
 Procedia CIRP 44 (2016) 55 – 60

Available online at www.sciencedirect.com

2212-8271 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of the 6th CIRP Conference on Assembly Technologies and Systems (CATS)
doi: 10.1016/j.procir.2016.01.023

ScienceDirect

6th CIRP Conference on Assembly Technologies and Systems (CATS)

Optimum Overall Product Modularity

 Mohamed Kashkoush and Hoda ElMaraghy*

Intelligent Manufacturing Systems (IMS) Centre, University of Windsor, 401 unset Avenue, Windsor, ON, N9B 3P4 Canada

* Corresponding author. E-mail address: hae@uwindsor.ca

Abstract

Modularity in product architecture is beneficial to both product development and manufacturing. Several methods exist for clustering product
components into modules all of which, with few exceptions, do not consider the hierarchical structure of the product. Products architecture
consists of a number of hierarchical levels, which add a useful dimension to modularity analysis. Designing products architecture that
maximizes modularity over all levels of the product structure (i.e. overall modularity) is the main objective of this work. Interactions between
various product components are represented using a Design Structure Matrix (DSM). The product architecture is represented by product
structure tree in the form of a binary rooted tree. A novel Mathematical Programming Model is developed to construct the corresponding
product structure tree for a given product which ensures optimal modularity at all hierarchical levels, without prior knowledge of their number.
The proposed optimal modular product architecture design method is demonstrated using a real product case study. Optimal overall modularity
leads to better management of product changes and variety and more cost-effective product development and manufacturing.
© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the organizing committee of the 6th CIRP Conference on Assembly Technologies and Systems (CATS).

Keywords: Modularity; Product Architecture; Granularity; Design Structure Matrix; Integer Programming

1. Motivation

Constructing the product architecture is a critical design
activity that affects all subsequent product development steps
such as analysis, modeling and prototyping, manufacturing,
assembly and supply chain. A widely accepted definition of
product architecture is: “the organization of the functional
components of a product into physical units and the
interaction among them” [1]. Products with integral
architecture are constructed with a combination of the lowest
level (individual) components without intermediate sub-
assemblies; while products with modular architecture are built
of one or more levels of sub-assemblies [2]. A module in a
modular product refers to a structurally independent element
or a sub-assembly of a larger sub-assembly with clearly
defined interfaces [3, 4]. Modularity of product architecture is
not an absolute property; in fact, it is a relative property that
can be quantitatively assessed and analyzed.

Modular product architecture has become an important
product development topic in the last few decades [5]. It
allows manufacturers to cost-effectively handle and develop
complex products by decomposing them into simpler sub-

units or modules [6]. The benefits of modularity regarding
product functionality, product design, maintenance, services,
testing and verification, production, supply chain, and other
activities have been discussed by many researchers in various
fields [5, 7, 8]. A comprehensive discussion of benefits of
modularity is provided by Ulrich [1]. They include: (1)
efficient management of product changes and updates as
manufacturers can easily change some functions of
subsequent product generations by simply changing some
modules, (2) better product variety management as variety
could be simply created by having various combinations of
modules, and (3) enhanced product development process
since design tasks can be properly decoupled and carried out
concurrently.

2. Literature Review

Several methods exist for designing modular products [9]
and can be classified into two main groups [10]: function-
based and matrix-based methods. Function-based methods
[11-13] identify modules by mapping the functional
decomposition of a product to its physical architecture. These

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of the 6th CIRP Conference on Assembly Technologies and Systems (CATS)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81125804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

56 Mohamed Kashkoush and Hoda ElMaraghy / Procedia CIRP 44 (2016) 55 – 60

methods are criticized for not being able to adequately address
the interfaces between physical elements of the product [2].
Matrix-based methods [2, 14, 15], used in this research,
identify modules by reconfiguring the product Design
Structure Matrix (DSM) which represents the product
architecture [3].

Fig. 1. DSM developed for Wahl 4120-600 hand-held body massager
(http://massagers.wahl.com/)

The Design Structure Matrix (DSM), first introduced by
Steward [16], is the most common tool used to model
interaction between components of a given product [17] and
is, therefore, used by many researchers to model and study
product architecture [18]. Fig. 1 illustrates the DSM
constructed for a hand-held body massager made of seven
components in addition to the casing. Each row and column of
the matrix represents one of the massagers’ components. Cells
filled with 1 in the matrix refer to the existence of interaction
between the two components corresponding to that cell. The
type of interaction modeled in this example is on/off spatial
interaction (physical adjacency). Other types of interactions
(e.g. energy and information) and different interaction coding
schemes (e.g. quantified interaction) may also be used [19].
Product modules are identified by re-arranging the DSM into
clusters along the matrix diagonal to maximize interaction
within clusters and minimum interaction outside. Several
methods have been used in literature to identify products
modules by clustering the DSM based on different modularity
measures.

Existing methods for designing modular product
architecture provide a flat map for modules and their
interaction without considering their hierarchical levels of

sub-assemblies representing the structural arrangement of
components within each module. The only exception to that
finding is the work on granularity analysis of modular
products and manufacturing systems architectures by
AlGeddawy and ElMaraghy [20-22].

AlGeddawy and ElMaraghy [20] used cladistics analysis,
which is a hierarchical classification method commonly used
in Biology [23], in order to identify product modules based on
DSM architectural representation. Along with the identified
modules, the method further provides the hierarchical
structure of the product in a binary rooted tree format
(cladogram). The ultimate objective of that method is to find
the optimal hierarchical level of the product architecture
(granularity level) for product modularization. Although, the
cladistics method has provided better modularity results
compared to earlier research results in the subject; the main
focus of the study was to find the optimal granularity level
and not to optimize the product architectural tree. Finding the
product structure tree (number of tree levels and clusters of
components formed at each level) that leads to the optimal
total modularity over all the tree levels was not an objective
for the cladistics analysis-based method.

Inspired by the work AlGeddawy and ElMaraghy [20], this
paper addresses product modularity from a new perspective to
provide the product architecture, represented by the product
structure tree in the form of binary rooted tree, for maximum
overall modularity at all levels of the product structure. In this
research, every potential module of a given product is viewed
as if it was a product on its own the architecture of which
needs to be designed for optimal modularity. This allows all
modularity benefits discussed earlier to be propagated
throughout the entire product at all its hierarchical levels.

3. Proposed Modular Product Architecture Design
Methodology

Product architecture is modeled as shown in Fig. 2 using
binary rooted trees (i.e. product structure tree or product tree
for short). The tree in Fig. 2 represents the structure of a
product with eight components. The product has four
hierarchical levels and each level has its own modularity. For
instance, at level 1 the product has only two modules; module
1 {6, 8, 5, 7, 3, 4} and module 2 {2, 1}. Whilst, at level 2, the
product has three modules; module 1 {6, 8, 5, 7, 3}, module 2
{4} and module 3 {2, 1}. Modules # 1 and # 2 at level 2,
when combined, they form module # 1 of level 1.

Fig. 2. Binary rooted tree representation of product structure

Therefore, each level of the tree provides more details
related to components arrangements for modules at higher
levels of the tree. Hence, the tree represents the components

M
ot
or

Vi
br
at
in
g
He

ad
O
n/
O
ff
Sw

itc
h

Br
ac
ke
t

Le
ve
r

Po
w
er

Co
rd

W
iri
ng

1 2 3 4 5 6 7
Motor 1 1 0 0 1 0 0 1
Vibrating Head 2 0 1 0 0 1 0 0
On/Off Switch 3 0 0 1 0 0 1 1
Bracket 4 1 0 0 1 1 0 0
Lever 5 0 1 0 1 1 0 0
Power Cord 6 0 0 1 0 0 1 0
Wiring 7 1 0 1 0 0 0 1

full product (tree root)

Level # 1
Level # 2

Level # 3 sub assembly (node)
Level # 4

component (leaf)

4 2 16 8 5 7 3

(1) Motor

(6) Power cord

(2) Vibrating Head
(4) Bracket

(3) On/Off switch

(5) Lever

(7) Wiring

57 Mohamed Kashkoush and Hoda ElMaraghy / Procedia CIRP 44 (2016) 55 – 60

arrangement (clusters) within each module starting with the
level of individual components to the level at which the
product is only one big module which includes all the
components (i.e. full product). Fig. 2 is schematically
represented in Fig. 3 to further illustrate the notion of having
multiple levels of product architecture modularity.

The modularity is modeled and assessed at any level of the
tree using the corresponding re-ordered DSM. The Modularity
Index (MI) introduced by AlGeddawy and ElMaraghy [20],
which is also equivalent to CE used by Pandremenos and
Chryssolouris [24], is utilized in this research. The MI counts
the total number of intra-relationships between different
modules as well as missed inter-relationships between
components of the same module. MI is given by Eq. 1, where
I is the number of ‘1’ DSM cells outside generated clusters,
and Z is the number of ‘0’ DSM cells inside those clusters.
Improved clustering corresponds to smaller MI values.

MI = I + Z (1)

Fig. 3. Schematic representation of the product tree shown in Fig. 2

4. Non-Linearly Constrained Mathematical Programming
Model

A non-linear integer programming model with non-linear
objective function and constraints is first formulated then the
non-linear objective function is linearized. The input to the
model is the DSM of a given product. Only Binary (0-1)
DSMs are considered. The output is an encoded matrix
representing the optimal product structure tree (i.e. the tree
corresponding to optimal overall modularity).

4.1. Tree-to-matrix encoding scheme

The proposed model handles product trees in the form of
encoded matrices. A binary rooted tree representing the
structure of n components has n-1 tree nodes. Hence, for a
tree of n-1 nodes a matrix of n-1 rows and n columns is used
to represent it (i.e. a matrix of size (n-1) x n). The matrix
columns represent component numbers and its rows represent
node numbers. Binary (0-1) values are used to indicate the
presence or absence of a given component in any given node.

For instance, node number 2 in the tree shown in Fig. 4 has
four components 1, 2, 3, and 4, thus, row number 2 in the
corresponding encoded matrix will take the value 1 in cells
number 1, 2, 3, and 4, while cell number 5 will have a 0 value
due to the absence of component 5 in node 2. Therefore, any
encoded matrix will always have one of its rows full of ones
representing the tree root node, to which all components
belong. Nodes numbering is arbitrary and accordingly many

matrix representations are possible for the same tree.
Therefore, if the rows of the matrix are altered to any other
order, they still represent the same tree. This tree-to-matrix
encoding scheme was developed by the authors to encode
product assembly trees [25].

Fig. 4. Proposed tree-to-matrix encoding scheme (modified from [25])

4.2. Non-linear integer programming model formulation

The model input parameters are as follows:

n Total number of components

m Number of nodes of the hierarchical clustering
tree (n-1)

DSMij A binary (0-1) element in the ith row and jth

column of the DSM matrix

The decision variables are:

cui A binary (0-1) element in the uth row and jth column
of the encoded matrix representing the product tree

xuv A binary (0-1) element valued at 1 if node v is
directly branched from node u

yui A binary (0-1) element valued at 1 if component i is
directly branched from node u

fuv A binary (0-1) element valued at 1 if node v forms a
module at level u of the product tree

hui A binary (0-1) element valued at 1 if the individual
component i forms a module at level u of the product
tree

qu A binary (0-1) element valued at 1 if the uth assumed
tree level is to actually exist

lu The level of node u; given by no. of components that
belong to node u

The proposed model formulation consists of seven sets
(arrays or vectors) of variables as shown in the list of decision
variables. The first three sets of variables (c, x, and y arrays)
are used to define the product tree. The c array represents the
encoded matrix for any given product tree (illustrated in Fig.
4), while the x and y arrays are both used to describe direct
relationships between the nodes and leaves of the tree. The x
and y arrays are the actual variables used in the model to
control the structural feasibility of generated product trees.
The c array, which is the ultimate outcome of the model, is
the result of combining the two arrays which will be shown
later in the description of the constraints.

component numbers

tree node number

(1, 3, 2, 4, 5) 1 2 3 4 5

(1, 3, 2, 4) 1 1 1 1 1
1 1 1 1 0

(1, 3) (2, 4) 1 0 1 0 0
0 1 0 1 0

1 3 2 4 5

12

3

4

2

3

4

1

58 Mohamed Kashkoush and Hoda ElMaraghy / Procedia CIRP 44 (2016) 55 – 60

The f and h arrays are the main sets of variables used to
define nodes and components that form modules at each
product tree level. The number of tree levels is not known
beforehand, so it is initially assumed that the product tree is
structured in a way in which a different level is to exist at
each node of the tree (excluding the root node). The q vector
identifies which of those assumed levels should exist
according to the actual tree structure. The l vector is an
auxiliary set of variables that define the tree level where each
node lies, to be used by the model to check nodes clustering
feasibility. Using the listed parameters and decision variables,
a non-linear integer programming model is formulated with
12 sets of constraints as follows:

 OMI =

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

The objective function (Eq. 2) seeks the minimum value of
the summation of Modularity Index (MI) over all levels of the
product structure tree; i.e. the Overall Modularity Index
(OMI). The DSMs used in this research are assumed to be

symmetric; hence, the used expression calculates the OMI for
one side of the DSM (above or under the matrix diagonal) and
multiplies it by 2. However, the objective function can be
easily adjusted to consider non-symmetric DSM instances.

Four sets of constraints are used to ensure the generation of
valid product structure trees representing feasible solutions.
Accordingly, the first set of constraints (Eq. 3) ensures that
each node is the combination of exactly two branches; either
two other nodes, two components or one other node and one
component. The second set of constraints (Eq. 4) states that
each component must branch out directly from one single
node; no component could be branched out of two or more
different nodes at the same time. Similarly, the third set of
constraints (Eq. 5) ensures that every node, except the root
node, is directly branched out from another node; no node
could be branched out from two or more different nodes at the
same time. The fourth set of constraints (Eq. 6) defines how
the c array is extracted from the x and y arrays used in the first
three sets of the constraints to ensure the structural feasibility
of generated trees.

The sets of constraints given by Eq.’s 7 to 14 are used to
define the clusters formed at each level of the product tree to
be utilized by the objective function to calculate the MI at all
levels of the tree. The set of constraints given by Eq. 7
determines the value of the variable l which defines the level
of a given node represented by number of components it
includes. The set of constraints given by Eq. 8 state that rows
in the c array that belong to higher tree levels should appear
first, in terms of their order in the array. This is to simplify
comparison of the various levels of tree nodes.

The number of tree levels is not known a priori as
mentioned earlier, however, it cannot exceed the number of
the tree nodes (excluding the root node). Thus, it is assumed
that a maximum of (m-1) tree levels could exist. The set of
constraints given by Eq. 9 identifies which of those assumed
levels will ultimately exist by comparing the difference in
levels between every pair of consecutive nodes, since nodes
are already ordered according to set of constraints given by
Eq. 8.

The set of constraints given by Eq. 10 ensures that for
every tree level an assignment of tree nodes into modules will
take place. The set of constraints given by Equation 11 ensure
that the modularization done at any tree level is considering
all the components, i.e. to avoid partial or incomplete
clustering of components at each tree level. The set of
constraints given by Eq. 12 make sure that formed levels as
well as the modules identified at those levels are different..
This is achieved by forcing one of the nodes at each level to
be a module to its corresponding level only.

Nodes to be selected as modules at a given tree level
cannot be sub-modules of other modules at that level. For
instance, the node containing the two components 6 and 8 in
the tree shown in Fig. 2 cannot be considered a module at
level 3 of that tree. The same condition applies to individual
components. The set of constraints given by Eq. 13 prevent
such an invalid clustering from occurring by comparing levels
of nodes forming clusters at each tree level; while the set of
constraints given by Eq. 14 serve the same purpose for
individual components.

59 Mohamed Kashkoush and Hoda ElMaraghy / Procedia CIRP 44 (2016) 55 – 60

4.3. Linearization of the objective function

The formulated model contains non-linear objective
function and constraints. Only the objective function is
linearized as it was found that linearizing the constraints
would significantly increase the number of decision variables
and reduce the capacity (i.e. number of product components)
that can be handled by the model. The objective function is a
cubic function that includes only binary variables. It can be
simply linearized by defining a new binary decision variable
to replace the multiplication of each pair of binary decision
variables. Accordingly, two new sets of decision variables are
defined as follows:

cf1uvi A binary element valued at 1 if the two binary
variables fuv and cvi are to have the value 1

cf2uvij A binary element valued at 1 if the two binary
variables cf1uvi and cvj are to have the value 1

In addition, six auxiliary sets of constraints (not reported
here for size limitations) are also added to the model to
establish mathematical relationships between the new
linearization decision variables and the original of decision
variables. The new linearized objective is shown in function
in Eq. 2’.

 OMI = (2’)

5. Illustrative Example

The developed non-linearly constrained integer
programming model is written in AMPL (A Mathematical
Programming Language) and solved using the SCIP MIP
(Mixed Integer Programming) software package [26] which is
available through the NEOS server (www.neos-
server.org/neos/solvers) hosted by the Wisconsin Institute for
Discovery. The hand-held massager example (Fig. 1) is used
to demonstrate the proposed overall modularity concept and
the developed mathematical model. The massager casing is
excluded from the analysis because it is the base component
that contains all other components. The only input needed by
the developed model is the DSM in Fig. 1 representing
interactions between components of the massager.

Fig. 5. Optimal c matrix obtained by the model

The optimal product tree represented in matrix form (the c
array) for obtaining the optimal overall modularity (i.e.
minimum OMI) is shown in Fig. 5. Decoding the c array into
product tree form using PHYLIP 3.69 (www.phylip.com),
which is a free access software for inferring and analyzing
phylogenetic trees, is described in [25].

The decoded massager structure tree is shown is Fig. 6.
This is the full modularity map for the entire massager
components that identifies sub-modules inside each module.
Accordingly, for the massager to have optimal OMI it should
have three hierarchical levels. At the highest level of the tree,
the massager is arranged into two modules: 1) the motor
module (motor, vibrating head, bracket and lever) and the
power inlet module (power cable, switch and wiring). At the
second level the motor module is further decomposed into two
sub-modules, the vibrating head with the supporting lever as a
sub-module and the motor with the bracket as another sub-
module. At the lowest level of the tree, the power inlet
module is further decomposed into two sub-modules; the
power cord with the on/off switch as sub-module and the
wiring individual component as another module.

Fig. 6. Obtained optimal product structure tree showing the corresponding
clustered DSM at each tree level

The resulting clustered DSM is constructed by re-ordering
the components of the original DSM according to the order in
which they appear on the tree. Three clustered DSMs (a DSM
for each tree level) are shown on the left side of the obtained
product tree in Fig. 6. Clustered DSMs at each tree level
would not appear different from each other in terms of their
composition (positions of zeros and ones inside the matrix),
however, the difference is the way clusters of components are
defined in each DSM which depends on the components
clustering into nodes at different tree levels. The value of
objective function (OMI) is 22 which is the sum of the MI for
the 3 levels of the product tree; MI is 10 for the first level and
6 for level two and three.

The only output from the model that the user would be
interested to look at is the c array shown in Fig. 5. It encodes
the resulting optimal product structure tree which is the
ultimate objective of the model. The resulting values for the f
and h arrays, as well as other variables used by the model, are

1 2 3 4 5 6 7

1 1 1 1 1 1 1
1 1 0 1 1 0 0
0 0 1 0 0 1 1
0 1 0 0 1 0 0
1 0 0 1 0 0 0
0 0 1 0 0 1 0

component number

1

2

3

4

5

6

no
de

nu
m
be
rs

1 4 5 2 3 6 7
1 1 1 0 0 0 0 1
4 1 1 1 0 0 0 0
5 0 1 1 1 0 0 0
2 0 0 1 1 0 0 0
3 0 0 0 0 1 1 1
6 0 0 0 0 1 1 0
7 1 0 0 0 1 0 1

MI = 10
Level # 1 1 4 5 2 3 6 7

1 1 1 0 0 0 0 1
Level # 2 4 1 1 1 0 0 0 0

5 0 1 1 1 0 0 0
Level # 3 2 0 0 1 1 0 0 0

3 0 0 0 0 1 1 1
6 0 0 0 0 1 1 0
7 1 0 0 0 1 0 1

MI = 6
1 4 5 2 3 6 7

1 1 1 0 0 0 0 1
4 1 1 1 0 0 0 0
5 0 1 1 1 0 0 0
2 0 0 1 1 0 0 0
3 0 0 0 0 1 1 1
6 0 0 0 0 1 1 0
7 1 0 0 0 1 0 1

MI = 6

Po
w
er

Co
rd

6 7

M
ot
or

Le
ve
r

O
n/
O
ff
Sw

itc
h

W
ir i
ng

Br
ac
ke
t

Vi
br
at
in
g
He

ad

1 4 5 2 3

1

4

2

3

5 6

60 Mohamed Kashkoush and Hoda ElMaraghy / Procedia CIRP 44 (2016) 55 – 60

all internal variables that do not concern the user, however,
they are reported here for completeness. The resulting q
vector defining which of the initially assumed tree levels is to
actually exist is as follows: [1 1 1 0 0 0]. Only three elements
were assigned the value “1” meaning that only 3 levels exist
as shown in the resulting tree in Fig. 6. The resulting values
for the f and h arrays defining the modules at each tree level
are shown in Fig. 7. The f array shows the nodes forming
modules at each tree level; while the h array shows individual
components that represent modules (if any) at each level.

Fig. 7. Obtained values for the f and h arrays

6. Conclusion

This paper addressed the design of modular product
architecture from a new perspective by aiming at optimizing
the product architecture for optimal overall modularity. The
notion of overall modularity is introduced, for the first time,
and is implemented using a novel non-linearly constrained
integer programming model. Given the DSM representing
on/off physical interactions between various components of a
certain product, the model builds the corresponding product
structure tree with the optimal modularity over all its
hierarchical levels - Overall Modularity Index (OMI) -
without prior knowledge of the number of those levels or the
number of modules at each level. Every potential module of a
given product is considered as a product on its own, where its
architecture needs to be designed for optimal modularity. The
proposed modular product architecture design method is
demonstrated using a hand-held body massager example.

Future research would consider not only spatial interaction
but also multiple forms of interaction between components
such as the existence of electric connection between two
components that are not necessarily physically adjacent.
Quantitative information such as the strength or importance of
interaction between components would also be considered.
Furthermore, methods to increase the ability of the presented
mathematical programming model to handle large size
problems (products with tens of components) should be
explored.

References

[1] Ulrich, K., 1995,The role of product architecture in the manufacturing
firm, Research policy, 24/3: 419-440.

[2] Yu, T.-L., Yassine, A.A., and Goldberg, D.E., 2007,An information
theoretic method for developing modular architectures using genetic
algorithms, Research in Engineering Design, 18/2: 91-109.

[3] Kremer, G.E.O. and Gupta, S., 2013,Analysis of modularity
implementation methods from an assembly and variety viewpoints, The

International Journal of Advanced Manufacturing Technology, 66/9-12:
1959-1976.

[4] Baldwin, C.Y. and Clark, K.B., 2000, Design rules: The power of
modularity, Vol: 1, MIT Press.

[5] Shamsuzzoha, A., 2011,Modular product architecture for productivity
enhancement, Business Process Management Journal, 17/1: 21-41.

[6] Baldwin, C.Y. and Clark, K.B., 2003,Managing in an age of modularity,
Managing in the Modular Age: Architectures, Networks, and
Organizations, 149.

[7] Gershenson, J., Prasad, G., and Zhang, Y., 2003,Product modularity:
definitions and benefits, Journal of Engineering Design, 14/3: 295-313.

[8] Shamsuzzoha, A., Helo, P.T., and Kekale, T., 2010,Application of
modularity in world automotive industries: a literature analysis,
International Journal of Automotive Technology and Management, 10/4:
361-377.

[9] Gershenson, J.K., Prasad, G.J., and Zhang, Y., 2004,Product modularity:
measures and design methods, Journal of Engineering Design, 15/1: 33-
51.

[10] Allen, K.R. and Carlson-Skalak, S., 1998,Defining product architecture
during conceptual design, A Proceedings of ASME, Atlanta, GA, Paper
No. DETC98/DTM-5650.

[11] Ericsson, A. and Erixon, G., 1999, Controlling design variants: modular
product platforms, Society of Manufacturing Engineers.

[12] Stone, R.B., Wood, K.L., and Crawford, R.H., 2000,A heuristic method
for identifying modules for product architectures, Design studies, 21/1: 5-
31.

[13] Zhang, W., Tor, S., and Britton, G., 2004, A functional modelling
approach for modular product design. in International Conference on
Manufacturing Automation: Advanced Design and Manufacturing in
Global Competition.

[14] Huang, C.-C. and Kusiak, A., 1998,Modularity in design of products and
systems, Systems, Man and Cybernetics, Part A: Systems and Humans,
IEEE Transactions on, 28/1: 66-77.

[15] Ko, Y.-T., 2013,Optimizing product architecture for complex design,
Concurrent Engineering, 21/2: 87-102.

[16] Steward, D.V., 1981,Design structure system: A method for managing
the design of complex systems, IEEE TRANS. ENG. MGMT., 28/3: 71-
74.

[17] Eppinger, S.D. and Browning, T.R., 2012, Design structure matrix
methods and applications, MIT press.

[18] Tilstra, A.H., Seepersad, C.C., and Wood, K.L., 2012,A high-definition
design structure matrix (HDDSM) for the quantitative assessment of
product architecture, Journal of Engineering Design, 23/10-11: 767-789.

[19] Browning, T.R., 2001,Applying the design structure matrix to system
decomposition and integration problems: a review and new directions,
IEEE Transactions on Engineering Management, 48/3: 292-306.

[20] AlGeddawy, T. and ElMaraghy, H., 2013,Optimum granularity level of
modular product design architecture, CIRP Annals-Manufacturing
Technology, 62/1: 151-154.

[21] AlGeddawy, T. and ElMaraghy, H., 2013, Determining Granularity
Level in Product Design Architecture, in Smart Product Engineering,
Springer, 535-542.

[22] AlGeddawy, T. and ElMaraghy, H., 2015,Determining Granularity of
Changeable Manufacturing Systems Using Changeable Design Structure
Matrix and Cladistics, ASME Journal of Mechanical Design, 137/4:
041702-01 - 041702-12.

[23] Page, R.D., 2003, Tangled trees: Phylogeny, cospeciation, and
coevolution, University of Chicago Press.

[24] Pandremenos, J. and Chryssolouris, G., 2011,A neural network approach
for the development of modular product architectures, International
Journal of Computer Integrated Manufacturing, 24/10: 879-887.

[25] Kashkoush, M. and ElMaraghy, H., 2015,Knowledge-based model for
constructing master assembly sequence, Journal of Manufacturing
Systems, 34: 43-52.

[26] Achterberg, T., 2009,SCIP: solving constraint integer programs,
Mathematical Programming Computation, 1/1: 1-41.

1 2 3 4 5 6 7

1 0 1 1 0 0 0 # 1 0 0 0 0 0 0 0
2 0 0 1 1 1 0 # 2 0 0 0 0 0 0 0
3 0 0 0 1 1 1 # 3 0 0 0 0 0 0 1
4 0 0 0 0 0 0 # 4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 # 5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 # 6 0 0 0 0 0 0 0

f h

le
ve
ln
um

be
rs

1 2 3 4 5 6

node numbers

le
ve
ln
um

be
rs

component number

