
Theoretical Computer Science 104 (1992) 299-312

Elsevier

299

Note

Recursive ascent parsing: from
Earley to Marcus

RenC Leermakers
Institute for Perception Research, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Communicated by M. Nivat

Received January 1991

Revised October 1991

Abstract

Leermakers, R., Recursive ascent parsing: from Earley to Marcus, Theoretical Computer Science 104

(1992) 299-3 12.

An overview is given of recursive ascent parsing, a new functional implementation technique for

parsers for context-free grammars. The theory behind it unifies the treatment of hitherto virtually

unrelated parsing methods, such as the Earley algorithm and LR parsing. This is effected by banning

the distinguishing factors, such as stacks and parsing tables: stacks are replaced by recursive

functions, parsing tables by function memoization. In addition to this unification, the theory

provides a high-level view on parsing compared to the standard theory. Nevertheless, the functional

implementations are as efficient as conventional ones, especially if the functions that constitute the

parsers are formulated in low-level imperative languages with efficient function calls, like C. This

means that they are important in practice, for parsing both artificial and natural languages. The

recursive ascent treatment of LR(0) parsing has a natural generalization that leads to a new family of

look-ahead parsers. This family is akin to the one proposed by Marcus a decade ago to model the

processing of a natural language in the human mind.

1. Introduction

Recently, the theory of LR parsing gained new impetus by the discovery of the

recursive ascent implementation technique for deterministic [l, 4, 11, 121 and non-

deterministic [S, 71 LR parsers. In short, the novelty is that LR parsers can be

implemented purely functionally and that this implementation has very simple cor-

rectness proofs. In its primary form, a recursive ascent parser consists of two functions

for each state. In this paper we present the recursive ascent implementation for

0304-3975/92/$05.00 Q 1992-Elsevier Science Publishers B.V. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81125703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

300 R. Leermakers

a number of parsers, in ascending order of complexity. The simplest one is the Earley

parser, after which the LR(0) parser is derived in analogy. The LR(0) parser is the

simplest element of a class of look-ahead parsers that we refer to as Marcus parsers,

and a study of this class closes the paper. Recursive ascent parsing is akin to recursive

descent parsing and the paper starts with the presentation of a variant of recursive

descent parsing, to give the reader a chance to get used to our notations.

We will present only the recognition part of parsers, i.e. we do not discuss the

creation of parse trees, or whatever kind of trace of the parsing process. Especially for

ambiguous grammars, the compact representation of the set of parse trees is a real

issue, which we address in another paper [7].

2. Recursive Descent

Consider CF grammar G =(V’,, VT, P, S), with terminals Vr and nonterminals I’,.

Let V= V,u VT. A well-known top-down parsing technique is the recursive descent

parser. Recursive descent parsers consist of a number of procedures, usually one for

each nonterminal. Here we present a variant that consists of functions, one for each

so-called item (dotted rule). Items, grammar rules with a dot somewhere in the

right-hand side, are used ubiquitously in parsing theory to denote a partially recog-

nized rule: if A +a/3 is a grammar rule (with Greek letters for arbitrary elements of V*),

then A-+cr./I is an item. We overload the symbol -+, as usual, to let it also denote the

derives relation:

which implies that B-p is synonymous to B+~EP.

We use the operator [.] to map each item to its function:

[A+a.fl] : NH~~,

where N is the set of integers, or a subset O... rr,,,, with nmax the maximum sentence

length, and 2N is the power set of N. The functions are to meet the following

specification:

with x1 . ..x. as the string to be parsed. So, the function reports which parts of the

string can be derived from /I starting from position i. A more constructive definition of

the same functions follows from discerning three cases:

(1) Suppose b = E. Then p 3 xi + 1 . . xj is equivalent to i =j and, hence,

[A-cc.](i)= (i}.

Recursive ascent parsing 301

(2) Suppose /I = by, with be VT. Then

Now, if A+cc. by is an item then also A+crb.y is one and

‘~ fXi+2... xj~jE[A~~b.y](i+ 1).

Hence,

[A~cc.by](i)={jIb=xi+, A jE[A-rab.y](i+ l)}

(3) Suppose /I = By, with BE VN. Then

Replacing B+6 A 6 3 xifl . ..xk by k~[B+.d](i) and y %Xk+r . ..Xj by

jE[A+aB.y](k), we conclude that

CA -+cc.By](i)={jl kE[B -+.8](i) A jg[A+aB.y](k)}.

In the last equation we left out the quantification over k, 6, and from now on we will

systematically neglect the existential quantifications in definitions of this kind. All in

all, we have a recursive definition of [A+cr.fi](i) for each possible /I, and these

definitions together form a functional algorithm. If we add a grammar rule S’-+S to G,

with S’$ V, then S f x1 . .x, is equivalent to no [S’ +.S](O), so that the algorithm is to

be invoked by calling [S’+.S](O). The algorithm works for any CF grammar except

for grammars for which 3,,,(.4 -+a A c(f A/3). For such left-recursive grammars the

recognizer does not terminate, as execution of [A+. a](i) leads to a call of [A --+. a] (i).

The recognition is not a linear process in general: the function calls [A +a. By](i) lead

to calls [B-.S](i) for all values of 6 such that B-+6 is a grammar rule.

3. Recursive ascent Earley

To be able to construct an implementation of [A-CC.~] that has fewer problems

with left-recursive grammars, we need the so-called predict sets. Let predict(A-*cc.P)

be the set of initial items, that are derived from ,4--+a.p by the closure operation:

predict(A+a.p)= {B-t.@ 1 B+p A /!I** By}.

The double arrow = denotes a leftmost symbol rewriting with a non-c grammar rule,

i.e.

302 R. Leermakers

A recursive ascent recognizer may be obtained by relating to each item A+c(./I not

only the above [A-a.p], but also a function that we take to be the result of applying

the operator [‘1 to the item:

[A-c(.p] : P’x NH~~.

It has the specification (XE V)

Assuming x, + 1 to be some end of sentence marker that is not in I’, it can never be that

GX,+rY; hence, CA+~.PI(X,,+~, n+ l)=@ For idn the above functions are recur-

sively implemented by (Algorithm 1)

[A~cc.8](i)=[A~a.P](Xi+1, i+l)

u{ jl B+.EEpredict(A-+x./3) A jE[A+a.fi](B, i)}

u{ilP=E), (1)

[A+cc.fi](X, i)={jl fi=Xy A jE[A+ctX.y](i)}

u { j I je[A-+rx./FJ(C, k) A C-+.XGspredict(A+a.fi) A

k[C+X.S](i)}

Proof. First we note that

P
*

~-ti+~...~j-3,(~~~i+~~Ay'Xi+~...Xj)

V 3,,(&By A B-+E A y * ~Xi+l... xj)

V (/3=~ A i=j).

Substituting this in the specification of [A+(x.p] one gets

CA -~.~](i)={jIp$xi+~~A~~ti+,...Xj}

u{jIB+EAfi:ByAy * + Xi+l... xj>

u(jI/?=EAi=j}.

This directly leads to the implementation given above because

A+u~ A 3,(pZXy A ?/ 5 xi+1 . ..Xj)=jE[A+a.P](X. i),

A+@ A I,,(/cI: By) A B-+E- B+.~~pt~di~t(A+a./?).

Recursiae ascent parsing 303

For establishing the correctness of [A-+cI. p] note that /3: Xy either contains zero

steps, in which case p=Xy, or contains at least one step:

AYlXkll . . . Xj).

Hence, [A+~l.fi](X, i) may be written as the union of two sets, So and S1:

S,={jIp=Xy A Y %Xi+l . ..Xj}.

With the specification of [A+ctX.y], So may be rewritten as

S,={jI/?=XyAjE[A+aX.y](i)}.

The set S1 may be rewritten using the specifications of [A+cc.P](C, k) and pre-

dict(A+rx.P):

With the definition of [C+X.S] one finally gets

S,={jIje[A+x.fi](C,k)AC +.X6Epredict(A+cc.~) A k[C+X.6](i)}.

0

3.1. Complexity

The above recognizer needs exponential-time resources unless the functions are

implemented as memo-functions. Memo-functions memorize for which arguments

they have been called. If a function is called with the same arguments as before, the

function returns the previous result without recomputing it. In conventional program-

ming languages memo-functions are not available, but they can easily be implemented.

The use of memo-functions obsoletes the introduction of devices like parse matrices

[;?I. The worst-case complexity analysis of the memoized recognizer is quite simple.

Let it be the sentence length, I GI the number of items of the grammar, p the maximum

number of different left-hand sides in a predict set, and q the maximum number of

items in a predict set with the same symbol after the dot. Then, there are O(IGlpn)

different invocations of recognizer functions. Each invocation of a function [I]

invokes O(qn) other functions, that all result in a set with O(n) elements. The merge of

these sets into one set with no duplicates can be accomplished in O(qn’) time on

304 R. Leermakers

a random-access machine. Hence, the total time complexity is 0(1 Glpqn3). The space

needed for storing function results is O(n) per invocation, i.e. 0(1 G 1 pn’) for the whole

recognizer. These complexity results are almost identical to the usual ones for Earley

parsing. Only the dependence on the grammar variables 1 G 1, p and q differs slightly.

Worst-case complexities need not be relevant in practice. We claim that for many

practical grammars the present algorithm is more efficient than the existing imple-

mentations, for the following reason. The above formulae can be interpreted as

defining two functions, [.] and [.], that will work for variable grammars and strings.

This view is convenient when building prototypes. If efficiency is an issue, however,

one should precompute as much as possible and actually create, for a fixed grammar,

the functions [I] and [I] for every item I. In the terminology of functional program-

ming the functions [.] and [‘1 are to be evaluated partially for each item. In this way,

the grammar is compiled into a collection of functions, just like conventional parser

generators compile a grammar into LR tables or a recursive descent parser. Quite

some work that is done at parse time by the standard Earley parser, such as the

creation of predict sets and the processing of item sets, is transferred to compile time

when transforming the grammar into a functional parser. As a consequence, the

compiled parser is more efficient than the standard implementations of the Earley

parser.

The above considerations only hold if our algorithm terminates. If the grammar has

a cyclic derivation A-+ + A, the execution of [1](A, i) leads to a call of itself, and the

algorithm does not terminate. Also, there may be a cycle of transitions labeled by

nonterminals that derive E. This occurs if for some k one has that, for i = 1. . . k,

Ai+l~.ai+lBi+lEpredict(Ai-ai.Pi) A ai++E,

while

Then the execution of [A 1 -+cI~. /II] (i) leads to a call of itself, and the algorithm does

not terminate. A cycle of this form occurs ifSthere is a derivation A --f ’ a&? such that

CC++ E. It is easy, however, to define a variant of the recognizer that has no problems

with these derivations. It is obtained from dropping the restriction that the leftmost

symbol derivation = may not use E-rules; see [6].

4. Recursive ascent LR(0)

We now know how to cope with the problem of left-recursion. It is possible to

change things slightly as to also avoid some unnecessary non-determinism, and this

leads to LR-parsing.

The mechanism for reducing nondeterminism is the merging of functions corre-

sponding to a number of competing items into one function. Let the set of all items of

Recursive ascent parsing 305

G be given by ZG. Subsets of ZG are called states, and we use q to denote an arbitrary

state. We associate with each state q a function, re-using the above operator [.],

[q] : NH2’GXN

that meets the specification

[q](i)={(A-cc.B,j)lA-ta.BEq A B $ Xi+l . ..Xj}.

As above, the function reports which parts of the sentence can be derived. But as the

function is associated with a set q of items, it has to do so for each item in q. If we

define the initial state q. = (S’-+.S}, we have that S 5 x1. ..x, is equivalent to

(S’+.S, 4~Caom
To be able to construct a recursive ascent implementation of [q] we again need

some auxiliary functions, similar to the predict function before. Let ini be the set of

initial items for state q, derived from q as the smallest solution of

ini(q)={B+.vl B-v A A-m.B@(quini(q))}.

An alternative nonrecursive definition, similar to the definition of predict, is

ini(q)={B-t.vI B+v A A-m.PEq A p**By}.

The transition function goto : 21G x V’H~‘~ is defined by

goto(q, x)={A-mx.pl A-m.XpE(quini(q))}.

A recursive ascent recognizer is obtained by relating to each state q not only the

above [q], but also a function that we take to be the result of applying operator [.] to

the state:

[q] : vx NH2’G” N.

It has the specification

[q](X, i)={(A-*cr.P,j)IA~cc.PEq A p:xxy A y * + xi+1 . . . xj>.

Assuming, as before, that x,+ 1 $V, it is impossible that A+cc./?EqA\&~,,+~y;

hence, Cd (x, + 1, II + 1) = 8. For id n the above functions are recursively implemented

by (Algorithm 2)

Cd(~)=Cd(~i+1, i+ 1)

u{(A-a.p,j)l B+.azini(q) A (A-m.P,j)E[q](B, i)}

u { (AGm., i) / A-Wq}, (2)

Cql(X, i)={(A~a.Xy,j)lA~cr.x~~q A (A+c=.y,j)ECgOto(q> X)1(0)

u {(A-+~.b,j) I (A +a./$ j)E[q](C, k) A C+.XGEini(q)

A(C+X.& k)E[goto(q, X)](i)}.

306 R. Leermakers

The correctness proof is similar to the one in Section 3, for the Earley parser.

Moreover, it is a special case of the proof of the Marcus parsers that will be detailed in

Section 5. A direct correctness proof can be found in [S, 73.

If the grammar is LR(O), one easily proves that each recognizer function for

a canonical LR(0) state results in a set with at most one element. The functions for

nonempty q may then be rephrased imperatively as

Cd(i):

Cd (X>

if A-m.Eq then return {(A-a., i)}

else if B+.cEini(q) then return [q](B, i)

else if i<n then return [q](xi+l, i+ 1)

else return 0

fi

i): if [goto(q, X)](i)=@ then return 0

else let (A+aX.b,j) be the unique element of [goto(q, X)](i).

if A+x.XPEq then return {(A+a.XB, j)}

else return [q](A, j)

fi

fi

Creating such functions for each LR(0) state, one obtains a deterministic LR(0) parser.

In [7] it is explained how to improve its efficiency by replacing the functions by

procedures that manipulate global variables.

Of course, the above nondeterministic LR(0) parser can also be used for arbitrary

grammars. If the functions are memoized, the worst-case time complexity is 2”‘O(n3).

In recent years it has become fashionable to consider LR parsers for parsing a natural

language, and the above algorithm behaves better than the complicated Tomita [15]

version of nondeterministic LR parsing [7]. Just like the Tomita parser and the above

version of the Earley parser, the functional LR(0) parser does not terminate for cyclic

grammars and for grammars for which there is a derivation A ++ WI/? such that

u + + E. Just as for the Earley parser [6], however, lifting the ban on the use of E-rules

in leftmost symbol rewritings leads to an LR(O)-like parser that loops for cyclic

grammars only.

5. Recursive ascent Marcus

Marcus [S] has suggested a type of look-ahead parsers that should mimic the

processing of a natural language by humans. The characteristic assumption of

a branch of linguistics is that Marcus’ parser is the proper basis for processing

a natural language in a deterministic way. Here we are not interested in such claims

about natural language but focus on the main ideas of the parser itself. A problem is

that Marcus parsers have not yet been formulated very accurately, although an

Recursive ascent parsing 307

attempt has been made in [9]. The family of recognizers defined below constitute our

formalization of Marcus’ ideas about look-ahead. A formalization of ideas is rarely

unique though, and we may have found one that deviates slightly from Marcus’ own

intentions. From the mathematical point of view, however, our family of parsers seems

to be a natural one.

In the following we use a few new notations. By k : c(we denote the k-prefix of a, with

k a natural number. It is defined as follows: if c(= E or k = 0 then k : a = E; if TX #E then

1 : c(is the first symbol of a. More generally, if CI # E and k > 0,

l if l:a~V, then k:a=l:cc;

l if l:rxEVN then

if k>lal then k:cc=z

otherwise k: x is the prefix of CI with length k,

where 1 CI 1 is the length of CL If the prefix k : a is removed from a, one is left with a postfix

referred to as CY : k. We take the prefix and postfix operations to bind less tightly than

concatenation. For instance, k:a/l means the prefix of c$.

The new family of parsers is based on a generalization of the notion of states.

Whereas previously a state was a set of dotted grammar rules, it now becomes a set of

objects y+c~.fi, with YE I’, I’* such that 1: y rewrites in one step to a prefix of a/3.

Correspondingly, we generalize some basic functions. Firstly, ini is (re)defined to be

the smallest solution of

for some k>O. For example, if A-+XBC and B+ YZ are rules then

B+. Yz~illi({A+X.K}) if k= 1,

BC-+. YZCE~~~({AD+X.BCD}) if k=2,

BCD+. YZCDE~~~({ADE-+X.BCDE}) if k=3, etc.

Note how the right-hand sides of the items grow with k, and this, in fact, is the main

idea: if a state with item ADE-+XBCDE. is reached, a “reduce” action follows,

implying that A-+XBC applies. This decision is taken after having “looked ahead” the

two symbols DE that follow the part of the input generated by A.

A nonrecursive definition of ini is possible with a new kind of rewriting: instead of

elements of V*, we rewrite elements of I/* x I/* with a family of rewriting relations

denoted by ak, with k a positive natural number. Their definition is

whenever A-+cr is a grammar rule. For example, if A-+BCD is a grammar rule, then

(4 YZ)*1(B, CDYZ), (4 YZ) *z PC, D YZ),

(AX, YZ)*,(BC, DX YZ), (AX, YZ)a3(BCD, XYZ),

308 R. Leermakers

and if A-+xCD is a rule, with x a terminal,

(A, YZ) ak(x, CD YZ)

for k= 1, 2, 3 . . . The above function ini is definable in terms of ak:

ini(q)={Bp+.v/.IB+v Ay+a.P~q A (k:p,b: k)&(Bp,6)}.

Note that Aa=z-X/?-(A, cc)=aI(X, /I) and both definitions of ini come down to the

corresponding ones in Section 4, if one takes k = 1. Yet another way to define ini is

The function goto has to be generalized as well, turning its second argument into an

element of V+ instead of V:

goto(q, 6)={y+cd.fiIymx.S/?~(quini(q)) A d=k:@).

Now consider recognition functions

Cd(i)= {k+~. p3.j) I y+u.fiEq A P-?; Xi+ 1 ...xj},

[q](s,i)={(y~cc.B,j)Iy~a.PEqA(k:8,lJ:k)~~(6,~)AE,ixi+,...xj}.

For look-ahead parsers, it is customary to introduce a marker that signals the end of

the input. We take I for this marker, i.e. we require x,+ 1 = 1. Then, if we define the

initial state by q. = {S’+.S I}, one has that (S ‘+.S I, n+ l)E[qJ(O) is equivalent to

s%xr...x,.

As the specifications of the recognition functions differ only slightly from the ones of

Section 4, it will not come as a surprise that they can be implemented similarly

(Algorithm 3):

Cql(i)= {ea. P>j) I(Y+a.P,j)ECql(xi+l, i+ l)>

u { (ypm.B, j) I B+.kni(q) A (y--m.P, j)ECql(B, i)}

U{(Y+% Qlr +a.%lj,

[q](S, i)= {(y-m.iU,j) I y-+a.iGq A(y+cd.i, j)E[goto(q, S)](i)}

u { (y-cc.B,j) I (y-cc.P,j)ECdh 1) A v.aveWq)

A(p+G.v, WCw4q, S)l(i)).

(3)

Recursive ascent parsing 309

Proof. The proof is isomorphic to the one in Section 3. First observe that

B fxi+I . ..xj_3.((k:P,P:k)~~(xi+,,y)A\yXi+z...xj)

V 3,,((k : 8, B : k) ~;k (B, Y) A BYE A Y ~ xi+ 1 . . . xj)

which implies that

V(fi=E A i=j),

C~l(~)={(~~~.8,j)/(~~~.P,j)~C~l(~i+~,i+1)~

u{(y+~.P,j) I B+E A (y+~.h_+~(R i)>

u ((y-m., i) 1 y-mxq}.

Because y+a./leq A (k: /I, fi: k) s,(B, y) implies that all items B+.v are included in

ini(this is equivalent to the above version.

For establishing the correctness of [q] note that (PI, /?J rk (6,;1) either consists of

zero steps, in which case PI = 6 and f12 = 2, or contains at least one step:

3,((flI, Pz)z;k(S, A) A 3” 3 Xi+1 ...xj)-(fiI=S A P2 4 Xi+l . ..Xj)

A/2%x l+l ...xj).

We apply this equivalence for PI = k : fi and fiZ = fi : k to rewrite the specification of [q]

as [q](S, i)=SouS1, with

SI = {(y-./W I Y ~a.BEqA(k:p,B:k)~>k(~,;l)

By the definition of goto, if y+cc.Si.eq and 6= k:S2 then y+ctS.l.egoto(q, 6). Hence,

with the specification of [q], So may be rewritten as

SO= {(y-cc.62, j) 1 y+a.Slleq A (y+a6./2, j)E[goto(q, S)](i)}.

The set S, may be rewritten using the specification of [q](p, I):

S~={(y+a.P,j)l(Y+~. P,jkCal(~, 1) A P+.~vEW~

310 R. Leermakers

The existence of ~+.6v in ini implies p-d.vegoto(q, 6) because 6 = k: Sv. Hence,

The fundamental reason for having the new states is that the items have longer

right-hand sides, so that is will occur less often that the right-hand side of some item is

a suffix of another one in the same state. As a consequence, the parser suffers from

fewer reduce-reduce conflicts and is deterministic for more grammars. The look-

ahead size k can be tuned to the grammar and may vary from state to state. Choosing

k = 1 for every state one recovers the parser of Section 4. Whereas in LR(k) parsers the

look-ahead consists of k terminals, with k fixed, in the Marcus parser it consists of at

most k- 1 elements of I’. This, in general, corresponds to an unbounded look-ahead

in terms of terminals. For any value of k, however, the Marcus parser look-ahead may

be 0 elements of V for some reductions. Also, when there are s-rules, an element of

V may derive 0 terminals. Hence, a finite look-ahead in terms of nonterminals may

vanish in terms of terminals. It is, therefore, difficult to compare LR(k) parsers and

Marcus parsers exactly. An interesting subject for future research would be to

characterize the class of grammars that can be parsed deterministically with a Marcus

parser.

6. Conclusions

The functional approach to LR parsing provides a high-level view on the subject

compared to the standard theory. It might appear at first sight that this paper belongs

to the theoretical realm only, and the formulation of the Algorithms (l-3) may seem

esoteric, especially to people who are not used to functional formulations of algo-

rithms. Nevertheless, we claim that the above is important in practice. In fact, the

functional implementations need not be less efficient than conventional ones, espe-

cially if the functions are formulated in low-level imperative languages with efficient

function calls, like C. This does not mean that efficiency considerations may not

considerably alter the low-level realization of the functions. In [7] it is shown how to

replace functions by procedures without arguments, if the parser is deterministic. If

one wishes, one can go further and implement everything in assembly. Then the

overhead of procedure calls may be eliminated altogether by replacing them by

jump-to-subroutine instructions. Then one gets implementations like Pennello’s [lo],

which (to our knowledge), in fact, is the first recursive ascent implementation of LR

parsing (avant la lettre). Pennello invented his technique by looking at efficient

implementations of recursive descent parsers, using his (recursive ascent) intuition

about what happens in an LR parser. Had the above been the standard theory of LR

parsing, his discovery would have been quite straightforward. The relation between

Recursive ascent parsing 311

our theory and Pennello’s implementation illustrates that some things that tradition-

ally play an important role in the theory of LR parsing, such as stack manipulations,

belong to the realm of implementation details. Another strategy that is possible to

improve efficiency is the combining of recursive descent and ascent techniques [13].

Whereas the LR(0) parser of this paper is functionally equivalent to standard

implementations, the recursive ascent Earley parsers of this paper and that of [6] are

not. On the one hand, our functional implementations have problems with cyclic

grammars. On the other, they allow the grammar to be compiled into a parser, and

this definitely improves the parser’s speed of execution. What we called an Earley

parser here could also be called a non-deterministic PLR(0) parser [14] (PLR stands

for predictive LR). Just like a PLR(0) parser, Algorithm 1 can be seen as a recursive

descent parser on a transformed grammar. Moreover, the grammar transformations

are essentially the same.

Marcus look-ahead parsers as formulated in this paper are so natural from the

point of view of LR parsing that one would really hope that they will indeed prove to

be natural in the linguistic sense as well. In any case, this paper’s formalization of

Marcus’ ideas should be helpful to the linguistic application.

Acknowledgment

I am particularly indebted to two of my colleagues at Philips Research. Frans

Kruseman Aretz invented recursive ascent parsing and took the time to comment on

my ideas when they were still very immature. Lex Augusteijn pointed out to me the

relevance of memo-functions and suggested the notion of pair rewriting used in

Section 5. I also thank an anonymous referee for his useful suggestions.

References

[1] D.T. Barnard and J.R. Cordy, SL parses the LR languages, Comput. Lang. 13 (2) (1988) 65-74.

[2] J.C. Earley, An efficient context-free parsing algorithm, Comm. ACM 13 (2) (1970) 94102.

[3] R.N. Horspool, Recursive ascent-descent parsers, in: D. Hammer, ed., Compiler Compilers, Lecture

Notes in Computer Science Vol. 477 (Springer, Berlin, 1991) l-10.

[4] F.E.J. Kruseman Aretz, On a recursive ascent parser, Inform. Process. Lett. 29 (1988) 201-206.

[S] R. Leermakers, Non-deterministic recursive ascent parsing, in: Proc. 5th Conf of the European Chapter

of the Association for Computational Linguistics (Berlin, 1991) 63-68.

[6] R. Leermakers, A recursive ascent Earley parser, Inform. Process. Lett. 41 (1992) 87-91.

[7] R. Leermakers, L. Augusteijn and F.E.J. Kruseman Aretz, A functional LR parser, Theoret. Comput.

Sci. 104 (1992) 313-323.

[S] M.P. Marcus, A Theory ofSyntactic Recognition oj’Narura1 Language (MIT Press, Cambridge, MA,
1980).

[9] R. Nozohoor-Farshi, On formalizations of Marcus’ parser, in: COLING’86 (Proceedings of the 1 lth

International Conference on Computational Linguistics, University of Bonn, 1986) 531-535.
[lo] T.J. Pennello, Very fast LR parsing, SIGPLAN Notices 21(7) (1986) 145-151.

312 R. Leermakers

[l l] G.H. Roberts, Recursive ascent: an LR analog to recursive descent, SIGPLAN Notices 23 (8) (1988)

23-29.

[12] G.H. Roberts, Another note on recursive ascent, Inform. Process. Lett. 32 (1989) 263-266.

[13] G.H. Roberts, From recursive ascent to recursive descent via compiler optimizations, SIGPLAN
Notices 25 (4) (1990) 83-89.

[14] S. Sippu and E. Soisalon-Soininen, Parsing Theory, Vol. II (Springer, Berlin, 1990) 265-274.

[15] M. Tomita, Ejicient Parsing for Natural Language, A Fast Algorithm for Practical Systems (Kluwer,

Dordrecht, 1986).

