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Squamous cell carcinoma of the lung is remarkable for the extent to which the same chromosomal abnormal-
ities are detected in individual tumours. We have used next generation sequencing at low coverage to pro-
duce high resolution copy number karyograms of a series of 89 non-small cell lung tumours specifically of
the squamous cell subtype. Because this methodology is able to create karyograms from formalin-fixed
paraffin-embedded material, we were able to use archival stored samples for which survival data were avail-
able and correlate frequently occurring copy number changes with disease outcome. No single region of ge-
nomic change showed significant correlation with survival. However, adopting a whole-genome approach,
we devised an algorithm that relates to total genomic damage, specifically the relative ratios of copy number
states across the genome. This algorithm generated a novel index, which is an independent prognostic indi-
cator in early stage squamous cell carcinoma of the lung.

© 2011 Elsevier Inc. All rights reserved.
1. Introduction

Lung cancer genomes have been extensively studied benefitting
from the large number of patient samples and the relative ease with
which cell lines can be created [1,2]. Non-small cell lung cancer
(NSCLC), although comprising three distinct major histological sub-
types, adenocarcinoma (ADC), squamous cell carcinoma (SCC) and
large cell carcinoma (LCC) has historically been viewed as a single
group for the purposes of clinical management. Recently, this ap-
proach has been challenged and increasingly it is acknowledged
that different histotypes should be treated as different diseases [3].

SCC appears to be themost homogenous of the subtypes, specifically
with regard to commonality of genomic features. Non-squamous can-
cers are now frequently treated with pemetrexed; similarly, patients
whose tumours harbourmutation of the epidermal growth factor recep-
tor, most of which are adenocarcinomas, benefit from treatment with
tyrosine kinase inhibitors. To date, however, no genomic-based therapy
has been approved for SCC. Besides amplification of distal 3q, identified
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in almost all studies of SCC genomes, two recent large studies have
shown that amplification of 8p12 is a common feature of SCC. At this
time, as happens frequently in the history of identification of the driver
gene within an amplicon, two different genes have been proposed as
candidates; namely, BRF2 by Lockwood et al. [4] and FGFR1 by Weiss
et al. [5]. Ultimately both may prove to have a role.

Because genomic changes initiate and drive cancer development,
cancer genomics, besides suggesting potential drug targets has the po-
tential to identify markers of prognosis and predictors of response to
treatment. Most studies have adopted a candidate marker or candidate
pathway approach, deciding a priori the marker(s) to be investigated
[6]. Additionally, several gene signatures based on gene expression pro-
filing, have been proposed to predict survival or response to treatment
in NSCLC [7–9]. Two recent studies have reported the relationship be-
tween genomic changes and disease outcome in NSCLC. Kim et al.
have identified several chromosomal regions as negative independent
prognostic factors [10] and Huang et al. have discovered SNPs that
may be prognostic for overall survival [11]. Neither of these studies dif-
ferentiated between lung tumour histological subtypes in their analysis.

While the vast majority of copy number studies have examined
cancer genomes in a locus by locus manner, one study by Hicks et al.
[12] correlated survival in patientswith breast cancer not to individual
loci but to a pan-genomic index that measured the type and extent of
genomic damage.
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We recently showed how massively parallel sequencing at very
low genomic coverage can be used to study copy number from
small amounts of DNA extracted from formalin-fixed paraffin-
embedded (FFPE) blocks [13]. In the study reported here, we focused
exclusively on early stage lung SCC to investigate the relationship be-
tween survival and chromosomal regions of gain and loss. Our objec-
tive was to determine whether patients with good or bad outcomes
had distinctive genomic characteristics. In addition to conventional
correlation of significant loci with disease outcome, we adopted a
whole genome approach that negates the need to ‘call’ regions of
gain and loss, which can be difficult in tumours of unknown ploidy,
tumour cell content and clonal architecture. To this end, we devised
a new computational algorithm that relates to total genomic damage,
specifically the relative ratios of copy number levels across the ge-
nome. We also investigated whether this algorithm could generate a
score with potential prognostic value for patients with early stage
lung SCC.

2. Materials and methods

2.1. Patients and samples

Eighty-nine patients with early stage SCC of the lung who under-
went surgery at the Department of Thoracic Surgery in Leeds, UK, be-
tween 1994 and 2003 were included in this study. Eligibility criteria
were stage I–IIIA lung SCC, adequate surgery with curative intent, mi-
croscopically negative (R0) resection margins, survival ≥4 weeks
after surgery, no pre-operative radiotherapy or chemotherapy, no
other cancer in the previous 5 years. Clinical and outcome data for
these patients were retrieved from the original patient records and
the Yorkshire Cancer Registry. Patient demographic and clinical char-
acteristics are summarised in Table 1. Formalin-fixed paraffin-
embedded (FFPE) blocks of these 89 SCC were obtained in a
pseudo-anonymised form from the Pathology archive of Leeds Teach-
ing Hospitals. Staging work-up procedures for patients included chest
and abdomen computed tomography (CT) scan. A database with rel-
evant demographic, clinical and outcome information including
donor's age at diagnosis, gender, histological diagnosis, stage of
Table 1
Demographical and clinical characteristics of patients (n=89).

Parameter n %

Age at surgery, years
Median 68.2
Range 39.2–84.5

Gender
Male 63 70.8
Female 26 29.2

Stage
I 44 49.4
II 35 39.3
IIIA 10 11.2

Grade
G1 2 2.2
G2 46 51.7
G3 37 41.6
Gx 4 4.5

Type of surgery
Lobectomy/bilobectomy 65 73.0
Pneumonectomy 24 27.0

Post-operative radiotherapy
Yes 27 30.3
No 62 69.7

Potential follow-up time (months)
Median 103.2
Range 50.0–170.1

Survival (months)
Median 28.7
Range 1.1–152.2
disease, type of surgical procedure, peri-operative chemotherapy
and/or radiotherapy, was available. Ethics approval was obtained
from the Leeds (East) Ethics Committee and from the Leeds Teaching
Hospitals NHS Trust Research and Development Department. A fur-
ther 29 samples were collected from eligible patients but did not
yield DNA of sufficient quality to prepare DNA sequencing libraries.

Tumour size and nodal status were obtained from the original pa-
thology reports; nodal stations were classified according to Naruke's
map [14]. The tumours were staged according to the International
Union Against Cancers tumour-node-metastasis (TNM) classification
[15]. Histological subtype and grade were defined according to the
World Health Organisation classification [16].

2.2. DNA preparation

Tumour genomic DNA was prepared from macrodissected FFPE
tissue using a commercially available kit. Briefly, 4 μm-thick sections
were cut from each FFPE tumour tissue block and stained with hae-
matoxylin and eosin (H&E); the most representative tumour areas
in each slide were marked using a fine-tipped permanent marker.
An independent pathologist, blind to the patient identity and diagno-
sis, reviewed all the marked H&E slides in order to (i) confirm the di-
agnosis and histology reported in the original pathology report; (ii)
evaluate the percentage of tumour cells in the marked area, corre-
sponding to the macrodissected tissue used for DNA extraction. All
histological diagnoses were confirmed, the average tumour cell con-
tent in macrodissected tissue was 74%. Seven further consecutive
10 μm-thick sections were cut from each block, heated on a hot
plate at 65 °C for 3 min, and then rehydrated by immersion in xylene
for 15 min, 100% ethanol for 3 min, 90% ethanol for 3 min, 70% etha-
nol for 3 min and ddH2O. Sections were immediately macrodissected
using sterile disposable scalpels to harvest the tumour tissue; the cor-
responding H&E stained, marked slide was used as a guide. All the
macrodissected tissue from each case was placed in a separate sterile
centrifuge tube containing 180 μl of Buffer ATL (Qiagen Hilden, Ger-
many) and labelled with the unique patient study ID. DNA extraction
was performed using the QIAamp DNAMini Kit according to the man-
ufacturer instructions (Qiagen).

The quality and quantity of genomic DNA was determined by UV
spectroscopy using the ND 8000 Nanodrop spectrophotometer
(NanoDrop Technologies, Thermo Fisher Scientific, Wilmington, DE)
and the Quant-iT dsDNA BR Assay Kit (Invitrogen, Life Technologies
Corporation, Carlsbad, CA).

2.3. Next-generation sequencing for copy number analysis

DNA libraries were prepared and sequenced using methods previ-
ously described [13]. Libraries were prepared for sequencing with a
unique 6 bp adapter ligated to enable multiplexing. Twenty samples
were pooled per lane on an Illumina GAII sequencer for 76 cycles of
single end sequencing resulting in 70 bp of genomic sequence and
6 bp of adapter. Files were split according to adapter sequence and
the remaining 70 bp aligned to the human genome (USCS hg19)
using the Burrows–Wheeler Alignment tool (BWA) [17]. Only reads
with the highest BWA mapping score of 37 were used.

Copy number was calculated by splitting the genome into win-
dows averaging 300 tumour reads per window. A normal control
sample was constructed from a pool of 20 normal British individuals
downloaded from the 1000 genomes project [18]. The ratio for num-
ber of tumour and normal reads in each window was calculated, once
read numbers had been adjusted for local GC content; breakpoints
were called using the Circular Binary Segmentation algorithm avail-
able in the Bioconductor package DNAcopy [19]. Initially the read
numbers were normalised so that the median number of reads per
window was considered the normal.
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Association of tumour copy number changes in specified genomic
regions with tumour grade, stage and patient outcome was examined
in two ways. First, gains and losses were called as those passing a log2
ratio threshold of ±0.25 and regions with a high proportion of gain
and loss were visually inspected. A subsequent, statistical analysis
was then undertaken using the Bioconductor package KC-SMARTR
[20,21] which can detect significantly altered regions and compare
two groups of samples.

To quantify and compare global patterns of copy number change
we developed three novel mathematical measures, namely G-stat,
H-stat and the combined GH index, as follows. First, the copy number
data were smoothed using the smoothseg package [22]; a density plot
was produced from the smoothed output and local peaks identified.
The G-stat and H-stat were then calculated from the relative heights
and positions of the peaks. Specifically, the ‘G-stat’ was calculated as
being the proportion of the smoothed genome that was at a lower
copy number state than the biggest peak. The ‘H-stat’ was calculated
as the relative heights of the two biggest peaks, the second biggest di-
vided by the biggest, as follows:

We divided both the test and normal genome in N non-
overlapping windows of equal size. For each window i=(1, …, N)
we calculated the ratio

ri ¼
ti
ci

where ti and ci are, respectively, the number of reads from test and
control mapping to the window i. Using functions from the package
CNAnorm, [22] we smoothed the signal and obtained N smoothed
values si. Next we calculated the density function of s

d ¼ densityðsÞ:

We labelled the local maxima (peaks) of the density function d(s)
with M pairs of the kind

q; pð Þ ¼ si; d sið Þð Þ:

Such peaks were defined by the condition

d sið Þ > d si−1ð Þ∧d sið Þ > d siþ1
� �

:

We sorted such pairs from the maximum peak, corresponding to
s=q1, to the lowest one with s=qM:

pk ¼ d qkð Þ > pkþ1 ¼ d qkþ1
� �

;∀k∈ 1;…;M−1f g:

Finally, we calculated the combined GH index=G×(1−H) where

G ¼ Si Sibq1j g
Sif g

�

where #A is the number of elements of the set A, and

H ¼ P2

P1
:

GH value can be calculated from low coverage whole genome
sequence data by downloading the CNAnorm package from and
http://www.precancer.leeds.ac.uk/cnanorm or Bioconductor run-
ning it using code available at http://www.precancer.leeds.ac.uk/
gh-index. This package is designed for sequence data but could be
adapted for use with aCGH data. Alternatively, other packages
that produce a density plot of smoothed data [23] could be
adapted.
Additionally, we calculated the F-stat according to the method de-
scribed by Hicks [12], which was developed to measure total genomic
damage in breast cancer.

2.4. Survival analysis

Survival data were available for all 89 patients. Median potential
follow-up was 103 months (range, 50 to 170 months).

Univariate survival analyses were performed by Kaplan–Meier es-
timates [24], and survival curves were compared using a log-rank test
[25]. Patients still alive at the time of the final analysis were censored
at the date of last contact. Overall survival was defined as the time in-
terval between the date of surgery and death from any cause. We con-
sidered p values of b0.05 to be statistically significant. To assess
whether the associations observed in the univariate analysis persisted
after simultaneous adjustment, we performed a multivariable analy-
sis using several models built according to standard methods [26].
We considered the following clinical-pathological variables: age at
time of surgery (b65 vs. ≥65 years), gender, pTNM stage, tumour
grading, surgical procedure (lobectomy vs. pneumonectomy), post-
operative radiotherapy (yes vs. no vs. unknown). Genomic variables
were G-stat, H-stat and the combined GH score. The software used
for these analyses was Statistical Analysis Software (SAS, Cary, NC).

2.5. Unsupervised hierarchical clustering analysis

Unsupervised hierarchical clusteringwas performed by first produc-
ing a list of genomic regions with no breakpoints in any of the samples
and then measuring the copy number ratios for all samples for all of
these regions. These ratioswere then analysed using the ‘heatmap’ func-
tion in R with row dendograms suppressed but otherwise default set-
tings to produce heatmaps and dendograms to look for co-occurring
patterns of gain and loss and clusters of similar samples.

3. Results

3.1. Sequence data and karyograms

DNA sequence was obtained from 89 early stage lung SCC cases.
Sequences have been stored at the European Nucleotide Archive ac-
cession number ERP000834. Mean read number was 1,030,660 per
sample, ranging from 200,000 to 3,000,000. Using 300 reads per win-
dow for copy number analysis, this equates to a resolution of approx-
imately 900 kb. The number of breakpoints per sample ranged from 4
to 205.

Karyograms showing regions of gain and loss along the whole ge-
nome were generated for each case. Karyograms exhibited several dif-
ferent types of copy number patterns, in terms of both the proportion
of the genomes involved and the complexity of the damage. This ranged
from whole chromosome gain and loss to very small but highly ampli-
fied regions. The analysis of copy number aberrations across the entire
data set revealed several features previously seen in lung SCC [27].

3.2. Relationship between frequently gained/lost regions and patient
outcome

Two complementary methods were used to look for association
between genomic regions of gain or loss and patient outcome, namely
survival. Firstly, Kaplan–Meier analyses [24] were made of survival in
cases incorporating all regions that were identified using the KC-
SMARTR algorithm [20,21] as showing gain or loss in a significant
number of samples (Table 2). No individual region was significantly
associated with survival, although gains in 20p did show a non-
significant trend towards better outcome (median survival
42 months vs 22 months; HR 0.6292, 95% CI 0.3872–1.022, uncor-
rected p-value=0.0614). Secondly, the patients were split into two

http://dx.doi.org/10.1093/bioinformatics/btr593
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http://www.precancer.leeds.ac.uk/gh-index


Table 2
Association of commonly gained and lost regions with survival.

Chromosome
arm

Position
Mb

Copy number change
gain or loss

n (%) Median survival (months) p

With feature Without feature

3p 0–89 Loss 51 (57) 28 25 0.224
3q 93.6–197.7 Gain 84 (94) 27 13 0.180
4p 0–47 Loss 24 (27) 39 24 0.586
5p 0–46 Gain 60 (67) 27 24 0.617
5q 50.3–180.6 Loss 27 (30) 24 28 0.601
7p 0–49 Gain 50 (56) 23 28 0.677
7q 61.7–117 Gain 47 (53) 32 25 0.605
8p 0–32.8 Loss 30 (34) 30 25 0.291
8q 46.8–147.1 Gain 50 (56) 24 35 0.542
9p 0–44.1 Loss 27 (30) 23 28 0.948
12p 0–34.6 Gain 43 (48) 23 28 0.878
13q 19.1–114.9 Loss 32 (36) 27 25 0.506
17q 21.1–78.9 Gain 39 (44) 25 26 0.758
19q 27.9–28.9 Gain 53 (60) 32 19 0.221
20p 0–26 Gain 36 (40) 42 22 0.068
20q 29.4–39.1 Gain 39 (44) 26 25 0.944
22q 16.9–46.6 Gain 43 (48) 35 22 0.157
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or more groups by recognised clinical and pathological features (sur-
vival time, tumour stage, tumour grade, etc.) to look for gained/lost
regions associated with those features. Visual and statistical compar-
ison between patient groups showed no regions significantly associ-
ated with any clinical features. Indeed, irrespective of which clinical
parameter was used to subdivide the patients, the frequencies of
gains and losses across the genome appeared almost indistinguish-
able between subsets (results not shown). This was corroborated
using the KC-SMARTR algorithm, which showed that no regions
were significantly different for any comparison made.

An alternative approach used unsupervised clustering analysis to
produce heatmaps and dendograms. Again, this method did not sepa-
rate the patients into any distinguishable subgroups. By contrast, and
to indicate the efficacy of these analytical procedures, we compared
the lung SCC samples presented here to an outgroup of head and
neck SCC karyograms we had created for a separate study. Both the
locus by locus approach of KC-SMARTR and the clustering analysis
were able to separate the lung SCC samples from the head and neck
samples (Supplementary Fig. 1), showing that the methods used were
able to distinguish between different groups of tumours, but that this
set of lung SCC samples did not contain identifiable subgroups.

3.3. Development of an algorithm to define relative chromosomal gain
and loss

In view of our inability to identify copy number changes at indi-
vidual genomic loci associated with clinical outcome, we decided to
apply the approach of Hicks et al., and look for global patterns of
Fig. 1. How the G and H stats are calculated. For each genome, a density plot is drawn and
number less than the highest peak is measured. In this example it corresponds to the num
the heights of the two highest peaks (second over first) is calculated. For TMA-41 G=0.30
copy number variation [12]. This approach classified largely diploid
breast tumour genomes by patterns of damage named ‘simplex’
(few aberrations, mostly involving whole chromosome arms), ‘saw-
tooth’ (many aberrations spread throughout the genome) and ‘fire-
storm’ (like simplex, with local regions of complex damage), and
generated an algorithm for calculating an index of genomic damage,
named F-stat, which was associated with survival. The tumours
from our series did not easily fit into the Hicks method of classifica-
tion, mostly being in a continuous spectrum of genomic damage
somewhere between the simplex and sawtooth patterns and with al-
most none being definitely in one group or the other. The F-stat was,
however, calculated for each sample; there was no correlation with
survival or any other clinical parameter (results not shown).

While investigating the gains and losses of individual regions, as
well as the F-stat, it became apparent that the traditional approach
of regarding the median copy number ratio as ‘normal’ may not al-
ways be the most appropriate. This approach by definition assumes
that each has precisely the same amount of gain and loss. In addition,
for several of our samples, there was relatively little of the genome
near the median value; almost none of the genome could, therefore,
be considered ‘normal’. The alternative of looking for absolute copy
number was not feasible either, since tumour cell population hetero-
geneity, contamination with normal cells and extensive aneuploidy
meant that for many samples it was impossible to tell which regions
were diploid or ‘normal’ and to accurately quantify any gains and
losses. We decided instead to consider the total spread of copy num-
ber states throughout the entire population of cells in each tumour.
Density plots were drawn for the copy number distributions of each
peaks are identified. To calculate the G-stat, the proportion of the genome with copy
ber of points in the red box as fraction of the total. To measure the H-stat, the ratio of
, H=0.35. GH=G(1−H)=0.195.
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sample, with the relative heights of each peak representing the pro-
portion of the genome at that copy number state (Fig. 1). The peak
nearest to the median was noted. For 55 of the 89 samples, the largest
peak was the one nearest to the median, so the traditional method of
treating the median as ‘normal’ would be a good approximation. For
the remaining 34 samples however, the highest peak was not the
one nearest the median, but was at a lower copy number state. We
postulated that for these samples, the highest peak should be consid-
ered the normal, and observed that these genomes were charac-
terised by considerable regions of gain, but very little loss.

We decided to improve on this simple classification because issues
such as tumour heterogeneity or a relatively minor extra aberration
might suddenly change which peak was nearest to the median and
reclassify the tumour. The factors affecting the classification were
the amount of genomic loss relative to each peak and the relative
height of the peaks. To better quantify and compare global patterns
of copy number change, we developed three novel mathematical
measures, namely G-stat, H-stat and the combined GH index. The G-
stat is a measure of genomic loss. It assumes that the highest peak
Fig. 2. Kaplan–Meier curves showing the association with survival of G-stat, H-stat and
combined GH-stat. (MS=median survival).
represents the normal and is a simple calculation of the proportion
of the genome which is less than this value; genomes with large
amounts of loss will have a high G-stat. The H-stat is a measure of ho-
mogeneity and complexity of genome damage; it is calculated as the
relative heights of the two highest peaks; a genome with one major
peak and a number of minor peaks will have a low H-stat, while
one with two or more peaks of equal height will have a high H-stat.
The G and H stats both influenced the previous classification of big-
gest and median peaks, but were completely independent of each
other (Pearson correlation of −0.047). The GH index was then calcu-
lated as G×(1−H). An example of the derivation of the GH index for
an individual SCC case is shown in Fig. 1. For all comparisons, the
samples were split into two groups according to whether they were
above or below the median value for the index being measured.

3.4. Survival analysis

Overall survival rates at 1, 3 and 5 years were 75%, 44%, and 35%,
respectively; median survival was 25.4 months (67 events observed).

In univariate analysis, a low G-stat did not significantly associate
with better survival (p=0.18, Fig. 2A) while a high H-stat showed a
trend towards better survival (p=0.09, Fig. 2B). Patients with a low
combined GH index had significantly better survival than those with
a higher value (p=0.003, Fig. 2C). Neither G-stat nor H-stat showed
a significant correlation with stage or grade, showing that they were
separate, independent measures. Among the other variables,
ageb65 years and lobectomy were associated with better prognosis
(p=0.04 and p=0.02). Univariate analysis results are summarised
in Table 3.

Multivariate analysis confirmed GH score as an independent prog-
nostic indicator (hazard ratio (HR)=0.56, 95% CI 0.315–0.980,
p=0.04). Ageb65 years (HR=0.18, 95% CI 0.07–0.47, p=0.0004)
and stage I (HR=0.29, 95% CI 0.11–0.76, p=0.01) were significantly
associated with better outcome. Multivariate analysis results are
shown in Table 4.

4. Discussion

In this study, we have looked at copy number changes in a cohort
of early stage, homogeneously treated, lung SCC. To provide an
Table 3
Univariate analysis.

Variable HR 95% CI p

Age (b65 vs. ≥65 years) 0.58 0.34–0.99 0.0438
Gender (male vs. female) 1.25 0.73–2.16 0.4192
Stage

Stage I vs Stage III 0.46 0.21–1.00 0.0937
Stage II vs. Stage III 0.68 0.31–1.50

Tumour grade (G1–G2 vs. G3–G4) 0.87 0.52–1.43 0.5753
Type of surgery (lobectomy vs. pneumonectomy) 0.54 0.32–0.91 0.0195
Post-op RT (yes vs. no) 0.97 0.57–1.66 0.9217
G-stat (b0.4 vs. ≥0.4) 0.72 0.44–1.17 0.1807
H-stat (b0.7 vs. ≥0.7) 1.53 0.93–2.51 0.0932
Combined GH-stat (b0.107 vs. ≥0.107) 0.47 0.29–0.78 0.0029

Table 4
Multivariate analysis.

Variable HR 95% CI p

GH score (b0.107) 0.56 0.32–0.98 0.0424
Age (b65) 0.18 0.07–0.47 0.0004
Stage

Stage II 0.43 0.21–1.00 0.0706
Stage I 0.29 0.11–0.76 0.0112

Type of surgery (lobectomy) 0.70 0.38–1.30 0.2597
Tumour grade (G1–G2) 0.61 0.34–1.11 0.1079

image of Fig.�2
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evaluation of overall genomic damage in individual tumours, we have
devised a novel computational index, the GH index, which is based on
whole-genome copy number analysis. In an exploratory analysis we
have shown the potential prognostic value of the GH index in lung
SCC. Specifically, in our series, patients with a low GH score survived
significantly longer (median survival 71 months vs. 22 months,
p=0.003); importantly, the GH score was confirmed as an indepen-
dent prognostic factor in multivariate analysis (p=0.042). To our
knowledge, this is the first report of a pan-genomic damage index
that correlates with survival in lung cancer.

Better stratification of patients with early stage NSCLC is required
to optimise treatment and thereby improve outcomes. To date, dis-
ease stage remains the best prognostic indicator; recent progress in
proteomics and genomics however holds the promise for novel mo-
lecular markers with prognostic value, complementary to and even
more powerful than disease stage.

Previous studies in NSCLC [4–11,28], have sought to link alter-
ations of particular genomic regions to clinical features such as histol-
ogy, tumour grade, disease stage, response to treatment, or outcome.
Despite some of these studies being apparently successful, major lim-
itations include small sample size, heterogeneity of the study popula-
tion and the lack of validated and universally accepted criteria for
calling loss and gain. Importantly, these limitations also make any
meta-analysis impossible. Indeed, it may be challenging to acquire
sufficient numbers of clinically similar samples to make significant
observations. We have sought to overcome this by identifying a
study population as clinically homogenous as possible, i.e. patients
with early stage lung SCC radically treated with surgery at a single
centre. Despite this, it is possible that the samples might actually rep-
resent more than one currently unrecognised subtype and that this is
the reason that in our series no single region of copy number change
was found to associate with any clinical feature, including survival.

Even so, it is possible that no single region is associated with any
individual clinical feature, no matter how many patients might be
evaluated. As such, looking at the pan-genomic patterns of alteration
offers an alternative approach that may be valuable for some tumour
types. A pan-genomic approach has recently identified patterns of
damage associated with survival in breast tumours [12]. The Hicks
et al. ‘F-stat’ did not, however, associate with survival in our series,
perhaps because the F-stat might be a tumour-type specific score.
Similarly, the GH score we have developedmight only be a prognostic
indicator in lung SCC.

There are several major, but often overlooked, problems with
more traditional approaches of copy number analysis in cancer re-
search. First, the definition of “normal” copy number level, and by im-
plication gain and loss, is not ideal. Conventionally, normal is defined
at, or nearby the median copy number. This is an acceptable way of
looking for germline alterations, where only a few portions of the ge-
nome deviate from an otherwise diploid normal genome, or looking
for somatic copy number changes in tumour types with limited
copy number variations. This definition of normality may not, howev-
er, be suitable when complex tumours are studied. Using the median
as normal assumes the genome as having exactly equal proportions of
gain and loss, even if that is not the case. The second problem relates
to inter- and intra-sample tumour heterogeneity, as not only the per-
centage of tumour cells varies between tumour samples, but also dif-
ferent tumour cell subclones might be present within the individual
tumour specimen. If a sample has 50% tumour content, then a gain
of one copy will only be half the amplitude of a similar gain in a
100% tumour sample. The result would be the same if the tumour is
heterogeneous and only half the cells exhibit a gain. These problems
make the interpretation of copy number changes in complex tumours
quite challenging. To draw a diagram showing frequency of gain and
loss across many samples requires a threshold to be decided. If this
threshold is too strict, then regions where only some of the cells are
altered may be missed. If the threshold is too lenient, then noise
from the data may be mis-called as gain or loss. It is also difficult to
distinguish between regions where some of the cells have alterations
and regions where every cell is altered. Similarly, a gain of two copies
in all cells in a tetraploid tumour will look identical to a gain of one
copy in all cells in a diploid tumour and a gain of three copies in
half the cells of a triploid tumour. We are not proposing a solution
to these issues here. There have been some bioinformatic attempts
to remedy these problems [23,29,30] and most of the recent advances
have been reviewed [31], but these techniques are not always used
when clinical datasets are presented, making meta-analysis of differ-
ent studies difficult.

This is an exploratory study on a small, but relatively homoge-
neous population. Exactly what the G and H values represent, and
how they correlate with survival, needs further study. G is a measure
of genomic loss, and more loss appears to indicate worse prognosis. It
is possible that genomic loss exposes more tumour suppressor genes
to haplo-insufficiency, as recently described [32]. Alternatively loss
might be a less disruptive force than gain, so the cells are more nor-
mal, so more capable of surviving in situ and less visible to diagnostic
screening. H is a measure of homogeneity and complexity of genomic
damage. Homogenous tumours appear to have better prognosis than
more complex heterogeneous ones. This could be because a heteroge-
neous tumour is one which has greater clonal variety and is thus
more able to withstand changes in environment caused by systemic
treatment or relocation to a distant metastatic site.

We believe that the pan-genomic way of thinking of copy number
changes we have adopted in this study with the development of the
GH score is potentially of great value, especially in tumour types
where looking at individual gains and losses has not to date been as-
sociated with any specific clinical subgroup. Not being restricted by
some arbitrary definition of what is ‘normal’, this approach allows
the freedom to consider issues other than simple gain and loss, and
address pan-genomic patterns of alteration. Our method of calculat-
ing a GH value (or other similar methods) may prove useful in
many different tumour types, and as such we present these algo-
rithms for validation in similar data sets. We are aware that genomic
regions of gain and loss can be important, so we would propose that
the two methods be used in a complementary fashion.

Supplementarymaterials related to this article can be found online at
doi:10.1016/j.ygeno.2011.10.006.
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