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Abstract 

Modularity in product architecture is beneficial to both product development and manufacturing.  Several methods exist for clustering product 
components into modules all of which, with few exceptions, do not consider the hierarchical structure of the product. Products architecture 
consists of a number of hierarchical levels, which add a useful dimension to modularity analysis. Designing products architecture that 
maximizes modularity over all levels of the product structure (i.e. overall modularity) is the main objective of this work. Interactions between 
various product components are represented using a Design Structure Matrix (DSM). The product architecture is represented by product 
structure tree in the form of a binary rooted tree.  A novel Mathematical Programming Model is developed to construct the corresponding 
product structure tree for a given product which ensures optimal modularity at all hierarchical levels, without prior knowledge of their number. 
The proposed optimal modular product architecture design method is demonstrated using a real product case study. Optimal overall modularity 
leads to better management of product changes and variety and more cost-effective product development and manufacturing. 
© 2016 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the organizing committee of the 6th CIRP Conference on Assembly Technologies and Systems (CATS). 
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1. Motivation 

Constructing the product architecture is a critical design 
activity that affects all subsequent product development steps 
such as analysis, modeling and prototyping, manufacturing, 
assembly and supply chain.   A widely accepted definition of 
product architecture is: “the organization of the functional 
components of a product into physical units and the 
interaction among them” [1]. Products with integral 
architecture are constructed with a combination of the lowest 
level (individual) components without intermediate sub-
assemblies; while products with modular architecture are built 
of one or more levels of sub-assemblies [2]. A module in a 
modular product refers to a structurally independent element 
or a sub-assembly of a larger sub-assembly with clearly 
defined interfaces [3, 4]. Modularity of product architecture is 
not an absolute property; in fact, it is a relative property that 
can be quantitatively assessed and analyzed.  

Modular product architecture has become an important 
product development topic in the last few decades [5]. It 
allows manufacturers to cost-effectively handle and develop 
complex products by decomposing them into simpler sub-

units or modules [6].  The benefits of modularity regarding 
product functionality, product design, maintenance, services, 
testing and verification, production, supply chain, and other 
activities have been discussed by many researchers in various 
fields [5, 7, 8]. A comprehensive discussion of benefits of 
modularity is provided by Ulrich [1]. They include: (1) 
efficient management of product changes and updates as 
manufacturers can easily change some functions of 
subsequent product generations by simply changing some 
modules, (2) better product variety management as variety 
could be simply created by having various combinations of 
modules, and (3) enhanced product development process 
since design tasks can be properly decoupled and carried out 
concurrently. 

2. Literature Review 

Several methods exist for designing modular products [9] 
and can be classified into two main groups [10]: function-
based and matrix-based methods. Function-based methods 
[11-13] identify modules by mapping the functional 
decomposition of a product to its physical architecture. These 
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methods are criticized for not being able to adequately address 
the interfaces between physical elements of the product [2]. 
Matrix-based methods [2, 14, 15], used in this research, 
identify modules by reconfiguring the product Design 
Structure Matrix (DSM) which represents the product 
architecture [3]. 

Fig. 1. DSM developed for Wahl 4120-600 hand-held body massager 
(http://massagers.wahl.com/) 

The Design Structure Matrix (DSM), first introduced by 
Steward [16], is the most common tool used to model 
interaction between components of a given product [17] and 
is, therefore, used by many researchers to model and study 
product architecture [18]. Fig. 1 illustrates the DSM 
constructed for a hand-held body massager made of seven 
components in addition to the casing. Each row and column of 
the matrix represents one of the massagers’ components. Cells 
filled with 1 in the matrix refer to the existence of interaction 
between the two components corresponding to that cell. The 
type of interaction modeled in this example is on/off spatial 
interaction (physical adjacency). Other types of interactions 
(e.g. energy and information) and different interaction coding 
schemes (e.g. quantified interaction) may also be used [19]. 
Product modules are identified by re-arranging the DSM into 
clusters along the matrix diagonal to maximize interaction 
within clusters and minimum interaction outside. Several 
methods have been used in literature to identify products 
modules by clustering the DSM based on different modularity 
measures.

Existing methods for designing modular product 
architecture provide a flat map for modules and their 
interaction without considering their hierarchical levels of 

sub-assemblies representing the structural arrangement of 
components within each module. The only exception to that 
finding is the work on granularity analysis of modular 
products and manufacturing systems architectures by 
AlGeddawy and ElMaraghy [20-22].  

AlGeddawy and ElMaraghy [20]  used cladistics analysis, 
which is a hierarchical classification method commonly used 
in Biology [23], in order to identify product modules based on 
DSM architectural representation. Along with the identified 
modules, the method further provides the hierarchical 
structure of the product in a binary rooted tree format 
(cladogram). The ultimate objective of that method is to find 
the optimal hierarchical level of the product architecture 
(granularity level) for product modularization. Although, the 
cladistics method has provided better modularity results 
compared to earlier research results in the subject; the main 
focus of the study was to find the optimal granularity level 
and not to optimize the product architectural tree. Finding the 
product structure tree (number of tree levels and clusters of 
components formed at each level) that leads to the optimal 
total modularity over all the tree levels was not an objective 
for the cladistics analysis-based method. 

Inspired by the work AlGeddawy and ElMaraghy [20], this 
paper addresses product modularity from a new perspective to 
provide the product architecture, represented by the product 
structure tree in the form of binary rooted tree, for maximum 
overall modularity at all levels of the product structure. In this 
research, every potential module of a given product is viewed 
as if it was a product on its own the architecture of which 
needs to be designed for optimal modularity. This allows all 
modularity benefits discussed earlier to be propagated 
throughout the entire product at all its hierarchical levels. 

3. Proposed Modular Product Architecture Design 
Methodology 

Product architecture is modeled as shown in Fig. 2 using 
binary rooted trees (i.e. product structure tree or product tree 
for short). The tree in Fig. 2 represents the structure of a 
product with eight components. The product has four 
hierarchical levels and each level has its own modularity. For 
instance, at level 1 the product has only two modules; module 
1 {6, 8, 5, 7, 3, 4} and module 2 {2, 1}. Whilst, at level 2, the 
product has three modules; module 1 {6, 8, 5, 7, 3}, module 2 
{4} and module 3 {2, 1}. Modules # 1 and # 2 at level 2, 
when combined, they form module # 1 of level 1.  

Fig. 2. Binary rooted tree representation of product structure 

Therefore, each level of the tree provides more details 
related to components arrangements for modules at higher 
levels of the tree. Hence, the tree represents the components 
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arrangement (clusters) within each module starting with the 
level of individual components to the level at which the 
product is only one big module which includes all the 
components (i.e. full product). Fig. 2 is schematically 
represented in Fig. 3 to further illustrate the notion of having 
multiple levels of product architecture modularity.  

The modularity is modeled and assessed at any level of the 
tree using the corresponding re-ordered DSM. The Modularity 
Index (MI) introduced by AlGeddawy and ElMaraghy [20], 
which is also equivalent to CE used by Pandremenos and 
Chryssolouris [24], is utilized in this research. The MI counts 
the total number of intra-relationships between different 
modules as well as missed inter-relationships between 
components of the same module. MI is given by Eq. 1, where 
I is the number of ‘1’ DSM cells outside generated clusters, 
and Z is the number of ‘0’ DSM cells inside those clusters. 
Improved clustering corresponds to smaller MI values.  

MI = I + Z (1) 

Fig. 3. Schematic representation of the product tree shown in Fig. 2 

4. Non-Linearly Constrained Mathematical Programming 
Model 

A non-linear integer programming model with non-linear 
objective function and constraints is first formulated then the 
non-linear objective function is linearized. The input to the 
model is the DSM of a given product. Only Binary (0-1) 
DSMs are considered. The output is an encoded matrix 
representing the optimal product structure tree (i.e. the tree 
corresponding to optimal overall modularity).  

4.1. Tree-to-matrix encoding scheme 

The proposed model handles product trees in the form of 
encoded matrices. A binary rooted tree representing the 
structure of n components has n-1 tree nodes. Hence, for a 
tree of n-1 nodes a matrix of n-1 rows and n columns is used 
to represent it (i.e. a matrix of size (n-1) x n). The matrix 
columns represent component numbers and its rows represent 
node numbers. Binary (0-1) values are used to indicate the 
presence or absence of a given component in any given node. 

For instance, node number 2 in the tree shown in Fig. 4 has 
four components 1, 2, 3, and 4, thus, row number 2 in the 
corresponding encoded matrix will take the value 1 in cells 
number 1, 2, 3, and 4, while cell number 5 will have a 0 value 
due to the absence of component 5 in node 2. Therefore, any 
encoded matrix will always have one of its rows full of ones 
representing the tree root node, to which all components 
belong. Nodes numbering is arbitrary and accordingly many 

matrix representations are possible for the same tree. 
Therefore, if the rows of the matrix are altered to any other 
order, they still represent the same tree. This tree-to-matrix 
encoding scheme was developed by the authors to encode 
product assembly trees [25]. 

Fig. 4. Proposed tree-to-matrix encoding scheme (modified from [25]) 

4.2. Non-linear integer programming model formulation 

The model input parameters are as follows: 

n Total number of components 

m Number of nodes of the hierarchical clustering 
tree (n-1)

DSMij A binary (0-1) element in the ith row and jth

column of the DSM matrix 

The decision variables are: 

cui A binary (0-1) element in the uth row and jth column 
of the encoded matrix representing the product tree  

xuv A binary (0-1) element valued at 1 if node v is 
directly branched from node u

yui A binary (0-1) element valued at 1 if component i is 
directly branched from node u

fuv A binary (0-1) element valued at 1 if node v forms a 
module at level u of the product tree 

hui A binary (0-1) element valued at 1 if the individual 
component i forms a module at level u of the product 
tree 

qu A binary (0-1) element valued at 1 if the uth assumed 
tree level is to actually exist 

lu The level of node u; given by no. of components that 
belong to node u

The proposed model formulation consists of seven sets 
(arrays or vectors) of variables as shown in the list of decision 
variables. The first three sets of variables (c, x, and y arrays) 
are used to define the product tree. The c array represents the 
encoded matrix for any given product tree (illustrated in Fig. 
4), while the x and y arrays are both used to describe direct 
relationships between the nodes and leaves of the tree. The x
and y arrays are the actual variables used in the model to 
control the structural feasibility of generated product trees. 
The c array, which is the ultimate outcome of the model, is 
the result of combining the two arrays which will be shown 
later in the description of the constraints. 
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The f and h arrays are the main sets of variables used to 
define nodes and components that form modules at each 
product tree level. The number of tree levels is not known 
beforehand, so it is initially assumed that the product tree is 
structured in a way in which a different level is to exist at 
each node of the tree (excluding the root node). The q vector 
identifies which of those assumed levels should exist 
according to the actual tree structure. The l vector is an 
auxiliary set of variables that define the tree level where each 
node lies, to be used by the model to check nodes clustering 
feasibility. Using the listed parameters and decision variables, 
a non-linear integer programming model is formulated with 
12 sets of constraints as follows: 

 OMI = 

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

The objective function (Eq. 2) seeks the minimum value of 
the summation of Modularity Index (MI) over all levels of the 
product structure tree; i.e. the Overall Modularity Index 
(OMI). The DSMs used in this research are assumed to be 

symmetric; hence, the used expression calculates the OMI for 
one side of the DSM (above or under the matrix diagonal) and 
multiplies it by 2. However, the objective function can be 
easily adjusted to consider non-symmetric DSM instances. 

Four sets of constraints are used to ensure the generation of 
valid product structure trees representing feasible solutions. 
Accordingly, the first set of constraints (Eq. 3) ensures that 
each node is the combination of exactly two branches; either 
two other nodes, two components or one other node and one 
component. The second set of constraints (Eq. 4) states that 
each component must branch out directly from one single 
node; no component could be branched out of two or more 
different nodes at the same time. Similarly, the third set of 
constraints (Eq. 5) ensures that every node, except the root 
node, is directly branched out from another node; no node 
could be branched out from two or more different nodes at the 
same time. The fourth set of constraints (Eq. 6) defines how 
the c array is extracted from the x and y arrays used in the first 
three sets of the constraints to ensure the structural feasibility 
of generated trees. 

The sets of constraints given by Eq.’s 7 to 14 are used to 
define the clusters formed at each level of the product tree to 
be utilized by the objective function to calculate the MI at all 
levels of the tree. The set of constraints given by Eq. 7 
determines the value of the variable l which defines the level 
of a given node represented by number of components it 
includes. The set of constraints given by Eq. 8 state that rows 
in the c array that belong to higher tree levels should appear 
first, in terms of their order in the array. This is to simplify 
comparison of the various levels of tree nodes. 

The number of tree levels is not known a priori as 
mentioned earlier, however, it cannot exceed the number of 
the tree nodes (excluding the root node). Thus, it is assumed 
that a maximum of (m-1) tree levels could exist. The set of 
constraints given by Eq. 9 identifies which of those assumed 
levels will ultimately exist by comparing the difference in 
levels between every pair of consecutive nodes, since nodes 
are already ordered according to set of constraints given by 
Eq. 8. 

The set of constraints given by Eq. 10 ensures that for 
every tree level an assignment of tree nodes into modules will 
take place. The set of constraints given by Equation 11 ensure 
that the modularization done at any tree level is considering 
all the components, i.e. to avoid partial or incomplete 
clustering of components at each tree level. The set of 
constraints given by Eq. 12 make sure that formed levels as 
well as the modules identified at those levels are different.. 
This is achieved by forcing one of the nodes at each level to 
be a module to its corresponding level only.  

Nodes to be selected as modules at a given tree level 
cannot be sub-modules of other modules at that level. For 
instance, the node containing the two components 6 and 8 in 
the tree shown in Fig. 2 cannot be considered a module at 
level 3 of that tree. The same condition applies to individual 
components. The set of constraints given by Eq. 13 prevent 
such an invalid clustering from occurring by comparing levels 
of nodes forming clusters at each tree level; while the set of 
constraints given by Eq. 14 serve the same purpose for 
individual components. 
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4.3. Linearization of the objective function 

The formulated model contains non-linear objective 
function and constraints. Only the objective function is 
linearized as it was found that linearizing the constraints 
would significantly increase the number of decision variables 
and reduce the capacity (i.e. number of product components) 
that can be handled by the model. The objective function is a 
cubic function that includes only binary variables. It can be 
simply linearized by defining a new binary decision variable 
to replace the multiplication of each pair of binary decision 
variables. Accordingly, two new sets of decision variables are 
defined as follows: 

cf1uvi A binary element valued at 1 if the two binary 
variables fuv and cvi are to have the value 1 

cf2uvij A binary element valued at 1 if the two binary 
variables cf1uvi and cvj are to have the value 1 

In addition, six auxiliary sets of constraints (not reported 
here for size limitations) are also added to the model to 
establish mathematical relationships between the new 
linearization decision variables and the original of decision 
variables. The new linearized objective is shown in function 
in Eq. 2’.  

 OMI = (2’)

5. Illustrative Example 

The developed non-linearly constrained integer 
programming model is written in AMPL (A Mathematical 
Programming Language) and solved using the SCIP MIP 
(Mixed Integer Programming) software package [26] which is 
available through the NEOS server (www.neos-
server.org/neos/solvers) hosted by the Wisconsin Institute for 
Discovery. The hand-held massager example (Fig. 1) is used 
to demonstrate the proposed overall modularity concept and 
the developed mathematical model. The massager casing is 
excluded from the analysis because it is the base component 
that contains all other components. The only input needed by 
the developed model is the DSM in Fig. 1 representing 
interactions between components of the massager.  

Fig. 5. Optimal c matrix obtained by the model 

The optimal product tree represented in matrix form (the c
array) for obtaining the optimal overall modularity (i.e. 
minimum OMI) is shown in Fig. 5. Decoding the c array into 
product tree form using PHYLIP 3.69 (www.phylip.com), 
which is a free access software for inferring and analyzing 
phylogenetic trees, is described in [25].  

The decoded massager structure tree is shown is Fig. 6. 
This is the full modularity map for the entire massager 
components that identifies sub-modules inside each module. 
Accordingly, for the massager to have optimal OMI it should 
have three hierarchical levels. At the highest level of the tree, 
the massager is arranged into two modules: 1) the motor 
module (motor, vibrating head, bracket and lever) and the 
power inlet module (power cable, switch and wiring). At the 
second level the motor module is further decomposed into two 
sub-modules, the vibrating head with the supporting lever as a 
sub-module and the motor with the bracket as another sub-
module. At the lowest level of the tree, the power inlet 
module is further decomposed into two sub-modules; the 
power cord with the on/off switch as sub-module and the 
wiring individual component as another module.  

Fig. 6. Obtained optimal product structure tree showing the corresponding 
clustered DSM at each tree level 

The resulting clustered DSM is constructed by re-ordering 
the components of the original DSM according to the order in 
which they appear on the tree. Three clustered DSMs (a DSM 
for each tree level) are shown on the left side of the obtained 
product tree in Fig. 6. Clustered DSMs at each tree level 
would not appear different from each other in terms of their 
composition (positions of zeros and ones inside the matrix), 
however, the difference is the way clusters of components are 
defined in each DSM which depends on the components 
clustering into nodes at different tree levels. The value of 
objective function (OMI) is 22 which is the sum of the MI for 
the 3 levels of the product tree; MI is 10 for the first level and 
6 for level two and three.  

The only output from the model that the user would be 
interested to look at is the c array shown in Fig. 5. It encodes 
the resulting optimal product structure tree which is the 
ultimate objective of the model. The resulting values for the f
and h arrays, as well as other variables used by the model, are 
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all internal variables that do not concern the user, however, 
they are reported here for completeness. The resulting q
vector defining which of the initially assumed tree levels is to 
actually exist is as follows: [1 1 1 0 0 0]. Only three elements 
were assigned the value “1” meaning that only 3 levels exist 
as shown in the resulting tree in Fig. 6. The resulting values 
for the f and h arrays defining the modules at each tree level 
are shown in Fig. 7. The f array shows the nodes forming 
modules at each tree level; while the h array shows individual 
components that represent modules (if any) at each level. 

Fig. 7. Obtained values for the f and h arrays 

6. Conclusion 

This paper addressed the design of modular product 
architecture from a new perspective by aiming at optimizing 
the product architecture for optimal overall modularity. The 
notion of overall modularity is introduced, for the first time, 
and is implemented using a novel non-linearly constrained 
integer programming model. Given the DSM representing 
on/off physical interactions between various components of a 
certain product, the model builds the corresponding product 
structure tree with the optimal modularity over all its 
hierarchical levels - Overall Modularity Index (OMI) - 
without prior knowledge of the number of those levels or the 
number of modules at each level. Every potential module of a 
given product is considered as a product on its own, where its 
architecture needs to be designed for optimal modularity.  The 
proposed modular product architecture design method is 
demonstrated using a hand-held body massager example.  

Future research would consider not only spatial interaction 
but also multiple forms of interaction between components 
such as the existence of electric connection between two 
components that are not necessarily physically adjacent. 
Quantitative information such as the strength or importance of 
interaction between components would also be considered. 
Furthermore, methods to increase the ability of the presented 
mathematical programming model to handle large size 
problems (products with tens of components) should be 
explored.  
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