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A rapid growth of molecular and systems biology in recent
years challenges mathematicians to develop robust modeling and
analytical tools for this area.
We combine a theory of monotone input–output systems with
a classical theory of Morse decompositions in the context of
ordinary differential equations models of biochemical reactions.
We show that a multi-valued input–output characteristic can be
used to define non-trivial Morse decompositions which provide
information about a global structure of the attractor. The previous
work on input–output characteristics is shown to apply locally
to individual Morse sets and is seamlessly incorporated into our
global theory.
We apply our tools to a model of cell cycle maintenance. We show
that changing the strength of the negative feedback loop can lead
to cessation of cell cycle in two different ways: it can either lead to
globally attracting equilibrium or to a pair of equilibria that attract
almost all solutions.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Recent advances in molecular and cell biology challenge mathematicians to develop new ap-
proaches for formulation and analysis of the appropriate mathematical models [22]. Currently avail-
able biological data often provide a good qualitative information (a product of gene A up-regulates
gene B), but rarely a good quantitative information (rate constants, form of the nonlinearities). There-
fore the new techniques must be able to utilize qualitative information and have robust predictions
that are independent on the unknown parameters. The important role of noise in the sub-cellular
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mechanisms only underscores the need for results that would persist in the presence of perturbations
in both the phase space and the parameters.

In addition to these significant constraints, biochemistry provides us with one advantage. The
models used in molecular biology often arise from the mass action kinetics, often augmented by
Michealis–Menten nonlinearities, and therefore are monotone in their arguments. Although they are
biologically well founded exceptions to this monotonicity [15], it reflects the prevailing paradigm in
the design and evaluation of biochemical experiments. The effect of knocking out a particular gene
on the activity of another gene is usually characterized in binary terms as being either positive (up
regulation) or negative (down regulation). Consequently, each interaction between biochemical agents
can be labeled as either positive or negative, which is reflected in the choice of either a monotonically
increasing, or monotonically decreasing nonlinearity in the model. This structure can be exploited by
combining theory of monotone systems and methods from control theory using input–output charac-
teristics.

1.1. Monotone systems and characteristics

Theory of monotone systems has its roots in both cooperative systems of ordinary differential
equations [17,29] and in parabolic partial differential equations [21,29]. The monograph [29] provides
a comprehensive introduction to this theory. The fundamental result [18] states that almost all solu-
tions in a strongly monotone system converge to the set of equilibria.

Sontag and collaborators [1–4,9,10,12,31] pioneered an extension of the monotone system the-
ory that has been particularly useful in biochemical models. Consider an arbitrary set of differential
equations

ẋ = g(x), x ∈ R
n, (1)

with monotone interactions ∂ gi
∂x j

(x) � 0, or ∂ gi
∂x j

(x) � 0, for all x and all i �= j. We can associate a signed

digraph to such system: vertices correspond to the variables and signed edges to the interactions
between them. Choose a maximal consistent subgraph which has no negative loops, where the sign
of the loop is a product of signs along the edges [2,7,11]. If we replace all edges missing from this
subgraph by a set of static inputs u ∈ R

k the system is monotone for every value of u [2,7]. This yields
a parameterized monotone system

ẋ = f (x, u), u ∈ R
k. (2)

We recover the original system (1) via a feedback function h : R
n → R

k which satisfies f (x,h(x)) =
g(x). A study of a parameterized system (2) can be used to derive conclusions about the system
(1) [1–4,9,10,12,31]. Central role in this process is played by an input–output characteristic of (2):
for each value of u the characteristic is (assumed to be unique) equilibrium of (2). Recent exten-
sions [8,11] allow for a multi-valued input–output characteristic where the value at u is the set of all
equilibria of (2) at a fixed u. The power of this approach is best realized when u contains only a few
variables and is preferably a single variable. The thrust of these results is the correspondence between
the fixed points of the characteristic and the equilibria of the system (1) which includes their local
stability [2,4,11]. The results are very robust since any change to the vector field that preserves the
fixed points of the characteristic does not change the conclusions about the original system. These
results are, however, local: they characterize equilibria and their local behavior, but not the global
dynamics of connecting orbits between the equilibria.

1.2. Morse decompositions

Conley [6] pioneered topological methods in study of robust dynamics. An isolating neighborhood
and its associated isolated invariant set are basic objects in Conley theory. A compact set N is an iso-
lating neighborhood if its maximal invariant set lies in its interior. This maximal invariant set is then an
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isolated invariant set. Notice that if N is an isolating neighborhood for a flow ϕ0 it is also an isolating
neighborhood for all nearby flows in C0 topology. So isolating neighborhoods are inherently robust
under perturbations. Conley’s key insight was that while invariant sets are not robust under perturba-
tions, it is always possible to decompose the invariant set into a collection of isolated invariant sets,
which, by their definition, are robust. This decomposition is called a Morse decomposition. Each Morse
set can have a complicated internal structure and may contain multiple equilibria, periodic orbits,
and connecting orbits between them. While this internal structure may be sensitive to changes in pa-
rameters, the relationship between different Morse sets, which is encoded in a partial order between
the Morse sets, is robust. There cannot be any orbit from a lower to a higher Morse set in this or-
der. Since every invariant set admits a trivial Morse decomposition containing exactly one Morse set,
only non-trivial decompositions are informative. For the same reason a Morse decomposition does
not bring a new insight into the structure of the invariant set, if the Morse sets are build from the
bottom up by aggregating known invariant sets into Morse sets. The power of this concept is fully
realized by methods that show the existence of a Morse decomposition a priori, from the top down,
without a detailed knowledge of the underlying invariant set. In systems that include ordinary [14],
delay-differential [20,23] and partial differential equations [24] this has been accomplished with a
help of a discrete Lyapunov function. An invariant set for which the value of the discrete Lyapunov
function was a particular constant i comprised ith Morse set, and the ordering followed from the fact
that the Lyapunov function is non-increasing.

A concept of a Morse decomposition allows a top–down approach to study of complicated invariant
sets. First we find a non-trivial Morse decomposition whose ordering defines in a broad outline the
structure of the global dynamics. In the second step, and perhaps using different methods, we study
the internal structure of individual Morse sets.

The difficulty with this approach is the lack of good methods to find a non-trivial Morse decom-
position for a general dynamical system.

1.3. Characteristics and Morse decompositions

The main result of this paper is to show that the input–output characteristic of the parameterized
system (2) can be used to construct a Morse decomposition of the original system (1) in the case
when u ∈ U ⊂ R is scalar.

This will be done in two steps. First we use the dissipativity and the equilibria with the maximal
and the minimal output values for each u in (2) to construct a closed interval R ⊂ U which bounds
the projection of the attractor of (1) to the control variable u.

With R defined, we show that a Morse decomposition of the parameterized system (2) with a par-
ticular order of Morse sets gives rise to a Morse decomposition of (1). The input–output characteristic
of (2) is used to define such a decomposition. In particular, any collection of connected equilibrium
branches that stretch across R corresponds to a Morse set in (1).

The last set of results concerns the internal structure of the Morse sets. Each Morse set is an
isolated invariant set and has its own, perhaps finer, Morse decomposition. Our theory is fully scalable
and can be applied subsequently to these finer decompositions to refine the knowledge about the
Morse sets. Furthermore, we show that the majority of the constructed Morse sets (1) are non-empty.
If, in addition, the Morse set corresponds to a single branch of the characteristic that spans R , this
branch acts as a single-valued characteristic and convergence results [1,2,4,9–12] can be used to find
conditions when this Morse set is a single equilibrium.

We apply our results to a model of a cell cycle oscillator. We analyze the effect of changing
strength of the negative feedback and show how our theory implies bistability rather than oscilla-
tions for a certain range of parameters.

We finish the introduction with a brief overview of the organization of the paper. In Section 2
we review the necessary background in monotone systems theory, provide the key assumptions and
formulate our main results. In Section 3 we apply the theory to a model of the cell cycle engine [25,
27,28]. We start our proofs in Section 4 where we construct the interval R ⊂ U , which we follow
by the construction of a Morse decomposition in Section 5. Finally, our results about the internal
structure of the Morse sets can be found in Section 6.
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2. Main results

The basic framework for our results is a finite-dimensional, single-input, single-output controlled
system

ẋ = f (x, u), y = h(x) (3)

where u(t) ∈ U ⊆ R is the input, y(t) ∈ Y ⊆ R is the output, f , h are C2, and the state space variable
x(t) ∈ X ⊆ R

n . We assume that U , Y , X lie in the closure of their interiors. Together with the open
loop system (3) we will also study a closed loop system, where, in addition to (3), we set u = g(y). The
most important set of questions concerns the predictability of the closed loop dynamics

ẋ = f
(
x, g

(
h(x)

))
(4)

based on the properties of the open loop system (3). Since the function h is arbitrary, we can assume
without loss of generality that g(y) = ±y. The system (3) with g(y) = y (g(y) = −y) is a closed loop
system with a positive (negative) feedback.

Our main motivation is the study of gene regulatory networks [3,5], where systems of the form (3)
have usually an additional structure of monotone systems. We now recall essential definitions in this
area and refer the reader for a more thorough background to [1,29].

A cone is a closed, convex set with non-empty interior and with αK ⊂ K for α ∈ R
+ and

K ∩ (−K ) = {0}. If a space Z is endowed with a cone Kz we will write

x � y iff x − y ∈ Kz, x 	 y iff x � y, x �= y, and x		 y iff x − y ∈ int Kz.

We assume that the input space U , the state space X and the output space Y each has a distinguished
cone Ku ⊂ U , Kx ⊂ X and K y ⊂ Y . For U ⊂ R and Y ⊂ R this amounts to a choice of either a positive,
or a negative half-line.

We say that the controlled system (3) is a monotone system with outputs if

u1(t) � u2(t) ∀t, and x1 � x2

�⇒ ϕ(t, x1, u1) � ϕ(t, x2, u2) ∀t � 0, and h(x1) � h(x2)

where ϕ is the flow generated by (3), and the � is the order with respect to the appropriate cones.
We say that the controlled system is strongly monotone if it is monotone, and

u1(t) � u2(t) ∀t, and x1 	 x2 �⇒ ϕ(t, x1, u1)		ϕ(t, x2, u2) ∀t > 0.

Infinitesimal characterizations of monotonicity, which are more suitable for verification, can be found
in [1] and [29]. We say that two points x, y ∈ Z are order related if either x 	 y or y 	 x with respect
to cone Kz ⊂ Z . If x ≺ y then [x, y] := {z ∈ Z | x � z � y} is the order interval generated by x and y. If
U , V ⊂ X are two disjoint subsets of X , we write U ≺ V if for all x ∈ U and y ∈ V we have x ≺ y; we
define [U , V ] := {z ∈ Z | x � z � y, ∀x ∈ U and ∀y ∈ V }.

Definition 2.1. We say that the controlled system (3) is endowed with an input-state characteristic
kx(u) : U → X if for each constant input u(t) ≡ ū there exists a (necessary unique) globally asymptot-
ically stable equilibrium kx(ū) of system (3).

The system (3) is endowed with a multi-valued input-state characteristic kx(u) : U → X if for each
constant input u(t) ≡ ū the set kx(ū) is a set of equilibria of system (3), that attracts a set of initial
conditions that contains an open and dense set of X .
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In both cases we define the (multi-valued) input–output characteristic as

k(u) := g
(
h
(
kx(u)

))
, k : U → U .

In [11] the branches of k(u) are called bifurcation graphs.
Before we introduce our main results we illustrate some of these concepts on a simple example.

Consider an open loop system

ẋ = u − 8x

(
x2 − 3

4

)
+ y

4
=: g1(x, y, u),

ẏ = ε

(
x − y

2

)
=: g2(x, y) (5)

with an output function h(x, y) = y and negative feedback u = −y. By the result of Kamke [19] (see
[29, Proposition 3.1.1]) the strict monotonicity of g1 and g2 with respect to y and x respectively

dg1/dy > 0 and dg2/dx > 0

implies that (5), for a fixed u, is a strongly monotone system with respect to the positive orthant.
Furthermore for each fixed u the open loop system has either one, two, or three equilibria that

are intersections of

y = 2x and u = 8x

(
x2 − 3

4

)
− y

4
.

The value of the multi-valued input-state characteristic kx(u) at each u is this set of equilibria. To
compute the input–output characteristic, we first combine these two equations to express y as an
(implicit) function of u

u = 4y

(
y2

4
− 3

4

)
− y

4
= y

(
y2 − 13

4

)
.

This represents implicitly the composition y = h(kx(u)). Finally, taking the composition with the
function g , which in this case represents a negative feedback u = −y, we obtain the multi-valued
input–output characteristic k : U → U given implicitly by

u = −k(u)

((−k(u)
)2 − 13

4

)
. (6)

This multi-valued characteristic is depicted in Fig. 1. This finishes the example and we proceed by
formulating a set of standing assumptions. We assume that

1. the open loop system (3) is strongly monotone;
2. there is a compact set C ⊂ U ⊂ R, such that for each u ∈ C the system (3) with u(t) = u:

(a) is dissipative, i.e. all solutions eventually enter a fixed compact set Ku ;
(b) Jacobian ∂ f

∂x (x, u) is irreducible in Ku .

These assumptions guarantee that the open loop system (3) is a parameterized family of strongly
monotone, irreducible, dissipative systems on X for all u ∈ C . By [29, Theorem 4.1.1] for each u ∈ C
there is an exceptional set Bu such that all solutions starting in X \ Bu converge to a unique equilib-
rium, and the set X \ Bu contains an open and dense set of initial data. Our first result below shows
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Fig. 1. I/O characteristic (solid line) given by (6).

that the open-loop SISO system, the information encoded into the input–output characteristic is suf-
ficient to bound the attractor of the closed loop system (4). Since for each fixed u (3) is dissipative,
and the set of equilibria is closed, the maximum and minimum of the set of equilibria is well defined.

Definition 2.2. Assume (3) is SISO system, i.e. U ⊂ R. If k is a multi-valued input–output characteristic,
we set

Kmin(u) := min
{
k(u)

}
and Kmax(u) := max

{
k(u)

}
. (7)

For the function in Fig. 1 the function Kmin(u) is continuous, except at the value of u corre-
sponding to the left turning point, and Kmax(u) is continuous except for u corresponding to the right
turning point.

Positive and negative feedback systems differ in the general direction of their characteristic. We
will not prove this fact until later, but for large |u| the I/O characteristic for positive feedback is
increasing and for negative feedback it is decreasing. Indeed, if we had positive feedback u = y in the
example (5) then the graph of the I/O characteristic satisfying u = k(u)((k(u))2 − 9

4 ) would be that in
Fig. 1, but flipped around the y-axis.

Even though we assume in 2(a) dissipativity for each fixed input u(t) = u, we need a global notion
of dissipativity for the entire open loop system. In order to express such a dissipativity assumption
for an open loop system in the same language for both negative and positive feedbacks we define
non-decreasing functions B(u) (for “bottom”) and T (u) (for “top”). For a positive feedback system

B(u) := Kmin(u), T (u) := Kmax(u) (8)

and for a negative feedback system we set

B(u) := Kmin
(

Kmax(u)
)
, T (u) := Kmax

(
Kmin(u)

)
. (9)

We can express dissipativity in terms of functions B and T .
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Definition 2.3. We say that the open loop system (3) is dissipative if there is a constant A such that

T (u) < u for u � A and B(u) > u for u � −A. (10)

The dissipativity assumption is equivalent to a sub-linear growth of the input–output characteristic
as u → ±∞. Indeed, it is easy to check that for a negative feedback system it is equivalent to

Kmax(u) < −u for u � −A, and Kmin(u) > −u for u � A.

Our first major result is the following.

Theorem 2.4. Assume the standing assumptions and that the open loop system (3) is dissipative. Define
p1 := sup{a: B(u) > u, ∀u < a} and p2 := inf{b: T (u) < u, ∀u > b}. Then for a generic set of initial condi-
tions ξ ∈ X and all u(t) ∈ U for which solution x(t, ξ, u) is bounded,

p1 � lim inf
t→∞ h

(
x(t)

)
� lim sup

t→∞
h
(
x(t)

)
� p2.

The values p1 and p2 were computed for the example (5) and are represented by the dotted square
in Fig. 1. As we will see in Lemmas 4.8 and 4.9 the characterization of p1 and p2 in terms of B(u)

and T (u) implies that the interval [p1, p2] is an attracting fixed point of a multi-valued map that
maps intervals to intervals, and whose graph is the convex hull of the I/O characteristic. Therefore the
values p1, p2 can be computed by iterating the functions B(u) and T (u).

We now introduce a concept of a Morse decomposition due to Conley [6]. As we have mentioned
in the introduction, Morse decomposition represents a decomposition of the invariant set into iso-
lated invariant sets, which, by their definition, are robust under perturbations. The robust relationship
between the Morse sets is encoded in a partial order of the decomposition.

Definition 2.5. A Morse decomposition M(A) = {Mi | i ∈ (P ,�)} of a compact invariant set A is a
decomposition of A into a finite number of disjoint compact invariant subsets Mi , called Morse sets,
indexed by a partially ordered set (P ,�), such that if x ∈ A one of the following holds:

1. There exist i, j ∈ P such that j � i, ω(x) ∈ Mi and α(x) ∈ M j .
2. There exists i ∈ P such that ϕ(t, x) ∈ Mi for all t , where ϕ : A × R → A denotes the flow.

A power of Conley’s theory is best realized in the context of continuous parameterized flow ϕ : R×
X × U → X × U , ϕ(t, x, u) = (ϕu(t, x), u) which is the setting of the open loop system. For any interval
I ⊂ U we consider a restriction ϕI of the flow ϕ to X × I . If S is an isolated invariant set in X × I
then every S(u) = S ∩ X(u) is isolated in X(u), where X(u) := X × {u} and u ∈ I is arbitrary. We say
that the family of isolated invariant sets S(u) is related by continuation over I or it continues over I .
Similarly, we say that a Morse decomposition continues over I if there is an isolated invariant set S
in X × I with a Morse decomposition {Mi | i ∈ P }. This implies that for each u ∈ I there is a Morse
decomposition with the partial order that is independent on u, and that the individual Morse sets are
related by continuation.

We note that a Morse decomposition always exists, since the trivial Morse decomposition contain-
ing only one set comprising the entire invariant set is a valid Morse decomposition. Further, a Morse
decomposition does not have to be unique. Let us denote in the example (5) by e1, e2, e3 the equi-
libria on the bottom, middle and top branch, respectively, and by C(ei, e j) the set of connecting
orbits from ei to e j . Then the flow ϕI with I = [−2,2], apart from the trivial decomposition, admits
decompositions M1 := {M1 = {e1}, M2 = {e2, e3, C(e2, e3)} | 1 � 2}, M2 := {M1 = {e1, e2, C(e2, e1)},
M2 = {e3} | 1 � 2} and M3 := {M1 = {e1}, M2 = {e2}, M3 = {e3} | 1 � 2, 3 � 2}. Note that if we choose
I = [−2.5,2.5] then there is only a trivial Morse decomposition that continues over this interval since
none of the sets Mi , i = 1,2,3, are isolated over this interval. This underlines the importance of the
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interval of parameters over which the Morse decomposition is defined. This example also shows that
we can use the multi-valued characteristic to define Morse decompositions for open loop system over
arbitrary intervals in U .

We now describe our second result where we show that a Morse decomposition of the closed
loop system (4) can be constructed from a Morse decomposition of the open loop system (3) over the
interval [p1, p2] from Theorem 2.4. In particular, if the open loop Morse decomposition is non-trivial
over [p1, p2] (like in the example (5)) then the closed loop Morse decomposition is non-trivial as
well.

In a general dynamical system there is no link between the Morse decompositions for the open
loop and closed loop systems. If u is changing on a much slower time scale then x, then such a
correspondence would be in a domain of slow–fast systems theory. We do not assume such separation
of time scales. The following observation is central for our next result. Assume that the basin of
attraction V 1 := V 1(u) of the equilibrium e1(u) did not depend on value of u ∈ R . Then if the solution
of the closed loop system started in V 1 it would stay in V 1 for all t � 0. In other words, such a
set V 1 would be positively invariant and would contain an invariant set. Under the same assumption
applied to the basin V 3 := V 3(u) there would be an additional, disjoint, invariant set in V 3. If the
basins V 1(u) and V 3(u) changed with u, as they do in the example (5), we could define V 1 and V 3
as intersections of V 1(u) and V 3(u) over u ∈ R drawing the same conclusion. This observation forms
the basis of our general construction. However, in order to show the positive invariance of sets like
V 1 and V 3 we need to characterize precisely the boundaries of these sets. In a general dynamical
system this is very difficult, but in a monotone system where the Morse sets of the open loop system
are ordered this is possible.

Before we introduce a definition which incorporates this assumption, we introduce a concept of a
separating invariant set. Assume M1 and M3 are two Morse sets with open basins of attraction and
such that M1 ≺ M3. Since the basins of attraction of M1 and M3 are open, there must be a point q
with M1 ≺ q ≺ M3 which does not belong to any of the two basins. Monotonicity now implies that
the solution ϕ(t,q, u) of (3) stays in the compact set {z ∈ X | M1 � z � M3} for all t � 0. This implies
that ω(q) lies in some invariant set Sq with M1 ≺ Sq ≺ M3. Let M2 := ⋃

q Sq be the union of all such
invariant sets over all q with M1 ≺ q ≺ M3 with ω(q) �⊂ {e1, e3}. Clearly, M2 is a compact invariant set.
We say that M2 separates M1 and M3. In many applications the set M2 will also be an equilibrium.
In the example (5) the basins of attraction of e1 and e3 are separated by the stable manifold of the
equilibrium e2 that lies on the middle branch. In this case M2 = e2.

Definition 2.6 (Morse decomposition for the monotone open loop system). We assume that there is a
compact invariant set A under a flow ϕ : R × X × [p1, p2] → X × [p1, p2] of the open loop system
which admits a Morse decomposition M = {Mi | i = 1, . . . ,2L + 1} with a partial order M2i � M2i+1,
M2i � M2i−1 for i = 1, . . . , L that continues over [p1, p2]. We assume that A(u) := A ∩ X(u) attracts
a generic set of initial conditions in X(u) for each u ∈ [p1, p2]. Furthermore, each odd numbered
Morse set M2i+1(u), i = 0, . . . , L, has an open basin of attraction V 2i+1(u). We assume that a generic
set of initial conditions in X(u) belongs to one of the sets V 2i+1(u), i = 1, . . . , L. The even numbered
Morse sets M2i(u), i = 1, . . . ,2L, separate M2i−1(u) and M2i+1(u). We assume that the Morse sets are
ordered for each u

M1(u) ≺ M2(u) ≺ · · · ≺ M2L+1(u). (11)

Furthermore we assume that the Morse sets are uniformly ordered in the output

⋃
u∈[p1,p2]

h
(
M1(u)

) ≺
⋃

u∈[p1,p2]
h
(
M2(u)

) ≺
⋃

u∈[p1,p2]
h
(
M3(u)

) ≺ · · · ≺
⋃

u∈[p1,p2]
h
(
M2L+1(u)

)
. (12)

The total order of the Morse sets is a strong assumption if we insist that each Morse set is a
single equilibrium, as is the case in the example (5). In such a case the assumption amounts to
assuming a total ordering of all the equilibria. However, we do not require that each Morse set in the
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Fig. 2. A potential I/O characteristic over [p1, p2]. The Morse decomposition for the parameterized system will have three Morse
sets M1, M2 and M3 lying in the bottom, middle and the top strip, respectively.

decomposition in definition (2.6) is a single equilibrium. In fact, the shape of the characteristic over
[p1, p2] together with the requirements that the Morse sets be ordered and that they continue across
[p1, p2], force the definition of individual Morse sets by combining multiple branches of equilibria
together. As an example, in Fig. 2 we consider a potential characteristic. The full line and the dashed
line represent two connected components of the characteristic. We can define a Morse decomposition
for the parameterized system that contains three sets M1, M2 and M3. The set M1(u) contains all
invariant sets in the bottom strip, M3(u) in the top strip and M2(u) in the middle strip. M2(u)

separates M1(u) and M3(u) for each u ∈ [p1, p2].
In some situations the only combination of branches that defines a Morse decomposition satisfying

all the assumptions results is a trivial Morse decomposition. In such a case our methods do not
provide any insight into the structure of the invariant set of the closed loop system.

Theorem 2.7. For (3), assume the standing assumptions, dissipativity and that it admits a Morse decomposi-
tion described in Definition 2.6.

Then there is an invariant set A of the closed loop system (4), that attracts a generic set of solutions, and
which admits a Morse decomposition M∗ = {M∗

2i+1 | i = 0, . . . , L} ∪ M∗
0 , with the ordering M∗

0 	 M∗
2i+1 for

all i = 1, . . . , L.
The Morse set M∗

2i+1 , defined as the maximal invariant set in V ∗
2i+1 := ⋂

u∈[p1,p2] V 2i+1(u), is non-empty
for all i = 0, . . . , L. The Morse set M∗

0 is the maximal invariant set in X \ ⋃
i=1,...,L V ∗

2i+1 .

Our final result shows that our theory is recursive and it can be applied iteratively. If the restriction
of the input–output characteristic u → M2l+1(u) for u ∈ [p1, p2] is multi-valued then by applying
Theorem 2.4 to this restriction we may discover that it admits a Morse decomposition over a smaller
subinterval R ⊂ [p1, p2]. Then we can again apply Theorem 2.7 to R to complete the iterative step. In
this way we may discover a finer Morse decomposition of the original invariant set A.

If, on the other hand, the restriction of the input–output characteristic u → M2l+1(u) for
u ∈ [p1, p2] is single-valued, then, as we will show next, we can apply the standard theory [2,4]
of single-valued characteristics. We first recall these results using our notation.

Theorem 2.8. (See [4, Theorem 1].) Consider the open loop system (3) with a negative feedback u = −y. Sup-
pose that X and Y = U are ordered with respect to their cones Kz and K y = Ku respectively, and that they are
closed under component-wise maximization and minimization. Assume that the input-state characteristic kx

is single-valued and continuous (thus, the I/O characteristic k is single-valued and exists, too). Finally, assume
that all solutions of the closed-loop system (4) are precompact. Then the system (4) has a unique equilibrium
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kx(ū) that attracts almost all solutions in X, provided that the following discrete dynamical system, evolving
on U :

un = −kn(
u0)

has a unique globally attractive equilibrium ū.

Theorem 2.9. (See [2, Theorem 3].) Consider an SISO open-loop system (3) with a positive feedback u = y
and single-valued input–output characteristic k. Then the equilibria of the closed-loop system (4) are in 1–1
correspondence with the fixed points of the input–output characteristic k. Furthermore, non-degenerate stable
(k′(u) < 1) fixed points of k correspond to stable equilibria of (4) and non-degenerate unstable (k′(u) > 1)

fixed points of k correspond to unstable equilibria of (4).

We are ready for our final result. Assume that some Morse set M2i+1(u) = e2i+1(u) consists of a
single equilibrium for each u ∈ [p1, p2]. In such a case the branch kx,2i+1 : [p1, p2] → X of the multi-
valued I/S characteristic kx given by kx,2i+1(u) = e2i+1(u) is well defined and single-valued. We denote
by k2i+1 : [p1, p2] → [p1, p2] the corresponding single-valued branch of the I/O characteristic k.

Theorem 2.10. Let i be such that M2i+1(u) = e2i+1(u) is an equilibrium for each u ∈ [p1, p2] and let
kx,2i+1 : [p1, p2] → X and k2i+1 : [p1, p2] → [p1, p2] be the corresponding single-valued branches of the I/S
and I/O characteristics. Then for a positive feedback system Theorem 2.9 holds with k replaced by k2i+1 and X
replaced by V ∗

2i+1 . For a negative feedback system Theorem 2.8 holds with k replaced by k2i+1 and X replaced
by V ∗

2i+1 . In particular, there is at least one fixed point e∗
2i+1 of the I/O characteristic in M∗

2i+1 and if for any
initial condition u ∈ [p1, p2] the iterations kn

2i+1(u) of the I/O branch converge to e∗
2i+1

lim
n→∞kn

2i+1(u) = e∗
2i+1 for each u ∈ [p1, p2]

then the Morse set M∗
2i+1 consists of the unique equilibrium E2i+1 := kx(e∗

2i+1) and all solutions starting in
V ∗

2i+1 converge to E2i+1 .

3. A cell cycle model

We illustrate our theory on a biochemical model of the cell cycle control in Xenopus embryos. Over
the last 15 years both the biology [26] and the modeling [25,27,28,32] of the cell cycle oscillator made
great strides towards understanding of generation and control of the cell cycle oscillator. One of the
most striking features of this oscillation is the abrupt change that signals entry into the M-phase of
the cycle. Several experimental papers [27,28] suggest that the presence of the positive feedback loops
is responsible for the switch-like behavior, and the negative feedback loop for generating the periodic
oscillations. Ultimately, however, the presence of both is needed for the proper function of the cell
cycle. At the center of the cell cycle engine is a heterodimer Cdc2-cyclin. Its activity is regulated by
synthesis and degradation of cyclin and by phosphorylation and dephosphorylation of Cdc2. There are
two major feedback loops: Cdc2-cyclin modulates kinases and phosphatases that in turn modulate
their own activity in a positive feedback loop; and Cdc2-cyclin stimulates proteolytic machinery that
degrades cyclin in a negative feedback loop.

The activity of Cdc2-cyclin is regulated by three phosphorylation sites: activation site Thr161, and
two inhibitory phosphorylation sites Thr14 and Tyr15. Since the latter sites are always dephosphory-
lated simultaneously, it is sufficient to track the state of Tyr15. In Xenopus Thr161 is phosphorylated
by CAK and dephosphorylated by PP2c; the kinase that phosphorylates Tyr15 is Wee1 and the corre-
sponding phosphatase is Cdc25. The active form of Cdc2-cyclin is phosphorylated on Thr161, but not
on Tyr15. The rapid onset of the M-phase transition is brought on by rapid conversion of the doubly
phosphorylated Cdc2-cyclin to its Thr161 phosphorylated active form. There are two positive feed-
back loops: Cdc2-cyclin up-regulates activity of the phosphatase Cdc25 and down-regulates activity
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Table 1

ksynth = 0.4 cyclin synthesis rate kdest = 0.006 cyclin destruction rate
kwee1 = 0.05 active Wee1 phosp. rate kwee1basal = 0.0033 basal Wee1 phosp. rate
kcdc25 = 0.1 active Cdc25 dephosp. rate kcdc25basal = 0.0066 basal Cdc25 dephosp. rate
kcdc25on = 1.75 Cdc25 activation rate kcdc25off = 0.2 Cdc25 deactivation rate
kwee1on = 0.2 Wee1 activation rate kwee1off = 1.75 Wee1 deactivation rate
kplxon = 1 Plx activation rate kplxoff = 0.15 Plx deactivation rate
kapcon = 1 APC activation rate kapcoff = 0.15 APC deactivation rate
wee1tot = 15 total Wee1 concentration cdc25tot = 15 total Cdc25 concentration
plxtot = 50 total Plx concentration apctot = 50 total APC concentration
ncdc25 = 4 Cdc25 Hill coefficient nwee1 = 4 Wee1 Hill coefficient
napc = 3 APC Hill coefficient nplx = 3 Plx Hill coefficient
ecdc25 = 40 Cdc25 half-activation ewee1 = 40 Wee1 half-activation
eapc = 40 APC half-activation eplx = 40 Plx half-activation

of the kinase Wee1. Since phosphatase Cdc25 promotes the active form of Cdc2-cyclin and the kinase
promotes the inactive form of Cdc2-cyclin, both of these constitute positive feedback loops.

Cdc2-cyclin dimers are broken up by cyclin degradation, which is promoted by APC (anaphase-
promoting complex). Since Cdc2-cyclin activates APC, this forms a negative feedback loop. It is very
likely that the activation of the APC is done through an intermediary, since the effect is significantly
delayed.

A model incorporating these ingredients was proposed and numerically analyzed by Novak and
Tyson [25] and used later by Pomerening et al. [27,28]. In order to apply our theory we simplify the
model to six differential equations. We will track concentrations of the total Cdc2-cyclin (y), the active
Cdc2-cyclin (q), the active Cdc25 (w), active Wee1 (u), active plx (putative APC intermediary) (v) and
APC (z). In contrast to the original model [27,28] we are not modeling separately cyclin concentration.
Instead we assume that the dimerization of Cdc2-cyclin is very fast and so the rate of production of
cyclin ksynth from [28] can be used as a rate of production of Cdc2-cyclin. In addition, we represent
all active forms of Cdc2-cyclin by one variable.

The terms in the first equation represent the synthesis, APC mediated degradation, phosphorylation
(and hence deactivation) by active and inactive Wee1, and dephosphorylation (and hence activation)
by the active and inactive form of Cdc25. The third and fourth equations represent activation of
Cdc25 and deactivation of Wee1, respectively, by the active Cdc2-cyclin. Finally, the last two equations
represent the activation of APC by the active Cdc2-cyclin through an intermediary v:

q̇ = ksynth − kdestqz − kwee1uq − kwee1basal(wee1tot − u)q + kcdc25 wy + kcdc25basal(cdc25tot − w)y,

ẏ = ksynth − kdest yz,

ẇ = kcdc25on
qncdc25

encdc25
cdc25 + qncdc25

(cdc25tot − w) − kcdc25off w,

u̇ = −kwee1off
qnwee1

enwee1
wee1 + qnwee1

u + kwee1on(wee1tot − u),

v̇ = kplxon
qnplx

e
nplx

plx + qnplx
(plxtot − v) − kplxoff v,

ż = kapcon
vnapc

e
napc
apc + vnapc

(apctot − z) − kapcoff z. (13)

The constants and their values (taken from supplement of Pomerening et al. [28]) are given in Table 1.
The system (13) is amenable to analysis using an input–output characteristic. The only negative

feedback in the system is the degradation of the Cdc2-cyclin by APC. Therefore we consider an open
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Fig. 3. (A) The input–output characteristic (solid curve) for (13) with parameters from Table 1. The attracting region [p1, p2] is
a dotted square and the dashed curve is the diagonal. (B) Dynamics of (13) with the same parameter values as in (A). Legend:
solid curve = z, dotted curve = u, dashed curve = q, and dash–dot curve = y − q.

loop system, where we replace z in the first two equations by an input parameter α := −z, with
α � 0.

The system with the input α fixed is strongly monotone, dissipative and irreducible open loop
system and thus almost all solutions converge to an equilibrium [29]. The (multi-valued) input-state
characteristic is the function that associates to each fixed α the corresponding set of equilibria of the
system. The input–output characteristic is the value of the variable z = h(y,q, w, u, v, z) on the set of
equilibria. We recover the closed loop system (13) by setting α = −z.

We investigate how the strength of the negative feedback connection from APC to Cdc2-cyclin af-
fects the dynamics of the system. We first analyze the system for the strength of feedback provided
by [28] above. To compute the I/O characteristic we set the left-hand side of the equations in (13)
to zero and solve the resulting system for z as a function of α. The input–output characteristic is
multi-valued (solid line in Fig. 3A) in the region approximately α ∈ (b1,b2) := (1.17,1.85). Since the
values of z on the upper branch are greater than 35, the characteristic is a very narrow curve. The
dotted square denotes the region [p1, p2] × [p1, p2] where p1 ≈ 0.1 and p2 ≈ 39.5 are described in
Theorem 2.4. The output (z) values of all solutions of the closed loop system will eventually en-
ter [p1, p2]. Since the multi-stability region (b1,b2) = (1.17,1.85) is clearly a subset of the interval
[p1, p2], the only Morse decomposition that continues across this interval is a trivial decomposition
that consist of only one set. In this case our theory is vacuous since it does not yield a non-trivial
Morse decomposition.

This result suggests that the global attractor of the closed loop system is fundamentally different
than the attractors of the open loop (monotone) system, which are collections of equilibria and their
connecting orbits. Further analysis is required to determine the character of the attractor for the
closed loop system. The numerical simulation of the closed loop system in Fig. 3B indicates that
the attractor of the closed loop system contains a periodic orbit representing the cell cycle. It is
therefore not surprising that the open loop Morse decomposition cannot predict this behavior of the
closed loop system. Observe that the range of the z(t) solution (solid line in Fig. 3B) matches the
range of the characteristic, which suggests that the cell cycle periodic orbit may arise as a relaxation
oscillator associated to the characteristic. This is theoretically justified by Gedeon and Sontag [16] in
the presence of slow feedback, which is, however, not the case here. A natural question is whether
the analysis using I/O charateristic can be used to prove existence of such a relaxation periodic orbit.
We study this question in a forthcoming paper [13].

We now analyze different values of feedback. First, we weaken the negative feedback by decreasing
the destruction rate of cyclin 100 times and set kdest = 0.00006. The I/O characteristic shifts to the
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Fig. 4. (A) The input–output characteristic of (13) with kdest = 0.00006; and (B) its dynamics. The legend is the same as in Fig. 3.

Fig. 5. (A) Input–output characteristic for the bistable system. (B) Convergence to the low equilibrium E1 for the system (13)
with the initial data y = q = w = u = v = 0, z = 15. (C) Convergence to the high equilibrium E3 for the system (13) with the
initial data q = u = v = 0, y = 50, w = 30, z = 15. The legend is the same as in Fig. 3.

right (Fig. 4A, compare the range of −α). The diagonal (dashed line) intersects only the upper branch
of the I/O characteristic. In this case p1 = p2 and Theorem 2.4 implies that the values of the output
z(t) for any initial condition in an open and dense set will converge to p1 = p2. The long term
behavior of the closed loop system is governed by the open loop system with constant α = p1 = p2.
Since this system is monotone and has a unique equilibrium, almost all solutions of this system, and
thus all solutions of the closed loop system, converge to this equilibrium. The numerical simulations
(Fig. 4B) confirm this. Note that z(t) (solid line in Fig. 4B) converges to a high value about 40 which
is the value of p1 = p2 = z.

Finally we will show that by modifying few other parameters almost all solutions of the system
(13) converge to one of two stable equilibria. We will increase synthesis rate from ksynth = 0.4 to
ksynth = 0.9. At the same time we weaken the negative feedback by decreasing the destruction rate of
cyclin 10 fold to kdest = 0.0006; we also change cooperativity constants to napc = 2 and nplx = 1 (from
napc = nplx = 3).

All remaining parameters including all rate constants remain the same. The resulting input–output
characteristic is in Fig. 5A, where we again plot the region [p1, p2] × [p1, p2] as a dotted square.
Both the upper and lower branches of the characteristic intersect the diagonal and the interval of
multi-stability (b1,b2) contains [p1, p2]. Therefore there is a Morse decomposition of the open loop
system that contains three ordered Morse sets M1(u) ≺ M2(u) ≺ M3(u) where M1(u), M2(u), M3(u)

correspond to the equilibria on the bottom, middle and top branches, respectively. Theorem 2.7 shows
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the existence of the Morse decomposition with sets M∗
1, M∗

3 and M∗
0 with M∗

0 ≺ M∗
3, M∗

0 ≺ M∗
1 for the

closed loop system. We conclude that there are two disjoint attracting Morse sets M∗
1 and M∗

3.
We now probe deeper into the structure of these two Morse sets using Theorem 2.10. Let e∗

1 be the
intersection of the bottom branch and e∗

3 the intersection of the top branch with the diagonal. Since
numerical iteration of the function given by the lower branch shows that e∗

1 is a stable fixed point
under these iterations, and e∗

3 is a stable fixed point under the iterations of the upper branch of the
I/O characteristic, by Theorem 2.10 the Morse sets M∗

1 = E1 and M∗
3 = E3 are stable equilibria of the

closed loop system (13). Therefore our theory shows that there are two stable equilibria for the closed
loop system. We confirm this by numerical simulation where we find different initial conditions lead-
ing to solutions that converge to the equilibrium E1 (Fig. 5B) and the equilibrium E3 (Fig. 5C).

4. Attractor of the closed loop system

The goal of this section is to prove Theorem 2.4. Although many results in this section hold for
systems with inputs of arbitrary dimension, we will assume throughout that the open loop system is
a SISO system.

4.1. Multi-valued maps

The first definition generalizes monotonicity to multi-valued maps.

Definition 4.1. (See [8, Definition 2.3].) Let Z1 and Z2 be partially ordered Euclidean spaces and
F : Z1 → Z2 be a set-valued map. We say that F is weakly non-increasing (weakly non-decreasing)
provided that the following holds for all p,q ∈ Z1 such that q � p (p � q): For each xp ∈ F (p) and
xq ∈ F (q) there exist yp ∈ F (p) and yq ∈ F (q) such that yp � xq and xp � yq .

We now relate the weak monotonicity of the multi-valued I/O characteristic to the regular mono-
tonicity of functions Kmax and Kmin.

Lemma 4.2. The input–output characteristic k in a SISO system is weakly non-increasing (non-decreasing) if,
and only if, the functions Kmin and Kmax defined in (7) are non-increasing (non-decreasing).

Proof. We first observe, that in SISO system the input–output characteristic k : R → R and thus the
order inequality � with respect to R

+ is given by �.
Assume q � p. Assume first that Kmin and Kmax are non-increasing. Given xp ∈ k(p) and xq ∈ k(q)

we set yp := Kmax(p) and yq := Kmin(q). Since Kmax is non-increasing, our choice of yp and yq

implies yp � Kmax(q) and Kmax(q) � xq by the definition of Kmax. Thus yp � xq . A similar argument
shows that xp � yq . Therefore k is weakly non-increasing.

Now we assume that the input–output characteristic k is weakly non-increasing and Kmin is not
non-increasing, i.e. increasing. Then there are values q0 > p0 such that Kmin(q0) > Kmin(p0). Select
xp0 := Kmin(p0). Then for all yq0 ∈ k(q0) we have

yq0 > Kmin(q0) > Kmin(p0).

This is a contradiction to the fact that the input–output characteristic k is weakly non-increasing.
The argument for Kmax is analogous. �
Note that the SISO assumption allows us to define the concepts of non-increasing and non-

decreasing as well as to compare the values of the scalar-valued function Kmin in the output space R.

Lemma 4.3. (See [8, Lemma 2.4].) An input-state characteristic kx of a monotone open loop system is weakly
non-decreasing.
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We use the previous lemma to show that the monotonicity of Kmax and Kmin are determined by
the type of feedback. However, since we defined functions B(u) and T (u) differently for negative and
positive feedback, they will always be non-decreasing.

Corollary 4.4.

1. The functions Kmin and Kmax are non-increasing for any negative feedback system (u = −y) and they are
non-decreasing for any positive feedback system (u = y).

2. B(u) and T (u) are non-decreasing functions of u for both types of feedback.

Proof. 1. The input–output characteristic k of (3) is a composition of an input-state characteristic kx ,
a non-decreasing output function h and the function g(u) = ±u where the sign depends on whether
the feedback is negative or positive. Since kx is weakly non-decreasing by Lemma 4.3 and the com-
position of a weakly non-decreasing function and a non-decreasing function h results in a weakly
non-decreasing function, the composition h ◦ kx is weakly non-decreasing. The composition with
g = ±u causes k to be weakly non-decreasing for positive and weakly non-increasing for negative
feedback. Lemma 4.2 now finishes the argument.

2. Recall (see (9)) that for a negative feedback system we defined B(u) := Kmin(Kmax(u)) and
T (u) := Kmax(Kmin(u)); for a positive feedback system (see (8)) we set B(u) := Kmin(u), and T (u) :=
Kmax(u). The proof now follows from part 1. �
Definition 4.5. We define a multi-valued map k̄(a) := [Kmin(a), Kmax(a)] where the value of each point
is a closed interval in R. If a < b and I = [a,b] is an interval, then we set

k̄(I) =
⋃
u∈I

k̄(u).

We now characterize the images of an interval under the multi-valued map k̄. This is the key point
where the SISO assumption (that is both input and output u, y ∈ R) is used.

Lemma 4.6. Consider a SISO system with a multi-valued input–output characteristic k. Then for a negative
feedback system and any a � b, a,b ∈ R,

k̄
([a,b]) = [

Kmin(b), Kmax(a)
]
.

On the other hand, for a positive feedback

k̄
([a,b]) = [

Kmin(a), Kmax(b)
]
.

Proof. Consider first a SISO system with a negative feedback. Take x ∈ k̄([a,b]). Then x ∈ k̄(s) for some
s satisfying a < s < b. Since both Kmin and Kmax are non-increasing by Corollary 4.4.1, we have

Kmax(a) > Kmax(s) > x > Kmin(s) > Kmin(b).

Hence x ∈ [Kmin(b), Kmax(a)].
Now we prove the other inclusion. Take x such that Kmin(b) < x < Kmax(a). Note that both

Kmin(b) ∈ k̄(b) and Kmax(a) ∈ k̄(a) and the set
⋃

x∈[a,b] k̄(x) is connected since each k̄(x) is an interval.

Therefore there is a c ∈ [a,b] such that x ∈ k̄(c).
The argument for the positive feedback case is analogous. �
The next lemma relates the multi-valued function k̄ to the functions B(u) and T (u). Since the

definition of functions B and T for the negative feedback has already built-in the composition of
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Kmin and Kmax, the formulas for k̄ in the positive feedback case, and k̄2 in the negative feedback case,
are identical.

Lemma 4.7. Consider a SISO system with a multi-valued input–output characteristic k. Then for a negative
feedback system

k̄2(u) = [
B(u), T (u)

]
and k̄2[a,b] = [

B(a), T (b)
]
.

For a positive feedback system

k̄(u) = [
B(u), T (u)

]
and k̄[a,b] = [

B(a), T (b)
]
.

Proof. For the negative feedback system we have from Lemma 4.6

k̄2(u) = k̄
([

Kmin(u), Kmax(u)
]) = [

Kmin
(

Kmax(u)
)
, Kmax

(
Kmin(u)

)] = [
B(u), T (u)

]
.

For a positive feedback system by Definition 4.5

k̄(u) = [
Kmin(u), Kmax(u)

] = [
B(u), T (u)

]
.

The second equality in both cases follows from the first equality and Corollary 4.4.2. �
The next lemma provides an important characterization of the points p1 and p2.

Lemma 4.8. The points p1 and p2 , defined in Theorem 2.4, are fixed points of B(u) and T (u) respectively:

p1 = min
{

p: p is a fixed point of B(u)
}
, p2 = max

{
p: p is a fixed point of T (u)

}
.

Proof. We prove the first statement. The definition of p1 and Lemma 4.7 imply p1 := sup{a: B(u) > u,

∀u < a}. Therefore we have

B(p1) � p1. (14)

We now prove the opposite inequality. Since B(u) is non-decreasing we have limn→∞ B(xn) � B(p1)

for any sequence {xn}∞n=1 with xn < p1 and xn → p1. Therefore

B(p1) � lim
n→∞ B(xn) � lim

n→∞ xn = p1. (15)

Now (14) and (15) show that p1 is a fixed point of B(u). If z satisfies B(z) = z then by definition
of p1 we must have u � p1. This shows that p1 is the smallest fixed point of B(u).

The second result is analogous to the first. �
The following lemma shows that for the SISO negative feedback system p1 and p2 form an “al-

most” period 2 point of the input–output characteristic.

Lemma 4.9. For a SISO negative feedback system, the values p1 and p2 satisfy

p1 = Kmin(p2), p2 = Kmax(p1).
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Proof. Take α(u) := Kmin(u) and β(u) := Kmax(u). For a negative feedback system, both Kmin and
Kmax are non-increasing functions of u. By Lemma 4.8 and the definition of p1 and p2 we get
p1 = B(p1) = Kmin(Kmax(p1)) and p2 = T (p2) = Kmax(Kmin(p2)). We apply Kmax to the first equation
to get Kmax(p1) = Kmax(Kmin(Kmax(p1))). Observe that this implies that Kmax(p1) is a fixed point of
Kmax ◦ Kmin = T . Since by Lemma 4.8 p2 is the largest fixed point of T , it follows that

Kmax(p1) � p2. (16)

Similarly, applying Kmin to the second equation and applying Lemma 4.8, we get

Kmin(p2) � p1. (17)

Since Kmin is non-increasing, (16) implies

Kmin(p2) � Kmin
(

Kmax(p1)
) = p1.

This, together with (17), implies Kmin(p2) = p1. A similar argument shows that Kmax(p1) = p2. �
In the final result of this section we will show that the iterations of the multi-valued map k̄ will

converge to the interval [p1, p2]. Since the functions B(u) and T (u) are constructed from the multi-
valued characteristic the following lemma shows how to construct this interval.

Lemma 4.10. Consider a SISO system with multi-valued input–output characteristic k. Then for any u � p1 ,
and both a positive and negative feedback systems we have

lim
m→∞ min k̄2m(u) = p1 = lim

n→∞ Bn(u),

and for any u � p2 ,

lim
m→∞ max k̄2m(u) = p2 = lim

n→∞ T n(u).

Proof. We consider a SISO system with a positive feedback. Then by Lemma 4.7 the minimum
min k̄(u) = B(u). By induction we assume that for l = n − 1 we have min k̄n−1(u) = Bn−1(u). Then

min k̄n(u) = min k̄
(
k̄n−1(u)

)
= min k̄

(
min k̄n−1(u)

)
= min k̄

(
B(n−1)(u)

)
= Bn(u). (18)

Therefore for a positive feedback system min k̄n(u) = Bn(u).
For the negative feedback system Lemma 4.7 implies that min k̄2(u) = B(u). By induction we can

get as above that in this case min k̄2n(u) = Bn(u). In either positive or negative feedback case the
first result now follows from the fact that for all u < p1 we have B(u) > u and thus the sequence
{Bk(u)}∞k=1 is monotone increasing and converges to p1.

To prove the second result, we first observe that in analogy to (18)

max k̄2n(u) = T n(u) and max k̄n(u) = T n(u) (19)

for negative and positive feedback systems, respectively. The second result now follows from the fact
that for all u � p2 we have T (u) < u and thus the sequence {T k(u)}∞k=1 is monotone decreasing and
converges to p2. �
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4.2. From open to closed loop system

In the previous section we observed a key roles the functions B(u) and T (u) play in open loop
system. We will now show that these functions bound the projection of the trajectories of the closed
loop system into the output variable y. We consider the closed loop system (4), which we write in
the form

ẋ = f (x, u), y = h(x), u = ±y, x ∈ X, u ∈ U , y ∈ Y . (20)

Here again u = +y (u = −y) correspond to a positive (negative) feedback, respectively. The corre-
sponding open loop system is

ẋ = f (x, u), y = h(x), x ∈ X, u ∈ U , y ∈ Y . (21)

Definition 4.11. Consider the system (20) and assume that the control function u(t) is bounded. Let
u− := lim inft→∞ u(t), u+ := lim supt→∞ u(t) and let

y− := lim inf
t→∞ y(t) = h

(
x(t)

)
, y+ := lim sup

t→∞
y(t) = h

(
x(t)

)
.

Lemma 4.12. Consider a closed loop system (20) and assume that the corresponding open loop system (21)
satisfies the standing assumptions.

Then there exists a generic set X ⊂ X such that for each initial condition ξ ∈ X and each bounded input
u(t) with the property that the solution ϕ(t, ξ, u(t)) of (20) is defined for all t � 0, we have

B(y−) � y− � y+ � T (y+).

Proof. Our proof combines the argument of De Leenheer and Malisoff [8] and Angeli, De Leenheer and
Sontag [4]. In a SISO system a cone U ⊂ R must be a half-line. Then by Lemma A.3 of Angeli, De Leen-
heer and Sontag [4] there are sequences v+

n and v−
n in U such that given any compact set K ⊂ U ,

there exists a sufficiently large n = n(K ) such that v−
n � K � v+

n . It follows from standing assumptions
that for each constant u(t) = q there is an exceptional set Bq of the set of initial conditions that do
not converge to an equilibrium in open loop system (21). Recall that the monotonicity assumption
implies that the set X \ Bq contains an open and dense set, i.e. it is generic. Following [4] define

B :=
⋃

n,k∈N, σ=±,q∈U0

ϕ
(−n, Bq, vσ

k

)
, (22)

where U0 is a countable and dense subset of U and ϕ(t, x0, u0) is the flow generated by (20). Since
flow defined maps are diffeomorphisms and X \ Bq is generic, each set X \ ϕ(−n, Bq, vσ

k ) is generic.
Thus

X := X \ B =
⋂

n,k∈N, σ=±,q∈U0

(
X \ ϕ

(−n, Bq, vσ
k

))

is generic, as a countable intersection of generic sets is generic.
We first prove that for ξ ∈ X

min kx(u−) � lim inf
t→∞ ϕ(t, ξ, u) � lim sup

t→∞
ϕ(t, ξ, u) � max kx(u+). (23)

Take an arbitrary ξ ∈ X \ B. By the definition of the lim inf there is an increasing sequence of integer
times n j → ∞ and a sequence of constant-valued controls u j ∈ U0 such that u j → u− and u(t) � u j
for all t � n j . Then
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ϕ(t, ξ, u) = ϕ
(
t − n j,ϕ

(
n j, ξ, u(·)), u(· + n j)

)
� ϕ

(
t − n j,ϕ(n j, ξ, u), u j

)
. (24)

Since ξ /∈ B, we also have ϕ(t − n j,ϕ(n j, ξ, u), u j) /∈ Bu j and therefore

lim
t→∞ϕ

(
t − n j,ϕ(n j, ξ, u), u j

) = v j,

where v j is an equilibrium. Combining this with (24) yields

lim inf
t→∞ ϕ(t, ξ, u) � lim inf

t→∞ ϕ
(
t − n j,ϕ(n j, ξ, u), u j

) = v j. (25)

We can apply (25) for every value of j thereby getting a sequence of such v j ’s. There must be a
subsequence of the v j ’s which converges to, say, v (since there are an infinite number of them and
they are bounded). We also know that along each branch, kx is continuous and so kx(u j) → kx(u−).
Therefore the subsequence of v j must converge to some value of kx(u−). In particular v � min kx(u−).
So we have

lim sup
t→∞

ϕ(t, ξ, u) � lim inf
t→∞ ϕ(t, ξ, u) � min kx(u−).

The rest of the inequality in (23) follows by the similar argument.
Now we apply non-decreasing function h to Eq. (23) to get

min h
(
kx(u−)

)
� lim inf

t→∞ y(t) � lim sup
t→∞

y(t) � max h
(
kx(u+)

)
. (26)

Recall, that for the positive feedback we have y = u and hence u− = y− and u+ = y+ . Therefore in
this case (26) reads

[y−, y+] ⊂ [
Kmin(y−), Kmax(y+)

] = [
B(y−), T (y+)

]

which proves the lemma when y = u.
In the negative feedback case we have y = −u and hence u− = y+ and u+ = y− and therefore

(26) reads Kmin(y+) � y− � y+ � Kmax(y−). In other words,

[y−, y+] ⊂ [
Kmin(y+), Kmax(y−)

]
. (27)

We now repeat the above argument starting with Eq. (23) with u− = Kmin(y+) and u+ = Kmax(y−).
In analogy to Eq. (27) we obtain

[
Kmin(y+), Kmax(y−)

] ⊂ [
Kmin

(
Kmax(y−)

)
, Kmax

(
Kmin(y+)

)]
. (28)

Combining Eqs. (27) and (28) with the definition (9) of B(u) and T (u) in the negative feedback case
yields

[y−, y+] ⊂ [
B(y−), T (y+)

]
. �

Proof of Theorem 2.4. In view of Definition 4.11 it is enough to show

[y−, y+] ⊂ [p1, p2].
By Lemma 4.12, [y−, y+] ⊂ [B(y−), T (y+)].
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Since u(t) = ±y(t) this implies that u(t) ⊂ [B(y−), T (y+)] for all t . We apply Lemma 4.12 to
u− := B(y−) and u+ := T (y+) to get with

[y−, y+] ⊂ [
B2(y−), T 2(y+)

]
.

By induction it follows that

[y−, y+] ⊂ [
Bn(y−), T n(y+)

]
(29)

for all n.
Now assume that y− < p1. Since by Lemma 4.10 limn→∞ Bn(y−) = p1, there exists N such that

for all n � N we have Bn(y−) > y− . This, however, contradicts (29) and therefore we must have
y− � p1. Similar argument shows that y+ � p2. This shows that [y−, y+] ⊂ [p1, p2] and thus proves
the theorem. �
5. Morse decomposition for the closed loop system

In this section we prove Theorem 2.7 that provides a construction of a Morse decomposition of a
closed loop system based on a Morse decomposition of the corresponding open loop system.

Our first observation is that since u(t) = ±y(t) and by Theorem 2.4 [y−, y+] ⊆ [p1, p2], we may
assume without loss of generality that u(t) ∈ [p1, p2] for all t � 0. In addition to the standing as-
sumptions, we assume as in Theorem 2.7 that for each fixed u(t) = u ∈ [p1, p2] the open loop
system

ẋ = f (x, u) (30)

admits a Morse decomposition M(u) = {Mi(u) | i = 1, . . . ,2L + 1} described in Definition 2.6.

Definition 5.1. Let V 2k+1(u) be a basin of attraction of the Morse set M2k+1(u), k = 1, . . . , L, and let

V ∗
2k+1 :=

⋂
u∈[p1,p2]

V 2k+1(u) for k = 0, . . . , L.

Let V 2k(u) be the basin of attraction of M2k(u).

Let W2k(u) be defined as

W2k(u) := cl V 2k+1(u) ∩ cl V 2k−1(u) (31)

and let ω(ξ, u) be the omega limit of a trajectory starting at ξ under the flow ϕ(t, ξ, u). Recall, that
Bu is the exceptional set of initial conditions which do not converge to the set of equilibria in the
open loop system with the constant input u(t) = u.

To show the existence of the Morse decomposition of the closed loop system, we need to show
that V ∗

2k+1 is positively invariant. Since this condition is checked on the boundary, we will use the
assumption that the Morse sets are ordered in the phase space and that they are uniformly ordered
by the output to identify the boundary of the regions V ∗

2k+1, k = 0, . . . , L.

Lemma 5.2. For each fixed u and k = 1, . . . , L − 1, the set V 2k+1(u) is bounded by W2k(u) and W2k+2(u)

∂V 2k+1(u) = W2k(u) ∪ W2k+2(u),
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while for k = 0 and k = L

∂V 1(u) = W2(u), ∂V 2L+1 = W2L .

Furthermore,

W2k(u) ⊂ V 2k ∪ Bu

consists of points ξ such that either ω(ξ, u) ⊂ M2k(u) or ξ ∈ Bu .

Proof. Since the value of u is fixed in this lemma, we will drop the reference to u from our no-
tation. Recall, that [·,·] denotes the order interval. Observe that since M2k−1 ⊂ V 2k−1 and M2k+1 ⊂
V 2k+1, both V 2k−1 ∩ [M2k−1, M2k+1] �= ∅ and V 2k+1 ∩ [M2k−1, M2k+1] �= ∅. Therefore ∂V 2k−1 ∩
[M2k−1, M2k+1] �= ∅ and ∂V 2k+1 ∩ [M2k−1, M2k+1] �= ∅ for every k.

Take x0 ∈ ∂V 2k+1 ∩ [M2k−1, M2k+1]. Then for all z ∈ M2k−1 and all w ∈ M2k+1 we have z ≺ x0 ≺ w .
It follows from the Limit Set Dichotomy [29, Theorem 1.3.7] and strong monotonicity of (3) that

ω(z) ≺ ω(x0) ≺ ω(w). (32)

Note that by the invariance of the Morse sets ω(z) ⊂ M2k−1 and ω(w) ∈ M2k+1. Since z, w were ar-
bitrary, ω(x0) ∩ M2k+1 = ∅ and ω(x0) ∩ M2k−1 = ∅. Therefore either ω(x0) ⊂ M2k or x0 ∈ Bu . A similar
argument shows that if x0 ∈ ∂V 2k+1 ∩ [M2k+1, M2k+3] then either ω(x0) ⊂ M2k+2 or x0 ∈ Bu .

Now we deal with the general case. Assume x0 ∈ ∂V 2k+1, but not necessarily that
x0 ∈ [M2k−1, M2k+1]. Since V 2i+1, i = 0, . . . , L, is a collection of disjoint open sets, x0 /∈ V 2i+1 for
any i = 0, . . . , L, either x0 ∈ Bu or ω(x0) ⊂ M2s for some s = 1, . . . , L. We will now show that either
s = k or s = k + 1. Since x0 ∈ ∂V 2k+1 and V 2k+1 is open, for any neighborhood N of x0 there is an
open set V N ⊂ V 2k+1 ∩ N . Assume that ω(x0) ⊂ M2s , for some s < k. Since the Morse sets are ordered
by the assumption, there exists a T such that ϕ(T , x0, u) ∈ [M2s+1, M2s−1] and almost all solutions in
a neighborhood V̄ of ϕ(T , x0, u) converge to either M2s+1, M2s−1 or M2s . By the continuous depen-
dence on initial condition there is a neighborhood Ū of x0 such that ϕ(T , Ū , u) ⊂ V̄ and thus almost
all solutions in Ū converge to either M2s+1, M2s−1 or M2s . This is a contradiction to the fact that
there is an open set of points V Ū ⊂ V 2k+1 ∩ Ū that converge to M2k+1. The assumption s > k + 1
leads to a similar contradiction. Therefore s = k or s = k + 1 and x0 ∈ ∂V 2k+1(u) implies ω(x0) ⊂ M2k ,
ω(x0) ⊂ M2k+2 or x0 ∈ Bu . This proves the second statement of the lemma.

Our argument also shows that all points in the neighborhood of x0 are either in V 2k+1(u) and
V 2k−1(u), which implies x0 ∈ W2k(u); or in V 2k+1(u) and V 2k+3(u) which implies x0 ∈ W2k+2(u).
This proves the first statement of the lemma. �

In the next two lemmas we show that the basins of attraction for the open loop system are ordered
even for different values of constant input u and v . Recall that [p1, p2] ⊂ U is the interval over which
the Morse decomposition M(u) of the open loop system is defined.

Lemma 5.3. Assume the standing assumptions and the existence of Morse decomposition for an open loop
system. Then for all u � v, u, v ∈ [p1, p2] and all k < s

Vk(v) ∩ V s(u) = ∅.

Proof. Assume to the contrary that there is ζ ∈ Vk(v) ∩ V s(u). Then by the monotonicity ϕ(t, ζ, u) ≺
ϕ(t, ζ, v) for all t and z := limt→∞ ϕ(t, ζ, u) � limt→∞ ϕ(t, ζ, v) =: w . By definition z ∈ Ms(u) and
w ∈ Mk(v). By the monotonicity of the output function h, z � w implies h(z) � h(w) for z ∈ Ms(u)

and w ∈ Mk(v) with k < s. This contradicts the assumption (12). �
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Lemma 5.4. Assume the standing assumptions and the existence of open loop Morse decomposition. Then for
any u ∈ [p1, p2], and any fixed k

⋃
l�k

Vl(p1) ⊂
⋃
l�k

Vl(u) ∪ Bu,
⋃
l�k

Vl(p2) ⊂
⋃
l�k

Vl(u) ∪ Bu.

Proof. Take any u � v , u, v ∈ [p1, p2]. Since by Lemma 5.3 V s(u) ∩ Vl(v) = ∅ for all s < l, and

X =
⋃
s<l

V s(v) ∪
⋃
s�l

V s(v) ∪ Bv ,

it follows that Vl(u) ⊂ ⋃
s�l V s(v) ∪ Bv . Taking union over all l � k we get

⋃
l�k

Vl(u) ⊂
⋃
l�k

⋃
s�l

V s(v) ∪ Bv =
⋃
l�k

Vl(v) ∪ Bv .

Finally, taking u = p1 and v = u we obtain the first statement above.
Similarly, Lemma 5.3 and the fact that X = ⋃

s�l V s(u) ∪ ⋃
s>l V s(u) ∪ Bu, imply

Vl(v) ⊂
⋃
s�l

V s(u) ∪ Bu . (33)

Taking union over l � k yields
⋃

l�k Vl(v) ⊂ ⋃
l�k

⋃
s�l V s(u) ∪ Bu = ⋃

l�k Vl(u) ∪ Bu, and taking
v = p2 we get the second statement above. �

As we will show next, the ordering of basins for the open loop systems implies that the bound-
aries of their intersections V ∗

2k+1 have a particularly simple form. We will use these to check the
positive invariance of the sets V ∗

2k+1 in the closed loop system, which is the key step in the proof of
Theorem 2.7.

Proposition 5.5. For each k = 0, . . . , L, the boundary of V ∗
2k+1 satisfies

∂V ∗
2k+1 ⊂ W2k+2(p2) ∪ W2k(p1) ∪ B p1 ∪ B p2 .

Proof. We write

V 2k+1(u) =
( ⋃

l�2k+1

Vl(u)

)
∩

( ⋃
l�2k+1

Vl(u)

)
. (34)

From the definition of V 2k+1 and using (34) we get

V ∗
2k+1 =

⋂
u∈[p1,p2]

V 2k+1(u)

=
⋂

u∈[p1,p2]

(( ⋃
l�2k+1

Vl(u)

)
∩

( ⋃
l�2k+1

Vl(u)

))

=
( ⋂

u∈[p ,p ]

⋃
l�2k+1

Vl(u)

)
∩

( ⋂
u∈[p ,p ]

⋃
l�2k+1

Vl(u)

)
.

1 2 1 2
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We will show that

⋃
l�2k+1

Vl(p1) =
⋂

u∈[p1,p2]

⋃
l�2k+1

Vl(u), and
⋃

l�2k+1

Vl(p2) =
⋂

u∈[p1,p2]

⋃
l�2k+1

Vl(u). (35)

The one inclusion follows from Lemma 5.4

⋃
l�2k+1

Vl(p1) ⊂
⋂

u∈[p1,p2]

⋃
l�2k+1

Vl(u),
⋃

l�2k+1

Vl(p2) ⊂
⋂

u∈[p1,p2]

⋃
l�2k+1

Vl(u). (36)

The opposite inclusions follow from the fact that the set on the left side of each of the expressions
in (36) is one of the intersected sets on the right side of these expressions. Therefore we proved (35)
and thus

V ∗
2k+1 =

( ⋃
l�2k+1

Vl(p1)

)
∩

( ⋃
l�2k+1

Vl(p2)

)
. (37)

We can write the right-hand side in (37) as

V 2k+1(p1) ∩ V 2k+1(p2) ∪
⋃
s>r

(
V s(p1) ∩ Vr(p2)

)
.

Taking u = p1 and v = p2 in Lemma 5.3 we get that V s(p1) ∩ Vr(p2) = ∅ if s > r. Therefore

V ∗
2k+1 = V 2k+1(p1) ∩ V 2k+1(p2).

We will use this expression to find the boundary of V ∗
2k+1. Observe that

∂V ∗
2k+1 = ∂

(
V 2k+1(p1) ∩ V 2k+1(p2)

)
⊂ ∂

(
V 2k+1(p1)

) ∪ ∂
(

V 2k+1(p2)
)

= W2k(p1) ∪ W2k+2(p1) ∪ W2k(p2) ∪ W2k+2(p2), (38)

where we used Lemma 5.2 in the last line. We wish to further simplify the right-hand side of (38).
Since W2k(p2) ⊂ cl(V 2k−1(p2)), it follows from (33) with v = p2, u = p1 and l = 2k − 1 that

W2k(p2) ⊂ cl

( ⋃
s�2k−1

V s(p1)

)
∪ B p1 ,

where we used that by [29, Theorem 4.3], B p1 is closed. Now we select some x ∈ W2k(p2) and
consider two complementary cases: either x ∈ int(

⋃
s�2k−1 V s(p1)) or x ∈ ∂(

⋃
s�2k−1 V s(p1)).

I. Assume first that x ∈ int(
⋃

s�2k−1 V s(p1)). Then there is a neighborhood N(x) such that N(x) ⊂⋃
s�2k−1 V s(p1). Since V 2k+1(p1)∩⋃

s�2k−1 V s(p1) = ∅ and these sets are both open, x /∈ ∂V 2k+1(p1).
II. Consider now the case when x ∈ ∂(

⋃
s�2k−1 V s(p1)). Recall that

⋃
s�2k−1

V s(p1) = V 1(p1) ∪ V 2(p1) ∪ · · · ∪ V 2k−1(p1).
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Since all these sets are disjoint

cl

( ⋃
s�2k−1

V s(p1)

)
= cl

(
V 1(p1)

) ∪ cl
(

V 2(p1)
) ∪ · · · ∪ cl

(
V 2k−1(p1)

)
.

By Lemma 5.2 and (31) cl(V 2k−1) ∩ cl(V 2k+1) = W2k ⊂ V 2k ∪ B p1 . Since V 2k is closed we have

cl(V 2k−1) ∪ cl(V 2k+1) = V 2k−1 ∪ V 2k+1 ∪ ∂V 2k−1 ∪ ∂V 2k+1

= V 2k−1 ∪ V 2k+1 ∪ W2k−2 ∪ W2k ∪ W2k+2

⊂ V 2k−1 ∪ V 2k+1 ∪ V 2k ∪ W2k−2 ∪ W2k+2 ∪ B p1 .

Therefore cl(
⋃

s�2k−1 V s(p1)) ⊂ (
⋃

s�2k−1 V s(p1)) ∪ W2k(p1) ∪ B p1 , and thus

∂

( ⋃
s�2k−1

V s(p1)

)
⊂ W2k(p1) ∪ B p1 .

We conclude that if x ∈ ∂(
⋃

s�2k−1 V s(p1)) then x ∈ W2k(p1) or x ∈ B p1 .
We now put I and II together. We have shown that if x ∈ W2k(p2)∩ cl(

⋃
s�2k−1 V s(p1)) then either

x /∈ ∂V 2k+1(p1) or x ∈ W2k(p1) ∪ B p1 . Therefore if x ∈ W2k(p2) ∩ ∂V 2k+1(p1), then x ∈ W2k(p1) ∪ B p1 .
Therefore

W2k(p2) ∩ ∂V 2k+1(p1) ⊂ W2k(p1) ∪ B p1 .

Similar argument shows that if x ∈ W2k+2(p1) ∩ ∂V 2k+1(p2) ∪ B p2 , then x ∈ W s
2k+2(p2) and therefore

W2k+2(p1) ∩ ∂V 2k+1(p2) ⊂ W2k+2(p2) ∪ (
B p2 ∩ ∂V 2k+1(p2)

) ⊂ W2k+2(p2) ∪ B p2 .

These two facts imply that (38) can be rewritten ∂V ∗
2k+1 ⊂ W2k(p1) ∪ W2k+2(p2) ∪ B p1 ∪ B p2 . �

The following is the key result in this section, where we show the positive invariance of the sets
V ∗

2k+1 in the closed loop system.

Theorem 5.6. Assume the standing assumptions and the existence of a Morse decomposition for the monotone
open loop system (3). Then for all k = 0, . . . , L the set V ∗

2k+1 is positively invariant under the closed loop
flow (4).

Proof. In the proof of this theorem we will distinguish between the flow φ(t, x0) of the closed loop
system (4) and the flow of the open loop ϕ(t, x0, u). Note that we can always represent the flow
φ(t, x0) as ϕ(t, x0, u) with u = u(t) defined by u(t) = g(h(φ(t, x0))).

We now take x ∈ V ∗
2k+1 and assume there is a T > 0 such that φ(x, T ) ∈ ∂V ∗

2k+1. By Proposition 5.5
either

φ(T , x) ∈ W2k+2(p2) ∪ B p2 or φ(T , x) ∈ W2k(p1) ∪ B p1 .

In order to simplify the notation we set x(T ) := φ(T , x). Assume the first case and consider the flow
φ(t, x(T )) in the open flow form ϕ(t, x(T ), u). Since u(t) � p2 for all t , we have

ϕ
(
t, x(T ), u

)
� ϕ

(
t, x(T ), p2

)
for all t. (39)
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By Lemma 5.2 ϕ(t, x(T ), p2) either converges to M2k(p2) or belongs to B p2 . In either case we have
ϕ(t, x(T ), p2) �⊂ ⋃

l>2k+1 Vl(p2). Therefore by monotonicity

φ
(
t, x(T )

) = ϕ
(
t, x(T ), u

) ∈
⋃

l�2k+1

Vl(p2) ∪ B p2 for all t � 0. (40)

On the other hand if φ(x(T ), t) ∈ W2k(p1) ∪ B p1 we again write φ(t, x(T )) = ϕ(t, x(T ), u) for the
appropriate u = u(t). Since u(t) � p1 for all t we have

ϕ
(
t, x(T ), u

)
� ϕ

(
t, x(T ), p1

)
for all t � 0. (41)

Again by Lemma 5.2 ϕ(t, x(T ), p1) �⊂ ⋃
l<2k+1 Vl(p1) and therefore

ϕ
(
t, x(T ), u

) ∈
⋃

l�2k+1

Vl(p1) ∪ B p1 . (42)

Combining (40) and (42) we see that an arbitrary trajectory ϕ(t, x, u) starting at x ∈ V ∗
2k+1 has to stay

in the intersection

ϕ(t, x, u) ⊂
( ⋃

l�2k+1

Vl(p1) ∪ B p1

)
∩

( ⋃
l�2k+1

Vl(p2) ∪ B p2

)
.

The latter set (see (37)) can be written as

V ∗
2k+1 ∪

( ⋃
l�2k+1

Vl(p2) ∩ B p1

)
∪

( ⋃
l�2k+1

Vl(p1) ∩ B p2

)
∪ (B p2 ∩ B p1). (43)

We now note that V ∗
2k+1 ∩ (B p1 ∪ B p2) = ∅. Indeed, V ∗

2k+1 ⊂ V 2k+1(p1) which is disjoint from B p1 .
A similar argument applies to B p2 , proving the assertion. This implies that in ϕ(t, x0, u) is either a
subset of V ∗

2k+1 for all t , or a subset of the latter three sets in (43), for all t � 0. Since x0 ∈ V ∗
2k+1 it

must be that

ϕ(t, x, u) ∈ V ∗
2k+1 for all t. �

Proof of Theorem 2.7. Recall that each Morse set M∗
2i+1, i = 1, . . . , L, is defined as the maximal in-

variant set in V ∗
2i+1 = ⋂

u∈[p1,p2] V 2i+1(u) and M∗
0 is the maximal invariant set in X \ ⋃

i=0,...,L V ∗
2i+1.

Then by Theorem 2.4 all the ω-limit sets of arbitrary initial conditions ξ ∈ X lie in one of the set sets
M∗

0 or M∗
2i+1, i = 0, . . . , L.

We now show that V ∗
2i+1 is open for all i = 0, . . . , L. Since the solutions of the system (3) depend

continuously on the parameter u, the open sets V 2i+1(u) vary continuously with u. Therefore for
each x ∈ V 2i+1(u) there is an open neighborhood U2i+1(u) of x such that U2i+1(u) ⊂ V 2i+1(v) for all
v ∈ N(u), a neighborhood of u. Since [p1, p2] is compact it admits a finite cover by neighborhoods
N(u1), . . . , N(uk). Hence the set

⋂k
j=1 U2i+1(u j) is an open neighborhood of x in V ∗

2i+1.
Since the Morse sets M∗

2i+1, i = 1, . . . , L, lie in an open positively invariant set V ∗
2i+1, they are

non-empty. At the same time there cannot be any solution with α(x) ⊂ M∗
2i+1 and ω(x) ⊂ M∗

0. This
proves the existence of the order advertised in the theorem. �
6. Convergence inside the Morse sets

In this section we show that our theory can be applied iteratively to find finer Morse decomposi-
tions and how the characteristic can be used to determine internal structure of Morse sets.
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6.1. Finding a finer decomposition

If the restriction of the input–output characteristic u → M2l+1(u) for u ∈ [p1, p2] is multi-valued,
we can apply Theorem 2.4 to this restriction of the full characteristic to compute a perhaps smaller
interval [p1

1, p1
2] ⊂ [p1, p2] that attracts solutions of the closed loop system starting in V ∗

2l+1. If the

restriction of the characteristic defines a non-trivial Morse decomposition of M2l+1(u) on [p1
1, p1

2] we

apply Theorem 2.7 to find a non-trivial Morse decomposition M̄ = {{M̄2l+1
j }k

j=0 | 0̄ � j̄ for all j > 0}
of M∗

2l+1. Then the union of the Morse sets

k⋃
j=0

M̄2l+1
j ∪

L⋃
i=0, i �=l

M2i+1

with ordering

0 � 2i + 1 for all i = 1, . . . , l − 1, l + 1, . . . , L, 0 � j̄ and 0̄ � j̄ for all j = 0, . . . ,k,

is a Morse decomposition of the invariant set of (4). This is a refinement of the original Morse decom-
position.

6.2. Individual Morse set

If the restriction of the input–output characteristic u → M2l+1(u) for u ∈ [p1, p2] is single-valued,
then we can apply the standard theory of single-valued characteristics. Note that the assumption
that u → M2l+1(u) for u ∈ [p1, p2] is single-valued is equivalent to the assumption that M2l+1(u) =
e2l+1(u) is a unique equilibrium for all u ∈ [p1, p2]. We have the following definition.

Definition 6.1. Let kx,2l+1 : [p1, p2] → X be the (2l + 1)th branch of the I/S characteristic kx defined
by kx,2l+1(u) = e2l+1(u). Let k2l+1 be the corresponding (2l + 1)th branch of the I/O characteristic
k : [p1, p2] → R defined by k(u) = h(e2l+1(u)). Notice that the requirement that the domain of these
maps is an entire interval [p1, p2] is essential. If u → M2l+1(u) for u ∈ [p1, p2] is single-valued for
some l then kx,2l+1 and k2l+1 are well defined. We will call them single-valued branches of the multi-
valued characteristic and l a single-valued index.

Lemma 6.2. Let l be a single-valued index and let ξ ∈ V ∗
2l+1 . Let ϕ(t, ξ, u) be a solution starting at ξ with an ar-

bitrary input u(t) in the open loop system (3). Let y− := lim inft→∞ y(t) = h(x(t)), y+ := lim supt→∞ y(t) =
h(x(t)), u− := lim inft→∞ u(t), and u+ := lim supt→∞ u(t). Then

[y−, y+] ⊂ [
k2

2l+1(y−),k2
2l+1(y+)

]
.

Proof. Observe that since V ∗
2l+1 is positively invariant by Theorem 5.6 the solution ϕ(t, ξ, u) exists

for all t � 0 and u−, u+ ⊂ [p1, p2]. Further, by the assumption on l the restriction of the input-state
characteristics to the set V ∗

2l+1 is the branch kx,2l+1

kx
([p1, p2]

) ∩ V ∗
2l+1 = kx,2l+1.

The remainder of proof is completely analogous to the proof of Lemma 4.12 were we use kx,2l+1
instead of kx and k2l+1 instead of k. We will indicate the main steps in the proof.

One first shows that

kx,2l+1(u−) � lim infϕ(t, ξ, u) � lim supϕ(t, ξ, u) � kx,2l+1(u+) (44)
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and then applying h we get

h
(
kx,2l+1(u−)

)
� lim sup y(t) � lim inf y(t) � h

(
kx,2l+1(u+)

)
. (45)

As in Lemma 4.12 this implies for the positive feedback system with u(t) = y(t) that

k2l+1(y−) � lim inf y(t) � lim sup y(t) � k2l+1(y+).

In other words,

[y−, y+] ⊂ [
k2l+1(y−),k2l+1(y+)

]
. (46)

If we apply the argument one more time starting with Eq. (23) and with u− = k2l+1(y−) and
u+ = k2l+1(y+) we get

[
k2l+1(y−),k2l+1(y+)

] ⊂ [
k2

2l+1(y−),k2
2l+1(y+)

]
.

This, together with (46) proves the lemma for the positive feedback case.
For the negative feedback u = −y Eq. (45) can be written as

[y−, y+] ⊂ [
k2l+1(y+),k2l+1(y−)

]
. (47)

We now repeat the above argument with u− = k2l+1(y+) and u+ = k2l+1(y−) and get

[
k2l+1(y+),k2l+1(y−)

] ⊂ [
k2

2l+1(y−),k2
2l+1(y+)

]
. (48)

Eqs. (47) and (48) imply the result for the negative feedback. �
Lemma 6.3. The input–output characteristic k maps the interval [p1, p2] into itself k : [p1, p2] → [p1, p2].
Therefore the graph of every single-valued branch k2l+1 intersects the diagonal in [p1, p2] × [p1, p2].

Proof. By Corollary 4.4 for the negative feedback system both Kmin(u) and Kmax(u) are non-increasing
functions of u. Therefore the graph of the input–output characteristic k satisfies Kmin(p2) � k(u) �
Kmax(p1) for all u ∈ [p1, p2]. By Lemma 4.9 Kmax(p1) = p2 and Kmin(p2) = p1 and hence the graph
satisfies p1 � k(u) � p2.

By Corollary 4.4 for the positive feedback system functions Kmin(u) and Kmax(u) are non-
decreasing functions of u and thus the graph of k satisfies Kmin(p1) � k(u) � Kmax(p2) for all
u ∈ [p1, p2]. By Lemma 4.8 Kmin(p1) = B(p1) = p1 and Kmax(p2) = T (p2) = p2 and thus again the
graph of k satisfies p1 � k(u) � p2. Therefore for both the negative and positive feedback systems
k([p1, p2]) ⊂ [p1, p2].

Observe that continuity of each single-valued branch k2l+1 follows from the continuity of the right-
hand side of (3) and the inverse mapping theorem. Since each single-valued branch k2l+1 is defined
for all u ∈ [p1, p2] the second result follows from the continuity of k2l+1. �

Lemma 6.3 implies that the following is well defined.

Definition 6.4. For each single-valued index l let e∗
2l+1 be an intersection of the branch k2l+1 and the

line y = u. Let E2l+1 := kx,2l+1(e∗
2l+1) be the corresponding equilibrium of the closed loop system in

the state space.
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Proof of Theorem 2.10. The first two results follow directly from the invariance (Theorem 5.6) of the
V ∗

2l+1 under the closed loop system (4) and the original papers [2,4].
The second statement is a special case of the results [2,4] which applies to both positive and

negative feedback systems. Take ξ ∈ V ∗
2l+1 and let ϕ(t, ξ, u(t)) be a solution starting at ξ with ar-

bitrary u(t). Let y− , y+ , u− and u+ be defined as in Lemma 6.2. Then by that lemma [y−, y+] ⊂
[k2

2l+1(y−),k2
2l+1(y+)].

Since u(t) = ±y(t) this implies that u(t) ⊂ [k2
2l+1(y−),k2

2l+1(y+)] for all t � 0. We apply

Lemma 6.2 to u− := k2
2l+1(y−) and u+ := k2

2l+1(y+) to get

[y−, y+] ⊂ [
k4

2l+1(y−),k4
2l+1(y+)

]
.

By induction it follows that

[y−, y+] ⊂ [
k2n

2l+1(y−),k2n
2l+1(y+)

]
(49)

for all n.
By assumption k2n

2l+1(u) → e∗
2l+1 for all u ∈ [p1, p2] and since u = ±y, then k2n

2l+1(y−) → e∗
2l+1

and k2n
2l+1(y+) → e∗

2l+1 as well. By (49) y− = y+ = e∗
2l+1 and thus u− = u+ = e∗

2l+1. Therefore u(t)
converges to e∗

2l+1. The Converging-inputs Converging-state Theorem 1 of [30] implies

lim
t→∞ϕ

(
t, ξ, u(t)

) → E2l+1. �
7. Conclusions

Monotone input–output systems have proved to be very successful in analyzing complex models of
biochemical regulatory networks [3,31]. The main approach is to decompose a closed loop system (1)
into a parameterized system (open loop) (2) that is strongly monotone and then reconstitute the
original system using either a negative or a positive feedback. If the open loop system (1) is strongly
monotone its dynamics can be characterized by a (multi-valued) input–output characteristic. From this
characteristic certain conclusions can be drawn about the closed loop system (2). For a single-valued
characteristic and a positive feedback system, the fixed points of the characteristic are in one-to-
one correspondence with the equilibria of the original closed loop system [1,2,9], including their
asymptotic stability. For a negative feedback system the behavior of the closed loop system may be
very different from the open loop system. In particular, a closed loop system may admit a stable
periodic orbit for a sufficiently strong feedback. Therefore in the case of negative feedback the results
take the form of a small gain theorem: if the feedback is sufficiently small, the closed loop system
behaves as an open loop system and (generic) convergence to equilibria is assured [4,10].

A natural next step is to relax the requirement that the input–output characteristic is single-valued.
The first steps in this direction were taken by De Leenheer and Malisoff [8] for negative feedback
systems and very recently by Enciso and Sontag [11] for positive feedback systems. The goal of the
first paper is to find conditions under which the small gain theorem still holds while [11] extends
the local correspondence results between fixed points of the characteristic and the equilibria of the
closed loop system. In the context of our results it can be shown that the assumptions imposed on
the I/O characteristic in [8] imply p1 = p2 and a trivial Morse decomposition at u = p1 = p2.

The goal of our paper is more global and complementary to these efforts. The idea of a Morse
decomposition of the invariant set, due to Conley [6], was developed to capture robust features of the
dynamics. Each Morse set can contain multiple equilibria, periodic orbits, and the connecting orbits
between them and so it can have complicated internal structure. This internal structure can vary with
parameters, but the relationship between different Morse sets encoded in a partial order between the
Morse sets, is robust.

We present a new method which employs an input–output characteristic to construct Morse de-
compositions for an arbitrary system of ordinary differential equations with monotone interactions
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which admits a decomposition as a monotone system with a scalar feedback. When feedback is
multi-dimensional, the construction of the compact subset R ⊂ U presents technical difficulties, as
some results in Section 4 (in particular Lemma 4.6) depend on the fact that the output space is
one-dimensional. We do not think, however, that the assumption of scalar feedback is essential and
we believe that the technical difficulties can be resolved. We have chosen to concentrate on scalar
feedback because this is the situation most often encountered in the applications. However, since any
system with monotone interactions can be decomposed to a parameterized monotone system with a
negative feedback [2,7] the potential extension of our result to negative feedback of arbitrary dimen-
sion is theoretically attractive, as it would allow construction of a Morse decomposition for any such
system.

Other potential extensions of our results would be to develop methods that probe further into the
structure of the individual Morse sets. For positive feedback systems this role is served by a recent
paper [11]. For negative feedback systems the fundamental difficulty is formulation of results that
would guarantee existence of a periodic orbit. Some results in this direction can be found in [16]
and [13].

We have applied our theory to a model of the cell cycle. We investigate how the strength of the
negative feedback loop affects the existence of the periodic orbit. Not surprisingly, if we weaken the
negative feedback loop the periodic orbit disappears and we show that almost all solutions converge
to a stable equilibrium. On the other hand, if we change the cooperativity constants in the negative
feedback loop, we can find a bistable regime, where almost all solutions converge to one of two
different stable equilibria. Our approach provides an alternative to a bifurcation analysis by Tyson and
collaborators [25,32]. While our approach relies on numerically computed input–output characteristic,
it can provide proofs of convergence for (almost) all initial conditions.
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