units ofR. The derived series of a
group is denoted by{G(k)}. The rest of the notation is standard. We refer the
reader to [1,6,10] for background on pro-p groups and to [11] for background on
PI rings. IfG is finitep-subgroup of GLn(K), for some fieldK, then the derived
length ofG is at mostn. We shall use several times these facts, sometimes without
mentioning them explicitly.

2. Proofs of the main results

We begin this section with the proof of Proposition 1.1.

Proof of Proposition 1.1. SupposeG is insoluble and letH be a normal
subgroup andT its closure inG. ThenT is an open subgroup and there exist
elementsh1, . . . , hd ∈H such thatT = 〈h1, . . . , hd〉. SinceG is insoluble,[T ,T ]
is open inG. By using the same argument as in the proof of [1, Proposition 1.19],
we obtain that[T ,T ] = {[t1, h1] . . . [td , hd ] | t1, . . . , td ∈ T }, whence[T ,T ] �H
andH is open inG.

Now suppose thatG is soluble. ThenG has an abelian normal open
subgroupA. We pick any non-identity elementa in A and takeH to be the
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smallest normal subgroup inG containinga. TheZ-rank ofH is clearly finite, so
H cannot be open. ✷
Lemma 2.1. Let R be a ring and G an insoluble just infinite pro-p group
contained inU(R). Then for any nilpotent idealI ofR,G∩ (1+ I)= {1}.

Proof. SupposeG ∩ (1 + I) 
= {1}. Then by Proposition 1.1, this intersection is
an open subgroup ofG and sinceI is nilpotent, it is a nilpotent subgroup. But
then G has to be soluble, which is a contradiction.✷

We shall need the following two results about PI rings.

Proposition 2.2 [11, Theorem 13.6.4].LetR be a semiprime PI ring with centre
Z(R) andJ a non-trivial ideal ofR. Then,J ∩Z(R) 
= {0}.

The next proposition is an easy consequence of [11, Theorem 13.4.2].

Proposition 2.3. Let R be a prime PI ring satisfying a polynomial identity of
degree2n. Then there exists an embedding, preserving the identity,R ⊆ Mn!(A),
whereA is a field.

Now, we are able to prove the next theorem.

Proof of Theorem 1.3. Suppose first thatG is linear. ThenG is a subgroup
of GLn(A) for some commutative ringA. Hence we can construct a ring
homomorphismφ :Z[G] → Mn(A), such thatG ∩ (1 + kerφ) = {1}. Since
s2n(Z[G])⊆ kerφ, the ‘only if’ part of the theorem is proved.

Now supposeG ∩ (1 + s2n(Z[G]))= {1} for somen. If G is soluble thenG
is linear overZp and we are done, so without loss of generality we can suppose
thatG is not soluble. By using Zorn’s Lemma, we obtain that there exists an
ideal I which is maximal with respect to the propertiess2n(Z[G]) ⊆ I and
G ∩ (1 + I) = {1}. Put R = Z[G]/I and identifyG with a subgroup of the
group of units ofR. By Lemma 2.1,R contains no non-trivial nilpotent ideals
which implies by [11, Corollary 0.2.7] thatR is semiprime. Now, letJ 
= {0}
be an ideal ofR. SinceH = G ∩ (1 + J ) 
= {1}, Proposition 1.1 yields thatH
is an open subgroup ofG and soR/J is Noetherian. It is now clear thatR
satisfies the ascending chain condition on ideals, which enables us apply [11,
Theorem 2.15] and conclude thatR has only finitely many minimal prime ideals.
By Proposition 1.1 we obtain that{0} is the unique minimal prime ideal ofR, that
is,R is prime. The result follows now from Proposition 2.3.✷
Remark 2.4. Note also that the ringR in the last proof not only is prime, but also
Noetherian by [11, Theorem 13.6.15].
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The proof of Theorem 1.4 requires the following lemma.

Lemma 2.5. LetG be a just infinite pro-p group andK a closed ideal ofFp❏G❑
such thatG ∩ (1 + K) = {1}. Then there exists a closed idealI containingK
maximal with respect to the propertyG∩ (1+ I)= {1}.

Proof. All we have to do is to explain why Zorn’s Lemma can be applied here.
We take an ascending chain of closed ideals ofFp❏G❑ containingK, {Ik}, such
thatG ∩ (1+ Ik)= {1} for all indicesk and claim that the closureJ of the union
of the ideals in the chain also satisfies the additional conditionG∩ (1+ J )= {1}.
Indeed, otherwise the ringFp❏G❑/J would be finite, whenceJ would be finitely
generated as, say left,Fp❏G❑-module. We take the unique maximal idealM of
Fp❏G❑ and note thatJ = Ik +MJ for somek. But then, by Nakayama’s Lemma,
Ik = J , which is a contradiction. ✷
Proof of Theorem 1.4. The proof that (i) follows from (ii) is as in the previous
theorem.

We assume now that (ii) holds and, without loss of generality, thatG is
insoluble. LetΛ be the completion ofZ[G]/s2n(Z[G]) in the ∆/s2n(Z[G])-
adic topology. IfΛ=Λ/pΛ is finite thenΛ is finitely generated asZp-module
and soG is linear overZp . So, we can suppose thatΛ is infinite. In this case,
G is embedded inU(Λ), and by Lemma 2.5, there exists a closed idealI of Λ
satisfyingG ∩ (1 + I) = {1} and maximal with this property. PutR = Λ/I and
let∆ be the unique maximal ideal ofR. We regardG as a subgroup ofU(R).

The ringR is semiprime because ifL is a nilpotent ideal ofR, so is its closure,
which must be trivial by Lemma 2.1 and the maximality ofI . Thus Proposition 2.2
can be applied to pick a non-zero elementz in ∆ ∩ Z(R). We claim that the
annihilator ofz is trivial. Actually, any non-trivial closed ideal contains a power
of z but no power ofz annihilatesz itself becauseR is semiprime, hence the only
possibility for the annihilator ofz is to be trivial. Now, we setK to be the ideal⋂
i∈N
ziR. If K 
= {0} a power ofz, sayzk , lies inK and thenzk = azk+1 for

somea ∈ R. But this is impossible because the annihilator ofz is trivial andz is
not invertible. ThereforeK = {0}. Now,R/zR is finite soR is a finitely generated
freeFp❏z❑-module and this implies thatG is linear overFp❏t❑. ✷
Proof of Corollary 1.5. As we will see in Section 4 we can suppose thatA is
a pro-p ring. The inclusion mapG ⊆ Mn(A) can be extended toZ[G] and this
extension is continuous map ifZ[G] is endowed with the∆-adic topology. This
implies thats2n(Z[G])maps to zero, which allows as to appeal to the implication
(ii) ⇒ (i) of Theorem 1.4 to obtain the conclusion desired.✷
Proof of Theorem 1.6. By way of contradiction, suppose thatR = Z[G]/I is
not simple for someI ∈ Im. We have seen in the proof of Theorem 1.3, thatR
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is prime. We considerG as a subgroup ofU(R). SinceR is not simple, there
exists a proper non-zero idealJ of R contained in the ideal ofR generated by
{g− 1 | g ∈G(n!+1)} and by Proposition 2.2, we can take 0
= z ∈ J ∩Z(R). The
elementz enjoys following properties:

(i) For any proper idealK of R there existsl ∈ N such thatzl ∈K.
(ii)

⋂
i∈N
ziR = {0}.

We prove now these claims.
(i) Let K1/K be the prime radical ofR/K. By the construction ofR, H =

G ∩ (1+K1) is not trivial and is open inG. SinceR/K1 is a semiprime PI ring
we obtain, by Proposition 2.3, thatR/K1 can be embedded in

∏
iMn!(Ai), where

eachAi is a field. Hence(G/H)(n!+1) = {1}, that is,G(n!+1) �H . But this means
thatJ ⊆K1 and, in particular,z ∈K1. SinceK1/K is the prime radical ofR/K,
there existsl ∈ N such thatzl ∈K.

(ii) SinceR is prime, the annihilator ofz is trivial. Hence, as in the proof of
Theorem 1.4, we obtain that

⋂
i∈N
ziR = {0}.

Now we want to show thatL= ⋂
i∈N
piR = {0}. Indeed, if this is not the case,

eachPi =G∩ (1+ ziL) is an open subgroup ofG and not all of them are equal
because their intersection reduces in fact to{1}. So for somej there exists an
elementg = 1+zjx ∈ Pj \Pj+1, wherex ∈ L. Takel such thatgp

l ∈ Pj+1. Then
plx = zy for somey ∈ L. But it is clear from the definition ofL thatplL = L
and the annihilator ofpl is trivial, becauseR is prime, thus multiplication bypl

induces a bijection ofL, and the equalityplx = zy implies thatx ∈ zL, which is
a contradiction becauseg /∈ Pj+1. HenceL= {0}.

We setH = G ∩ (1 + Rz). Now we reach the final contradiction both in the
casespR = {0} andpR 
= {0}. In the former case, sinceR/Rz is a quotient of
Fp[G/H ], it follows that∆k ⊆ Rz for somek ∈ N. But

⋂
i∈N
Rzi = {0}, so I

is closed inZ[G] with respect to the∆-adic topology. Hences2m(Z[G]) ⊆ I
andG ∩ (1 + s2m(Z[G])) = {1} which, by Theorem 1.4, means thatG is linear
over Zp or Fp❏t❑, against the hypothesis. Finally, ifpR 
= {0}, then∆k ⊆ pR
for somek ∈ N and, since

⋂
i∈N
piR = {0}, I is closed which leads to the same

contradiction as before. We conclude thatR is simple and, since it is a PI ring, it
is of finite dimension over its centre.✷

3. Linear pro-p groups over fields of characteristic p

Most of results in the previous section can be reformulated considering
linearity over rings of characteristics > 0. This is for instance the analogue of
Theorem 1.3 in this new context.
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Theorem 3.1. LetG be a just infinite pro-p group. ThenG is linear over a ring of
characteristics if and only ifG ∩ (1+ s2n(Fs[G]))= {1} for somen. Moreover,
in this caseG is linear over some field of characteristics.

Now, we prove Theorem 1.8. The proof uses non-trivial tools related with the
Margulis super-rigidity theorem. We refer the reader to [12,13] for the definitions
and basic results.

Proof of Theorem 1.8 (A. Lubotzky). The ‘if’ part of the theorem is clear,
because a virtually abelian pro-p group containsZnp as a subgroup of finite index
andZnp can be embedded inFp❏t❑∗.

Now, we shall prove the ‘only if’ part of the theorem by way of contradiction.
So, we suppose thatG is linear over some field of characteristics > 0 and also
thatG is not virtually abelian. We split the proof in a number of steps.

Step 1. Every soluble subgroupS of G is virtually abelian.

Obviously, we can assume thatS is a closed subgroup ofG. From the structure
of pro-p groups of finite rank we know thatS has a soluble torsion-free subgroup
H of finite index which, by the Kolchin–Malcev Theorem [14, Theorem 3.6],
is virtually triangular, i.e. it has a subgroup of finite indexK conjugated to a
subgroup of the group of invertible triangular matrices. The commutator subgroup
of this group (the unitriangular group) is ans-group, soK ′ must be trivial.
HenceS is virtually abelian.

Step 2. We may assume thatG is an open subgroup of the group ofQp-rational
points ofSL1(D), whereD is a finite-dimensional divisionQp-algebra.

We can embedG in GLn(Zp) and consider the Zariski closure ofG, which
we call G. Define byG(Qp) the group ofQp-rational points ofG. Let G0 be
the connected component ofG. SinceG0(Qp) ∩G is open inG, without loss of
generality we can assume thatG is connected.

Now, G is defined overQp, whence there exists a semisimpleQp-subgroup
L ⊆ G such thatG = LR(G) (R(G) is the radical ofG). If L is trivial, thenG is
soluble, and so, we obtain a contradiction from Step 1. Therefore, we can assume
thatL is not trivial.

The intersectionG∩ L(Qp) is an open subgroup ofL(Qp). Therefore, we can
suppose thatG coincides withL. Next, a minimal connected normal subgroup
of G is almost simple, andG is an almost direct product of its minimal connected
normal subgroups, whence without loss of generality we can assume thatG is
almost simple. ChangingG by its universal covering, we may also assume thatG
is simply connected.
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From the first step we know that every soluble subgroup ofG is virtually
abelian. Using this and thatG is open inG(Qp), we obtain that every connected
solubleQp-subgroup ofG is abelian. HenceG is Qp-anisotropic. But we know
(see, for example, [13, Theorem 6.5]) that this implies thatG = SL1(D) for some
finite-dimensional divisionQp-algebraD.

Step 3. There exists a finite-dimensional divisionQ-subalgebraE ofD, such that
D =EQp.

Let K be the center ofD, R its ring of integers,P the maximal ideal ofR
andq the order of residue class fieldR = R/P . The indexm of D is defined
by means ofm2 = |D : K|. LetW be the unique maximal unramified extension
of K of degreem. ThenW = K(w), wherew is a primitive (qm − 1)th root
of unity overK. The Galois group Gal(W/K) is cyclic of orderm, and has a
canonical generator, namely, the Frobenius automorphismσ ofW/K. Recall that
σ is defined by the equationσ(w)=wq . There exists a global fieldF ⊂K, such
thatK = FQp (see, for example, [15, Exercise 17.9.2]). Hence we can find a
generatorπ of P lying in F . It is known thatW can be embedded inD, and that
there exists an elementz ∈D∗ such that

D =
m−1∑

j=0

Wzj , whereaz = σ r(a), a ∈W, andzm = π.

Put E = ∑m−1
j=0 F(w)z

j . We haveD = EQp and E is a finite-dimensional
divisionQ-algebra.

As a consequence of the last step we obtain thatG is an open subgroup of
the group ofK-rational points of the non-commutative absolutely almost simple
F -groupH = SL1(E).

Now, let R be the set of all (inequivalent) valuations of the fieldF , and
let R∞ ⊂ R be the set of all Archimedean valuations ofF . Denote byFv the
completion of the fieldF with the respect to the valuationv ∈ R. If S ⊂ R, then
the ring

{
x ∈ F ∣∣ |x|v � 1 for all v ∈R \ (R∞ ∪ S)}

of S-integral elements ofF will be denoted byF(S). Let2 = 2(H) be the set of
valuations v such thatH is anisotropic overFv (we know that this set is finite)
and letv1, v2 /∈ 2.

Step 4. If S = {v1, v2} ∪ R∞ \ 2, thenH(F (S)) is not linear over any field of
positive characteristic.

This step follows directly from Theorem 3(ii) of [12, p. 4] bearing in mind that
H(F (S)) is an irreducible lattice inHS = ∏

v∈SH(Fv), rankHS � 2 and for no
v ∈ S the groupH has a nontrivialFv-anisotropic factor.
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Step 5. G is not linear over any field of positive characteristic.

Note thatF(S) ⊂ R and H(R) is compact and open inH(K) (moreover,
H(K) is itself compact). HenceG ∩ H(F (S)) is of finite index in H(F (S)).
From the previous step we conclude thatG is not linear over any field of positive
characteristic. ✷

4. Linear dimension of finitely generated t-linear pro-p groups

First of all we prove the result mentioned in the proof of the Corollary 1.5.

Theorem 4.1. LetG be a finitely generated t-linear pro-p group. ThenG is linear
over some commutative Noetherian local pro-p ring.

Proof. Let A be a profinite ring andG � GLn(A). For each prime number
q define the subringAq = {x ∈ A | limn→∞ qnx = 0}. ThenA = ∏

q Aq and
GLn(A)= ∏

q GLn(Aq). Now letGq be the image ofG in GLn(Aq) under the
q th projection map andJq is intersection of all open maximal ideals ofAq . It is
easy to see thatJq coincides with the Jacobson radical ofAq . Now suppose that
q 
= p. If g ∈ 1 + Mn(Jq) then limn→∞ gq

n = 0 and soGq ∩ (1 + Mn(Jq)) is
trivial. HenceGq can be embedded in

∏
i GLn(Ki), whereKi are finite fields of

characteristicq . Let Fi be the image ofGq in GLn(Ki) under theith projection
map. It is well known thatFi has an abelian subgroupAi of index at mostf ,
which depends only onn. The rank ofAi is at mostn and soAi has a faithful
representation of degreen overZp[wi], wherewi is anni th root of unity forni
the exponent of groupAi . ThereforeFi has a faithful representation of degreenf
overZp[wi]. HenceGq is linear of degreenf over

∏
i Zp[wi] and soG�

∏
Gq

is linear over some pro-p ring.
We are left to deal with the case whenA is pro-p ring. LetJ be the Jacobson

radical ofA and putH = G ∩ (1 + Mn(J )). SinceG/H can be embedded in∏
i GLn(Ki), whereKi are finite fields of characteristicp,G/H is finite.
SinceH � 1 + Mn(J ), H = 〈1+ b1, . . . ,1+ bs〉, wherebi ∈ Mn(J ). Let

{aj | j = 1, . . . , k} be the set of elements ofA which appear in the matricesbi ,
R the subring ofA generated by{a1, . . . , ak} and B the closure ofR in A.
Define a homomorphismφ :Z[t1, . . . , tk] → A by means ofφ(ti ) = ai . Let M
be the ideal ofZ[t1, . . . , tk] generated byp, t1, . . . , tk . Thenφ is a continuous
map if Z[t1, . . . , tk] has theM-adic topology. Therefore we can extendφ to
Zp❏t1, . . . , tk❑.

We want to prove thatφ(Zp❏t1, . . . , tk❑) = B and, in particular,B is a
Noetherian local pro-p ring. SinceZp❏t1, . . . , tk❑ is compact andφ is a continuous
map,φ(Zp❏t1, . . . , tk❑) is closed. Hence

B =R = φ(Z[t1, . . . , tk])⊆ φ
(
Zp❏t1, . . . , tk❑

)
.
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The converse inclusion is obvious.
NowH is of finite index inG, soG is also linear overB. ✷
Let A be a commutative Noetherian local pro-p ring andG a pro-p group.

We will say that a homomorphismφ :G→ GLn(A) is minimal if φ is faithful
and for every non-trivial idealI of A the intersection ofφ(G) and 1+ Mn(I) is
different from 1. In this case we writed(φ) for the Krull dimension ofA. If d(φ)
is constant for every minimal homomorphismφ, we call this constant number the
linear dimension of the groupG and we denote it simply by dimlG.

Conjecture 1. Every finitely generated t-linear pro-p group has linear dimension.

At this moment we can prove this conjecture only for insoluble t-linear just
infinite pro-p groups.

Theorem 4.2. Let G be an insoluble t-linear just infinite pro-p group. Then
dimlG= 1.

Proof. Let φ :G→ GLn(A) be a minimal homomorphism. By Lemma 2.1A is
semiprime. LetQ be an element ofφ(G(n+1)) different from the identity matrix
In anda an element of the matrixQ− In different from 0. Consider a maximal
ideal J of A which does not intersect{ak | k ∈ N}. It is well known thatJ is a
prime ideal ofA. Let G be the image ofG in GLn(A/J ). If G is finite, then
G(n+1) = {1} which contradictsa /∈ J . HenceG is infinite and soJ = {0}.

The ringA satisfies the following property: every ideal ofA contains a power
of some fixed element (in our case the elementa). Rings with this property are
known to have Krull dimension 1 (see [16, Theorem 146]), so our theorem is
proved. ✷

5. Analytic just infinite pro-p groups

LetR be a commutative Noetherian local pro-p ring andm its maximal ideal.
We assume that the associated graded ring gr(R)= ⊕∞

n=0 mn/mn+1 is an integral
domain. The concept of anR-analytic group is defined in [1, Chapter 13], where
it is shown that every such group contains an open subgroup which isR-standard.
To recall what this means, letG be anR-standard group. Then the underlying set
of G may be “identified” with the cartesian product(ml)(d) of d copies ofml ,
for somel ∈ N. The numberd � 0 is thedimensionof G. The group operation is
given by aformal group law, i.e. ad-tupleF = (F1, . . . ,Fd) of power series over
R in 2d variables, as follows: for allx,y ∈G= (ml )(d) we have

x · y = (
F1(x,y), . . . ,Fd(x,y)

)
.

The neutral element ofG is (0, . . . ,0).
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Proposition 5.1. LetG be anR-standard group. ThenG/Z(G) is linear overR.

Proof. Let d be the dimension ofG. SinceG is identified with(ml)(d), A =
R❏x1, . . . , xd❑ can be considered as a subring of the ring of functions fromG
to R. Define onA a structure ofR[G]-module by putting(a · y)(x)= a(yxy−1),
wherea ∈A andx,y ∈G. Forα = (α1, . . . , αd), where eachαi is a non-negative
integer, put|α| = ∑

αi . Since the group operation inG is given by a formal group
law, there existfi,α ∈ R❏y1, · · · , yd❑ such that

xi · y = xi +
∑

|α|�1

fi,α(y)x
α1
1 . . . x

αd
d .

LetK be the ideal ofR❏y1, . . . , yd❑ generated byW = {fi,α}. SinceR❏y1, . . . , yd❑
is Noetherian, there is a finite subsetV of W which generatesK. Denote bym
the maximum of|α| whenfi,α ∈ V . Let I = ∑

xiA. Then for anyn ∈ N, In is an
R[G]-submodule ofA. If y ∈G acts trivially onI/Im+1 thenf (y)= 0 for every
f ∈ V and sof (y)= 0 for everyf ∈K. Hencexi ·y = xi for i = 1, . . . , d , which
meansy ∈Z(G). ✷
Proof of Theorem 1.7. Let H �o G be anR-standard group and putN =⋂
g∈GHg . It is clear thatN is also an open subgroup ofG. SinceN is normal

and closed, so isZ(N). If Z(N) is open thenG is soluble, and sop-adic analytic,
henceR is finite extension ofZp (see, for example, [1]), whenceG is linear
over R. Suppose now thatZ(N) is trivial. ThenN ∩ Z(H) = {1} and so by
Proposition 5.1,N is linear overR. SinceN is of finite index inG, G is also
linear overR. ✷

Note added in proof

Conjecture 1 is not true as the following example shows. LetG =
SL1

2(Fp❏t1, t2, t3❑). Then the natural embeddingφ :G→ GL2(Fp❏t1, t2, t3❑) is
minimal. On the other hand, by Remark VII.10.4 of O. Zariski and P. Samuel
(“Commutative Algebra,” Vol. II), we can embedFp❏t1, t2, t3❑ into Fp❏s1, s2❑.
This embedding induces another minimal representationψ :G→ GL2(Fp❏s1, s2❑).
HenceG does not have linear dimension.
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