1657-Pos Board B567
Time-Resolved Observation of Neutrophile Migration Through Three-Dimensional Matrices
Stefan Münster, Louise M. Jawerth, Amy C. Rowat, David A. Weitz, Ben Fabry.
To reach a site of inflammation, neutrophiles exit blood vessels and migrate through the extracellular matrix (ECM). For this process, the dense protein meshwork of the ECM presents a major sterical barrier that a migrating cell has to negotiate. Here, we demonstrate that time-resolved, fluorescent confocal microscopy can be utilized to visualize the migration of activated neutrophiles through in vitro reconstituted ECM matrices along with the 3-dimensional structure of the matrix itself. We seed DMSO differentiated HL-60 cells on top of collagen type I or fibrin matrices of varying concentrations and activate them with 100nM fMLP. We collect time-series of 3D confocal image stacks of the cell body (stained with CMFDA), the nucleus (labeled with DRAQ5) and the surrounding matrices (labeled with TAMRA-SE). We determine the exact location of individual pores, their local size and the diameter of the connections of neighboring pores in the ECM matrix. By following the paths of migrating cells, we can then evaluate for each matrix concentration which pore size cells predominantly populate and correlate cell speed with pore size. Furthermore, using values reported for the the micromechanics of the matrices along with the local deformations of the ECM fibers, we can estimate the forces exerted by the cells during their migration.

1658-Pos Board B568
The Origins of Strain Stiffening in Stiff Biopolymer Networks
Louise Jawerth, Stefan Muenster, David Weitz.
The extracellular matrix proteins fibrin and collagen form biopolymer networks which are major constituents of tissues, tendons and blood clots. Their mechanical properties are important for proper function in the body. Previous work using atomic force microscopy (AFM) has characterized the mechanical properties of individual collagen and fibrin fibers, but there is currently no model which can predict bulk material properties from its constituent properties. Here, we study fibrin and collagen networks undergoing shear on a confocal microscope and compare this to bulk rheological measurements. We track individual fiber branchpoints as function of strain. We characterize the non-affinity of the motion and show that the low strain, linear regime corresponds to highly non-affine motion while the high strain, linear regime corresponds to affine motion. We also characterize individual fiber strain as a function of overall system strain and show that linear elastic beams are sufficient to describe the overall strain stiffening response measured in rheology.

1659-Pos Board B569
Actin Dynamics and Membrane Topography During T Lymphocyte Spreading
King Lam Hui, Brian Grooman, Chen Lu Wang, Arpita Upadhyaya.
Spreading of cells over substrates involves large scale physical rearrangements of the actin cytoskeleton and cell membrane and is of widespread physiological significance. When a T lymphocyte encounters an antigen presenting cell (APC) which presents antigen that the T cell recognizes, it spreads onto the surface of the target cell. This spreading results in signal events which are initiated within a minute of contact, the rapid increase in contact area growth in time which pore size cells predominantly populate and correlate cell speed with pore size. This spreading results in signal events which are initiated within a minute of contact, the rapid increase in contact area growth in time which pore size cells predominantly populate and correlate cell speed with pore size. This spreading results in signal events which are initiated within a minute of contact, the rapid increase in contact area growth in time which pore size cells predominantly populate and correlate cell speed with pore size. This spreading results in signal events which are initiated within a minute of contact, the rapid increase in contact area growth in time which pore size cells predominantly populate and correlate cell speed with pore size.

1660-Pos Board B570
Spreading Dynamics and Oscillatory Membrane Behavior of B Lymphocytes
Christina Ketchum, Chaohong Liu, Wenxia Song, Arpita Upadhyaya.
Formation of cellular junctions involves cytoskeleton driven membrane deformations that lead to the spreading of one cell over the surface of another. Mammalian B lymphocytes present B cell receptors, which upon contact with the specific antigen, trigger an activated spreading response on an antigen presenting cell or an antigen coated surface. As signaling events are initiated within a minute of contact, the rapid increase in contact area and accumulation of receptors during early spreading are critical for the immune response. The mechanisms that determine the kinetics of B cell spreading and receptor aggregation are not well understood. We have studied the spreading dynamics of mouse A20 B cells on antibody coated substrates as a model for B cell activated spreading. The adhesion area of the cell on the substrate was imaged using interference reflection microscopy. Concurrently, total internal reflection florescence was used to image the GFP-labeled actin cytoskeletal dynamics during the spreading test. To test the spreading behavior and study the effects of the physical environment we also initiated B cell spreading on fibronectin coated surfaces, antibody coated lipid bilayers, and gels of varying stiffness. A significant number of spreading cells were observed to exhibit weakly adhered, large amplitude membrane protrusions and retractions which were dependent on myosin II activity. A variety of inhibition experiments were further performed in order to elucidate the role of microtubules and signaling downstream of BCR ligation in this phenomenon. This dynamic membrane behavior may be a general mechanism for the B cells to sense the surrounding environment.

1661-Pos Board B571
Cell Motility on Varying Substrate Stiffness
Joshua Hoffman.
Endothelial cell motility has been widely studied, but most research observes single cell motion or collective cell migration on a glass substrate. Although previous findings are informative, there are few studies that observe collective cell migration on soft, physiological substrates. Here, we studied the effects of substrate stiffness on cell migration within a monolayer. To obtain substrates with different mechanical properties, polyacrylamide gels of varying stiffness were made. These gels were coated with the extracellular matrix protein fibronectin, and the surface was plated with a high density of human umbilical vein endothelial cells (HUVEC) or bovine aortic endothelial cells (BAEC). After the cells formed a complete monolayer, they were stained with Hoechst nuclear stain to visualize individual cell movement within the monolayer. We observed that the collective cell movement is slower as the substrate stiffness increases. Adhesion was noticed an interesting swirling motion within the monolayer, the dynamics of which were substrate-dependent. These results suggest that collective cell migration during tissue morphogenesis depends on the mechanical properties of the cellular environment, which often vary in diseased conditions.

1662-Pos Board B572
Swimming Motility of Monotrichous Pseudomonas Aeruginosa
Chen Qian, Chui Ching Wong, Sanjay Swarup, Keng-Hwee Chiam.
Flagella provide bacteria with the ability to move in the aquatic environment. For peritrichous species such as E. coli that possess flagella over their entire surface, a “run and tumble” model has been established that accounts for their complex motion. However, this mechanism cannot be applied to bacteria with single-flagellum (monotrichous). Furthermore, single degree of freedom of movement from one flagellum likely will restrict the ability of bacteria to change directions. This contradicts our experimental observation that P. aeruginosa frequently exhibit circular trajectories. While there have been some work on the near-surface hydrodynamics of monotrichous bacteria leading to circular trajectories, we have also observed such circular trajectories in bacteria swimming far away from the surface. To explain this phenomenon, we propose and test several hypotheses theoretically on elastic substrates to investigate the possible roles of substrate rigidity on the spreading behavior, and the magnitude of traction forces exerted by the cell.