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Abstract

Using chiral perturbation theory we investigate the QCD shear viscosity (η) to entropy density (s) ratio below the deconfinement temperature
(∼170 MeV) with zero baryon number density. It is found that η/s of QCD is monotonically decreasing in temperature (T ) and reaches 0.6 with
estimated ∼50% uncertainty at T = 120 MeV. A naive extrapolation of the leading order result shows that η/s reaches the 1/4π minimum bound
proposed by Kovtun, Son, and Starinets using string theory methods at T ∼ 200 MeV. This suggests a phase transition or cross over might occur
at T � 200 MeV in order for the bound to remain valid. Also, it is natural for η/s to stay close to the minimum bound around the phase transition
temperature as was recently found in heavy ion collisions.
© 2007 Elsevier B.V. Open access under CC BY license.
1. Introduction

Shear viscosity η characterizes how strongly particles inter-
act and move collectively in a many body system. In general,
strongly interacting systems have smaller η than the weakly in-
teracting ones. This is because η is proportional to ετmft, where
ε is the energy density and τmft is the mean free time, which is
inversely proportional to particle scattering cross section. Re-
cently a universal minimum bound for the ratio of η to entropy
density s was proposed by Kovtun, Son, and Starinets [1]. The
bound,

(1)
η

s
� 1

4π
,

is found to be saturated for a large class of strongly interacting
quantum field theories whose dual descriptions in string theory
involve black holes in anti-de Sitter space [2–5].

Recently, η/s close to the minimum bound were found in
relativistic heavy ion collisions (RHIC) [6–8]. This discovery
came as a surprise. Traditionally, quark gluon plasma (QGP)—
the phase of QCD above the deconfinement temperature Tc
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(∼170 MeV at zero baryon density [9])—was thought to be
weakly interacting. Partly because lattice QCD simulations of
the QGP equation of state above 2Tc were not inconsistent with
that of an ideal gas of massless particles, e = 3p, where e is
the energy density and p is the pressure of the system [9].
However, recent analyses of the elliptic flow generated by non-
central collisions in RHIC [7,8] and lattice simulations of a
gluon plasma [10] yielded η/s close to the minimum bound at
just above Tc. This suggests QGP is strongly interacting at this
temperature.1 (However, see Ref. [14] for a different interpre-
tation.)

Given this situation, one naturally wonders if η/s of QCD
was already close to the minimum bound at just above Tc, what
would happen if we keep reducing the temperature such that
the coupling constant of QCD gets even stronger? Will the η/s

minimum bound hold up below Tc? If the bound does hold up,
what is the mechanism? Is the change of degrees of freedom
through a phase transition or cross over sufficient to save the
bound? If the bound does not hold up, what is the implication
to string theory?

1 See also [11–13]. For discussions of the possible microscopic structure of
such a state, see [15–19].
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To explore these issues, we use chiral perturbation theory
(χPT) and the linearized Boltzmann equation to perform a
model independent calculation to the η/s of QCD in the con-
finement phase. Earlier attempts to compute meson matter vis-
cosity using the Boltzmann equation and phenomenological
phase shifts in the context of RHIC hydrodynamical evolution
after freeze out can be found in Refs. [24–26]. In the deconfine-
ment phase, state of the art perturbative QCD calculations of η

can be found in Refs. [27,28].

2. Linearized Boltzmann equation for low energy QCD

In the hadronic phase of QCD with zero baryon-number den-
sity, the dominant degrees of freedom are the lightest hadrons—
the pions. The pion mass mπ = 139 MeV is much lighter than
the mass of the next lightest hadron—the kaon whose mass is
495 MeV. Given that Tc is only ∼170 MeV, it is sufficient to
just consider the pions in the calculation of thermodynamical
quantities and transport coefficients for T � Tc.

The interaction between pions can be described by chiral
perturbation theory (χPT) in a systematic expansion in energy
and quark (u and d quark) masses [20–22]. χPT is a low energy
effective field theory of QCD. It describes pions as Nambu–
Goldstone bosons of the spontaneously broken chiral symme-
try. At T � Tc , the temperature dependence in ππ scattering
can be calculated systematically. At T = Tc, however, the the-
ory breaks down due to the restoration of chiral symmetry.2

The shear viscosity η of the pion gas can be calculated either
using the Boltzmann equation or the Kubo formula. Since the
Boltzmann equation requires semi-classical descriptions of par-
ticles with definite position, energy and momentum except dur-
ing brief collisions, the mean free path is required to be much
greater than the range of interaction. Thus the Boltzmann equa-
tion is usually limited to low temperature systems. The Kubo
formula does not have this restriction. In this approach η can be
calculated through the linearized response function

(2)η = −1

5

0∫
−∞

dt ′
t ′∫

−∞
dt

∫
dx3 〈[

T ij (0), T ij (x, t)
]〉

with T ij the spacial part of the off-diagonal energy momen-
tum tensor. One might think a perturbative calculation of the
above two point function will give the answer for η. But this
cannot be true if η ∝ τmft, as mentioned above, for τmft → ∞
in the free case. Indeed, the Kubo formula involves an infinite
number of diagrams at the leading order (LO) [23]. However,
in a weak coupling φ4 theory, it is proven that the summation
of LO diagrams is equivalent to solving the linearized Boltz-
mann equation with temperature dependent particle masses and
scattering amplitudes [23]. This proof extended the applicable
range of the Boltzmann equation to higher temperature but is
restricted to weak coupling theories. In the case we are inter-

2 The QCD chiral restoration temperature and the deconfinement temperature
happen to be close to each other at zero baryon density. We do not distinguish
the two in this Letter.
ested (QCD with T � 120 MeV), the range of interaction is
set by the pion mass which is ∼1 fm. The mean free path is
∼410 fm at T = 60 MeV and ∼11 fm at T = 120 MeV. Thus,
we argue that below T = 120 MeV, the interaction is still suffi-
ciently weak that the use of the Boltzmann equation is justified.

The Boltzmann equation describes the evolution of the
isospin averaged pion distribution function f = f (x,p, t) ≡
fp(x) (a function of space, time and momentum) as

pμ

Ep

∂μfp(x) = gπ

2

∫
123

dΓ12;3p

{
f1f2(1 + f3)(1 + fp)

(3)− (1 + f1)(1 + f2)f3fp

}
,

where Ep = √
p2 + m2

π and gπ = 3 is the degeneracy factor for
three pions,

dΓ12;3p ≡ 1

2Ep

|T |2
3∏

i=1

d3ki

(2π)3(2Ei)

(4)× (2π)4δ4(k1 + k2 − k3 − p),

and where T is the scattering amplitude for particles with mo-
menta 1,2 → 3,p. In χPT, the LO isospin averaged ππ scat-
tering amplitude in terms of Mandelstam variables (s, t , and u)
is

|T |2 = 1

9

∑
I=0,1,2

(2I + 1)
∣∣T (I )

∣∣2

(5)= 1

9f 4
π

{
21m4

π + 9s2 − 24M2
πs + 3(t − u)2}.

The temperature dependence in pion mass and pion scattering
amplitudes can be treated as higher order corrections.

In local thermal equilibrium, the distribution function
f

(0)
p (x) = (eβ(x)Vμ(x)pμ − 1)−1 with β(x) the inverse tempera-

ture and V μ(x) the four velocity at the space–time point x. A
small deviation of fp from local equilibrium is parametrized as

(6)fp(x) = f (0)
p (x)

[
1 − {

1 + f (0)
p (x)

}
χp(x)

]
,

while the energy momentum tensor is

(7)Tμν(x) = gπ

∫
d3p

(2π)3

pμpν

Ep

fp(x).

We will choose the V(x) = 0 frame for the point x. This implies
∂νV

0 = 0 after taking a derivative on Vμ(x)V μ(x) = 1. Fur-
thermore, the conservation law at equilibrium ∂μT μν |χp=0 = 0
allows us to replace ∂tβ(x) and ∂tV(x) by terms proportional
to ∇ · V(x) and ∇β(x). Thus, to the first order in a derivative
expansion, χp(x) can be parametrized as

χp(x) = β(x)A(p)∇ · V(x) + β(x)B(p)

(
p̂i p̂j − 1

3
δij

)

(8)×
(∇iVj (x) + ∇jVi(x)

2
− 1

3
δij∇ · V(x)

)
,
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where i and j are spacial indexes.3 A and B are functions of x

and p. But we have suppressed the x dependence.
Substituting (8) into the Boltzmann equation, one obtains a

linearized equation for B(
pipj − 1

3
δij p2

)

= gπEp

2

∫
123

dΓ12;3p (1 + n1)(1 + n2)n3(1 + np)−1

× [
Bij (p) + Bij (k3) − Bij (k2) − Bij (k1)

]
≡ gπ F̂ij [B],

(9)Bij (p) ≡ B(p)

(
p̂i p̂j − 1

3
δij

)
,

where we have dropped the factor (∇iVj (x)+∇jVi(x)− trace)

contracting both sides of the equation and written f
(0)
i (x) at this

point as ni = (eβEi − 1)−1. There is another integral equation
associated with ∇ ·V(x) which is related to the bulk viscosity ζ

that will not be discussed in this Letter. The ∇ ·β and ∂tV terms
in pμ∂μf

(0)
p will cancel each other by the energy momentum

conservation in equilibrium mentioned above.
In equilibrium the energy momentum tensor depends on

pressure P(x) and energy density ε(x) as T
(0)
μν (x) = {P(x) +

ε(x)}Vμ(x)Vν(x) − P(x)δμν . A small deviation away from
equilibrium gives additional contribution to Tμν whose spacial
components define the shear and bulk viscosity

δTij = −2η

(∇iVj (x) + ∇jVi(x)

2
− 1

3
δij∇ · V(x)

)

(10)+ ζ δij∇ · V(x).

After putting everything together we obtain

η = gπβ

10

∫
d3p

(2π)3

1

Ep

np(1 + np)Bij (p)

(
pipj − 1

3
δij p2

)

= g2
πβ

10

∫
d3p

(2π)3

1

Ep

np(1 + np)Bij (p)F̂ij [B]

(11)≡ g2
π

〈
B|F̂ [B]〉.

Here we see immediately that if the scattering cross section is
scaled by a factor α,

(12)dΓ12;3p → α(dΓ12;3p),

then Eqs. (9) and (11) imply the following scaling

Bij (p) → α−1Bij (p),

(13)η → α−1η,

with η proportional to the inverse of scattering cross section.
This non-perturbative result is a general feature for the lin-
earized Boltzmann equation with two-body elastic scattering.

3 A non-derivative term is not allowed since fp should be reduced to f
(0)
p

when β and V μ become independent of x. There is no term with single spacial
derivative on β(x) either. The only possible term (V · ∇)β(x) vanishes in the
V(x) = 0 frame.
To find a solution for B(p), one can just solve Eq. (9). But
here we follow the approach outlined in Refs. [25,26] to assume
that B(p) is a smooth function which can be expanded using a
specific set of orthogonal polynomials

(14)B(p) = g−1
π

∞∑
r=0

brB
(r)

(
z(p)

)
,

where B(r)(z) is a polynomial up to zr and br is its coefficient.
The orthogonality condition

(15)
∫

d3p
(2π)3

p2

Ep

np(1 + np)B(r)(z)B(s)(z) ∝ δr,s

can be used to construct the B(r)(z) polynomials up to normal-
ization constants. For simplicity, we will choose

B(0)(z) = 1.

With this expansion, the consistency condition for B(p) in
Eq. (11) yields

(16)η =
∑

r

brL
(r) =

∑
r,s

br

〈
B(r)

∣∣F̂ [
B(s)

]〉
bs,

where

(17)L(r) = β

15

∫
d3p

(2π)3

p2

Ep

np(1 + np)B(r)(p) ∝ δ0,r .

Since br is a function of mπ , fπ and T , the br ’s in Eq. (16)
are in general independent functions, such that L(r) = ∑

s〈B(r)|
F̂ [B(s)]〉bs [one can show that this solution of bs gives a unique
solution of η], or equivalently

(18)δ0,rL
(0) =

∑
s

〈
B(r)

∣∣F̂ [
B(s)

]〉
bs.

This will allow us to solve for the bs and obtain the shear vis-
cosity

(19)η = b0L
(0).

In the next section, we will show that this expansion con-
verges well, such that one does not need to keep many terms on
the right-hand side of Eq. (18). If only the s = 0 term was kept,
then

(20)η  (L(0))2

〈B(0)|F̂ [B(0)]〉 .

The calculation of the entropy density s is more straightfor-
ward since s, unlike η, does not diverge in a free theory. In χPT,
the interaction contributions are all higher order in our LO cal-
culation. Thus we just compute the s for a free pion gas:

(21)s = −gπβ2 ∂

∂β

logZ

β
,

where the partition function Z for free pions is

(22)
logZ

β
= − 1

β

∫
d3p

(2π)3
log

{
1 − e−βE(p)

}
,

up to temperature independent terms.
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3. Numerical results

In this section we present the results for η and η/s of QCD
up to T = 120 MeV at zero baryon number density. In Fig. 1
the LO χPT result of η using the linearized Boltzmann equa-
tion is shown. The lines with circles, squares and triangles
correspond to keeping the first one, two and three polynomi-
als on the right-hand side of Eq. (18), respectively. We have
used z(p) = |p| to construct the polynomials. The figure shows
the expansion converges rapidly. As a test of the calculation, we
also reproduce the shear viscosity result of Ref. [23] for φ4 the-
ory by setting the scattering amplitude T = λ to be a constant.
In φ4 theory, η is monotonically increasing in T . If T � mφ ,
η ∝ T 3/λ2 with T 3 given by dimensional analysis and λ−2 by
the scaling of coupling shown in Eqs. (12) and (13). In χPT,
however, η is not monotonic in T . At T � mπ , the scattering
amplitude is close to a constant, thus χPT behaves like a φ4

theory. But at T � mπ , T ∝ T 2/f 2
π and η ∝ f 4

π /T . At what
temperature the transition from η ∝ T 3 to η ∝ 1/T takes place
depends on the detail of dynamics. In χPT, this temperature is
around 20 MeV.

The radius of convergence in momentum for χPT is typi-
cally 4πfπ ∼ 1 GeV. To translate this radius of convergence
into temperature, we compute the averaged center of mass mo-

mentum 〈|p|〉 =
√

〈B|p2|F̂ [B]〉/〈B|F̂ [B]〉. We found that for
T = 120 and 140 MeV, 〈|p|〉  460 and 530 MeV < 4πfπ .
However, χPT is expected to break down at the chiral restora-
tion temperature (∼170 MeV). Thus our LO χPT result can
only be trusted up to T ∼ 120 MeV. At the next-to-leading
order (NLO), it is known that the isoscalar ππ scattering
length will be increased by ∼40% [22]. This will increase the
cross section by ∼100% and reduce η by ∼50% near thresh-
old. This is an unusually large NLO correction since a typical
NLO correction at threshold is �20%. The large chiral cor-
rections do not persist at the higher order. At the next-to-next-
to-leading order (NNLO), the correction is ∼10% [22]. Thus,
to compute η to 10% accuracy, an NLO χPT calculation is
needed.

Fig. 1. (Color online.) Shear viscosity as a function of temperature in LO χPT.
1st, 2nd and 3rd are the results of keeping the first one, two and three polyno-
mials on the right-hand side of Eq. (18), respectively.
The LO χPT result for η/s is shown in Fig. 2 (line with rec-
tangles). The error is estimated to be ∼50% up to 120 MeV. η/s

is monotonically decreasing and reaches 0.6 at T = 120 MeV.
This is similar to the behavior in the mπ = 0 case (shown
as the line with rectangles) where η/s ∝ f 4

π /T 4 with s ∝ T 3

from dimensional analysis and fπ = 87 MeV in the chiral
limit [21,22].

For comparison, we also show the result using phenomeno-
logical ππ phase shifts [29] for η but free pions for s. (Our
result for η is in good agreement with that of [26] for T be-
tween 60 and 120 MeV. For an earlier calculation using the
Chapman–Enskog approximation, see Ref. [30].) This amounts
to take into account part of the NLO ππ scattering effects
but ignore its temperature dependence and the interaction in s.
Since not all the NLO effects are accounted for, this η/s is not
necessarily more accurate than the one using LO χPT. The
comparison, however, gives us some feeling of the size of er-
ror for the LO result we present here. Thus, an error of ∼100%
at T = 120 MeV for the LO result might be more realistic.

Naive extrapolations of the three η/s curves show that the
1/4π = 0.08 minimum bound conjectured from string theory
might never be reached as in phase shift result (the first sce-
nario), or more interestingly, be reached at T ∼ 200 MeV, as
in the LO χPT result (the second scenario). In both scenarios,
we see no sign of violation of the universal minimum bound
for η/s below Tc. But to really make sure the bound is valid
from 120 MeV to Tc, a lattice computation as was performed to
gluon plasma above Tc [10] is needed. In the second scenario,
assuming the bound is valid for QCD, then either a phase tran-
sition or cross over should occur before the minimum bound is
reached at T ∼ 200 MeV. Also, in this scenario, it seems nat-
ural for η/s to stay close to the minimum bound around Tc as
was recently found in heavy ion collisions.

In the second scenario, one might argue that the existence
of phase transition is already known, otherwise we will not
have spontaneous symmetry breaking and the corresponding
Nambu–Goldstone boson theory at low temperature in the first

Fig. 2. (Color online.) Shear viscosity to entropy density ratios as functions
of temperature. Line with circles (rectangles) is the LO χPT result with
mπ = 139(0) MeV and fπ = 93(87) MeV. Line with triangles is the result
using ππ phase shifts (PS). Dashed line is the conjectured minimum bound
1/4π  0.08.
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place. Indeed, it is true in the case of QCD. However, if the η/s

bound is really set by nature, then a phase transition is in-
evitable in the vicinity of the temperature where the bound is
reached. For a spontaneous symmetry breaking theory, the gen-
eral feature of η/s we see here seems generic. At very high T ,
collective motion is weak, thus η/s gets smaller at lower T .
At very low T in the symmetry breaking phase, the Nambu–
Goldstone bosons are weakly interaction at low temperature,
thus η/s gets smaller at higher T . A phase transition should
occur before the extrapolated η/s curve coming from high T

reaches the bound at T1. Similarly, a phase transition should
occur before the extrapolated η/s curve coming from low T

reaches the bound at T2. Thus the range of phase transition is
T1 � Tc � T2. However, it is also possible that the first scenario
takes place and η/s bounces back to higher values without a
phase transition. In this case, it is less clear what makes η/s

non-monotonic and it certainly deserves further study.
It is interesting to note that the degeneracy factor gπ drops

out of η while the entropy s is proportional to gπ as in Eqs. (16)
and (21), respectively. This suggests the η/s bound might be vi-
olated if a system has a large particle degeneracy factor.4 For
QCD, large gπ can be obtained by having a large number of
quark flavors Nf with gπ ∼ N2

f . However, the existence of con-
finement demands that the number of colors Nc should be of
order Nf to have a negative QCD beta function. After using
fπ ∝ √

Nc, the combined Nc and Nf scaling of η/s is

(23)
η

s
∝ f 4

π

gπT 4
∝ N2

c

N2
f

,

which is of order one. Thus QCD with large Nc and Nf can still
be consistent with the η/s bound below Tc .

4. Conclusion

We have explored whether the conjectured η/s minimum
bound will hold up below the QCD deconfinement temperature.
Using chiral perturbation theory and the linearized Boltzmann
equation we have computed the QCD η/s ratio at zero baryon
number density and for T � 120 MeV. It is found that η/s is
monotonic decreasing in T and it reaches 0.6 with estimated
50% uncertainty at T = 120 MeV. Naive extrapolations have
shown that η/s met the 1/4π minimum bound conjectured from
string theory at T ∼ 200 MeV as in the LO χPT case, or η/s

stayed above the bound as in the phenomenological phase shift
case. In the former case, in order for the η/s lower bound to
remain valid at higher temperature, a phase transition or cross
over should occur at T � 200 MeV before the bound is reached.
We argued that this might be a general feature for spontaneous
symmetry breaking theories that the extrapolation of the low
(high) temperature η/s curve sets an upper (lower) bound on Tc .
Our result also suggests that it is natural for η/s to stay close to
the lower bound around the phase transition temperature as was
recently found in heavy ion collisions.

4 We thank Thomas Cohen for pointing this out to us. This possibility was
also mentioned in Ref. [1].
As this Letter was being finished, Ref. [31] appeared. In that
Letter, some of the relations between Tc and the η/s bound are
also discussed.
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