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Abstract--This paper presents interactive fuzzy programming for multilevel linear programming 
problems. In fuzzy programming for multilevel linear programming problems, recently developed by 
Led et al., since the fuzzy goals are determined for both an objective function and decision variables 
at the upper level, undesirable solutions are produced when these fuzzy goals are inconsistent. In 
order to overcome such problems, after eliminating the fuzzy goals for decision variables, interactive 
fuzzy programming for multilevel linear programming problems is presented. In our interactive 
method, after determining the fuzzy goals of the decision makem at all levels, a satisfactory solution 
is derived efficiently by updating the satisfactory degrees of decision makers at the upper level with 
considerations of overall satisfactory balance among all levels. Illustrative numerical examples for 
two-level and for three-level linear programming problems are provided to demonstrate the feasibility 
of the proposed method. © 1998 Elsevier Science Ltd. All rights reserved. 

Keywords--Multilevel linear programming problem, Fuzzy programming, Fuzzy goals, Interac- 
tive methods. 

1. I N T R O D U C T I O N  

Two-level programming problems, in which a Decision Maker (DM) at the upper level makes a 
decision subject to an optimization problem for a DM at the lower level, admit of two interpre- 
tations. They depend on whether there is a cooperative relationship among DMs or not. 

Consider a decision problem in a decentralized firm as an example of a decision problem with 
cooperative DMs. Top management, an executive board, or headquarters interests itself in overall 
management policy such as long-term corporate growth or market share. In contrast, operation 
divisions of the firm are concerned with coordination of daily activities. After headquarters 
chooses a strategy in accordance with the overall management policy, each division determines a 
goal to be achieved and optimizes the goal, not fully understanding the strategy chosen by the 
headquarters. 

As an example of a decision problem without cooperative DMs, consider the Stackelberg 
duopoly: Firm 1 and Firm 2 supply homogeneous goods to a market. Suppose Firm 1 dom- 
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inates Firm 2 in the market, and consequently Firm 1 first determines a level of supply and then 
Firm 2 decides its level of supply after it realizes Firm l 's level of supply. 

There is essentially cooperative relationship between the DM at the upper level and the DM 
at the lower level in the former problem while each DM does not have a motivation to cooperate 
each other in the latter problem. 

As the former's mathematical programming problem, we can model such a problem as a single- 
objective large scale mathematical programming problems used the decomposition method or a 
multiobjective programming problem with objective functions of all levels. The two-level pro- 
gramming formulation is intend to supplement decomposition approach, not supplant it [1]. How- 
ever, the formulation is noteworthy as a mathematical programming problem with a hierarchical 
structure. 

Studies on the latter have been seen in the literature on game theory. Such a situation is 
modeled as a Stackelberg game, in which there are two players, and one player determines his/her 
strategy and thereafter the other player decides his/her strategy [2]. Each player completely 
knows objective functions and constraints of an opponent and himself/herself, and the DM at the 
upper level (leader) first specifies his/her strategy and then the DM at the lower level (follower) 
specifies his/her strategy so as to optimize his/her objectives with full knowledge of decision of 
the DM at the upper level. 

According to the rule, the DM at the upper level also specifies his/her strategy so as to 
optimize his/her own objective. Then a solution defined as the above-mentioned procedure 
is called a Stackelberg strategy (solution). The Stackelberg strategy has been employed as a 
solution concept when decision problems are modeled as two-level programming problems whether 
there is a cooperative relationship between the DMs or not. Even if objective functions of both 
DMs and common constraint functions are linear, it is known that this problem is a nonconvex 
programming problem with special structure. In general, a Stackelberg solution does not satisfy 
Pareto optimality because of its noncooperative nature. 

Computational methods for a Stackelberg solution are classified roughly into three categories: 
the vertex enumeration approach based on a characteristic that an extreme point of a set of best 
responses of the DM at the lower level is also an extreme point of a set of the common con- 
straints, the Kuhn-Tucker approach in which the upper level's problem with constraints involved 
optimality conditions of the lower level's problem is solved, and the penalty function approach 
which adds a penalty term to the upper level's objective function so as to satisfy optimality of 
the lower level's problem. 

The g th best method proposed by Bialas and Karwan [1] is one of vertex enumeration ap- 
proaches. The solution search procedure of the method starts from a point which is an optimal 
solution to the problem of the upper level and checks whether it is also an optimal solution to the 
problem of the lower level or not. If the first point is not a Stackelberg solution, the procedure 
continues to examine the second best solution to the problem of the upper level and so on. The 
Kuhn-Tucker method is used by Bialas and Karwan [1] in their parametric complementary pivot 
algorithm. Bard and Falk [3] replaces the complementarity constraint (complementary slackness 
condition) with a separable representation and applies a general branch and bound algorithm. 
Bard [4] formulates a two-level programming problem as an equivalent semi-infinite problem and 
develops his grid search algorithm through a parametric linear program technique. ~lnlii [5] 
proposes an algorithm based on bicriteria programming by using the result of [4]. White and 
Anandalingam [6] develops an approach to two-level programming using a duality gap-penalty 
function format. 

For obtaining the Stackelberg solution to a multilevel linear programming problem, Bard [7] 
and Wen and Bialas [8] propose algorithms for three-level problems. Bard [7] formulates a normal 
nonlinear programming problem by using the Kuhn-Tucker conditions for the problems of the 
third level and the second level, and proposes a cutting plane algorithm employing a vertex 
search procedure to solve a three-level linear programming problem. Wen and Bialas [8] develop 
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a hybrid algorithm to solve a three-level linear programming problem. The algorithm adopts 
the K th best algorithm to generate the K th best extreme point and the complementary pivot 

algorithm to check feasibility. 
Recently, Lai [9] and Shih, Lai and Lee [10] have proposed a solution concept, which is different 

from the concept of a Stackelberg solution, for problems such that decisions of DMs in all the 
levels are sequential and all of the DMs essentially cooperate with each other. Their method is 
based on an idea that the DM at the lower level optimizes his/her objective function, taking a 
goal or preference of the upper level into consideration. DMs elicit membership functions of fuzzy 
goals for their objective functions, and especially, the DM at the upper level also specifies those of 
fuzzy goals for his/her decision variables. The DM at the lower level solves a fuzzy programming 
problem with a constraint on a satisfactory degree of the DM at the upper level. Unfortunately, 
there is a possibility that their method leads a final solution to an undesirable one because of 
inconsistency between the fuzzy goals of the objective function and the decision variables. 

In this paper, we present interactive fuzzy programming for multilevel linear programming 
problems. In order to overcome the problem in the methods of Lad et al., after eliminating 
the fuzzy goals for decision variables, multilevel linear programming problems is formulated. In 
our interactive method, after determining the fuzzy goals of the DM at all levels, a satisfactory 
solution is derived efficiently by updating the satisfactory degrees of the DMs at the upper 
level with considerations of overall satisfactory balance among all levels. Illustrative numerical 
examples for two-level and three-level linear programming problems are provided to demonstrate 
the feasibility of the proposed method. 

2.  I N T E R A C T I V E  F U Z Z Y  P R O G R A M M I N G  F O R  

T W O - L E V E L  L I N E A R  P R O G R A M M I N G  P R O B L E M S  

A two-level linear programming problem for obtaining a Stackelberg solution is formulated as: 

minimize Zl(Xl, x2) = c11xl Jr c12x2, 
Xl 

where x2 solves 

minimize z2(x l ,  x2) • c21xl Jr c22x2, (1) 
x2 

subject to AlXl Jr A2x2 _< b, 

Xl _>0, X2 ~ 0 ,  

where xi, i = 1, 2 is an ni-dimensional decision variable, cil, i = 1, 2 is an hi-dimensional constant 
row vector, ci2, i = 1, 2 is an n2-dimensional constant row vector, b is an m-dimensional constant 
column vector, and A~, i = 1, 2 is an m x ni constant matrix. For the sake of simplicity, we use the 
following notations: x = (x l ,x2)  E R " '+"2,  c = [c:: c12 c22 ], and A = [A1 A2], and let DM1 denote 
the DM at the upper level and DM2 denote the DM at the lower level. In the two-level linear 
programming problem (1), z l (x l ,x2 )  and z2(xl, x2), respectively, represent objective functions 
of the upper and the lower levels and x l  and x2, respectively, represent decision variables of the 
upper and the lower levels. 

In contrast  to the above formulation, in this paper, DM1 specifies a fuzzy goal and a minimal 
satisfactory level and evaluates a solution proposed by DM2, and DM2 solves an optimization 
problem, referring to the fuzzy goal and the minimal satisfactory level of DM1. Thus, a two-level 
linear programming problem dealt with in this paper is formally represented as: 

minimize 
Level 1 

minimize 
Level 2 

subject to 

Zl(X1, X2) = C11X 1 Jr C12X2, 

z2(xl, x2) = c21xi + c22x2, 

A l X l  Jr A2x2 <~ b, 

X 1 > 0, X 2 > 0, 

(2) 
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where two objective functions zl and z2 are those of the upper and the lower levels, respectively, 
and minimizeLevel 1 and minimizeLevel 2 mean that  the DMs at the upper and the lower levels are 
minimizers for their objective functions. 

It is natural that  DMs have fuzzy goals for their objective functions when they take fuzziness 
of human judgments into consideration. For each of the objective functions z~(x), i = 1, 2 
of (2), assume that  the DMs have fuzzy goals such as '%he objective function zi(x) should be 
substantially less than or equal to some value p~." 

The individual minimum 
Z rain = min zi(x), i = 1, 2 (3) 

xEX 

and the individual maximum 

Z m a x /  = max zi(x), i = 1, 2 (4) 
xEX 

of the objective functions are referred to when the DMs elicit membership functions prescribing 
the fuzzy goals for the objective functions z~(x), i = 1, 2. The DMs determine the membership 
functions #i (z~ (x)), which are strictly monotone decreasing for z~ (x), consulting the variation ra- 
tio of degree of satisfaction in the interval between the individual minimum (3) and the individual 
maximum (4). The domain of the membership function is the interval [z man, z~aax], i " 1, 2, and 
the DM specifies the value zi ° of the objective function for which the degree of satisfaction is 0 
and the value z 1 of the objective function for which the degree of satisfaction is 1. For the value 
undesired (larger) than z °, it is defined that  #~(zi(x)) = 0, and for the value desired (smaller) 
than z~, it is defined that  #i(z~(x)) = 1. 

For the sake of simplicity, in this paper, we adopt a linear membership function, which char- 
acterizes the fuzzy goal of the DM at each level. The corresponding linear membership function 
/zi(zi) is defined as: { o 0, z,(x) > z,, 

z , ( x )  - z ° 1 z0,  (5) 
~ i ( Z i ( X ) )  = z l  ~0 ' Zi < Zi(X) 

1 1, z,(x) < z~, 

where z ° and z~ denote the value of the objective function zi(x) such that  the degree of mem- 
bership function is 0 and 1, respectively, and it is assumed that  the DMs subjectively assess z ° 

1 and z i . 

1.0 

z ° 
I 

z , ( x )  

Figure 1. Linear membership function. 

1 in  Suppose that  applying the way suggested by Zimmermann [11], the DMs specify z ° and zi 
the following way. That  is, using the individual minimum 

Z ra in  = Z i ( X  i ° )  = min {z,(x) AlXl + A2x2 _< b, xl  _> 0, x2 _> 0} (6) 

together with 

= Z, ( X ' ) ,  
1, i f i  = 2, 

= 1 , 2 ,  j =  2, i f i = l ,  (7) 
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the DMs determine the linear membership functions as in (5) by choosing z~ = z min, z ° = z m, 
i =  1,2. 

After eliciting the membership functions, DM1 subjectively specifies a minimal satisfactory 
level ~ E [0, 1] for his/her membership function/~l(Zl(X)). Then, DM2 maximize his/her mem- 
bership function subject to the condition that DM2's membership function/~l(Zl(X)) is larger 
than or equal to ~ under the given constraints, that is, DM2 solves the following problem: 

maximize ]A2(Z2(X)) , 
x 

subject to A1xl 4- A2x2 ~ b, 

~I(ZI(X)) ~ ~, (8) 

x_>O. 

Constraints on fuzzy goals for decision variables are eliminated in our formulation (8) while they 
are involved in the formulations by Lai et aL [9,10]. 

If an optimal solution to problem (8) exists, it follows that DM1 obtains a satisfactory solution 
having a satisfactory degree larger than or equal to the minimal satisfactory level specified by 
DMI's own self. However, the larger the minimal satisfactory level is assessed, the smaller DM2's 
satisfactory degree becomes. Consequently, a relative difference between the satisfactory degrees 
of DM1 and DM2 becomes larger and it is feared that overall satisfactory balance between both 
levels cannot maintain. 

To take account of overall satisfactory balance between both levels, DM1 needs to compromise 
with DM2 on DMI's minimal satisfactory level. To do so, a satisfactory degree of both DMs is 
defined as 

A = min(#l(zl(x)), p2(z2(x))), (9) 

and the following problem is substituted for 

maximize 
x,A 

subject to 

problem (8): 

A, 

AIX1 4-A2x2 < b, 

~l(Zl(X)) > ~ > A, 

~2(z2(x)) > ~, 
e [0,11, 

x_>O. 

(10) 

For problem (10), consider the auxiliary problem 

maximize A, 
X,A 

subject to AlXl + A2x2 _< b, 

~l(Zl(X)) > ~, 
~(z2(x)) > ~, 

h e  [0,1], 
x > O .  

(11) 

By solving problem (11), we obtain a solution maximizing a smaller satisfactory degree between 

those of both DMs. 
If an optimal solution x* to problem (11) satisfies the condition that pl(Zl(X*)) _> ~, it follows 

that DM1 obtains a satisfactory solution. However, the solution x* does not always satisfy the 
condition. Then the ratio of satisfactory degree between both levels 

a = ~2(z2(x*)) (12) 
~l(Zl(X*))' 
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which is defined by Lai [9], is useful. If A > 1, i.e., #2(z2(x*)) > #l(zl(x*)), then DM1 updates 
the minimal satisfactory level ~ by increasing the value ~. Receiving the updated level/~, DM2 
solves problem (8) with ~t, and then DM1 obtains a larger satisfactory degree and DM2 accepts 
a smaller satisfactory degree. Conversely, if A < 1, i.e., #2(z2(x*)) < #l(zl(x*)), then DM1 
updates the minimal satisfactory level ~ by decreasing the wlue ~, and DM1 obtains a smaller 
satisfactory degree and DM2 accepts a larger satisfactory degree. 

At an iteration ~, let #l(Zf), #2(z~) and A t denote DMI's and DM2's satisfactory degrees and 
a satisfactory degree of both levels, respectively, and let A t = #2(z t2) / l~l (z f ) .  When DM1 is 
proposed a solution by DM2 and the following two conditions are satisfied, DM1 concludes the 
solution as a satisfactory solution and the interactive process terminates. 

Termina t ion  Condi t ions  of  the  In terac t ive  Process  for 
Two-Level  Linear  P r o g r a m m i n g  P rob l ems  

(1) DMI's satisfactory degree is larger than or equal to the minimal satisfactory level ~ spec- 
ified by DM1, i.e., #l(z~) >_ ~. 

(2) The ratio A t of satisfactory degrees is in the closed interval between its lower and its 
upper bounds specified by DM1. 

Condition (1) means DMI's required condition for solutions proposed by DM2. Condition (2) 
is provided in order to keep overall satisfactory balance between both levels. 

Unless the conditions are satisfied simultaneously, DM1 needs to update his/her minimal sat- 
isfactory level ~. 

P r o c e d u r e  for U p d a t i n g  the  Minimal  Sat is factory  Level 

(1) If condition (1) is not satisfied, then DM1 decreases the minimal satisfactory level $. 
(2) If the ratio A t exceeds its upper bound, then DM1 increases the minimal satisfactory 

level ~. Conversely, if the ratio A t is below its lower bound, then DM1 decreases the 
minimal satisfactory level ~. 

Let ~' denote the updated minimal satisfactory level. DM2 solves the following maximization 
problem with the updated minimal satisfactory level ~. 

maximize ~2(Z2(X)), x 
subject to Alxl + A2x2 _< b, 

~I(Zl(X)) ~ ~,, (13) 

x ~ 0 .  

The above-mentioned algorithm is summarized as follows. 

Algor i thm of  the  In terac t ive  F u z z y  P r o g r a m m i n g  for Solving 
Two-Level  Linear P r o g r a m m i n g  P rob l ems  

STEP 1. DM1 elicits the membership function #1(Zl) of the fuzzy goal of DM1, and specifies 
the minimal satisfactory level ~ and the lower and the upper bounds of the ratio of satisfactory 
degrees A 1. 

STEP 2. DM2 elicits the membership function #2(z2) of the fuzzy goal of DM2. 

STEP 3. DM2 solves the auxiliary problem (11), and then proposes a solution (z~, z~) to problem 
(11), A t, #l(z~), #2(z2e), and A ~ to DM1. 

STEP 4. If the solution proposed by DM2 to DM1 satisfies the termination conditions, DM1 
concludes the solution as a satisfactory solution and the algorithm stops. 

STEP 5. DM2 updates the minimal satisfactory level ~ in accordance with the procedure of 
updating minimal satisfactory level. 

STEP 6. DM2 solves problem (13) and proposes an obtained solution to DM1. Return to Step 4. 
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3. I N T E R A C T I V E  F U Z Z Y  P R O G R A M M I N G  FOR 
MULTILEVEL L I N E A R  P R O G R A M M I N G  P R O B L E M S  

We extend the interactive fuzzy programming for two-level linear programming problems to 
that for multilevel problems, i.e., t-level linear programming problems. 

Let x = (x l , . . .  ,xt) • R nl+'''+nt, 

Cll ... C l t ]  
C ~ ...... , 

L Ctl " ' "  Ctt J 

and A = [AI "'" At]. In a way similar to two-level problems, we can formulate a t-level linear 

programming problem as: 

minimize 
Level 1 

minimize 
Level t 

subject to 

Zl (X)  : Cl lX1 + ' ' "  "4- CltXt, 

Zt(X) : Ct lXl  + ' ' "  + CttXt, 

AlXl + ""  + Atxt  <_ b, 

Xl __~ O , . . . , X  t > O. 

(14) 

It is assumed that a DM at each level elicits a linear membership function of his/her fuzzy goal 
#~(z~(x)), i = 1, . . .  ,t, and that all the DMs except for at the lowest level determine minimal 
satisfactory levels ~ e [0, 1], i = 1,. . .  ,t  - 1. 

In a multilevel case, a problem corresponding to problem (8) for a two-level problem can be 
extended to: 

maximize #t(zt(x)), x 

subject to AlXl  + . . .  + Atxt  <_ b, 

/zi(zi(x)) > $~, i = 1 , . . . , t -  1, 

x~O. 

Defining a satisfactory degree of DMs at all the levels as 

(15) 

A = min(~ t  I (Z 1 (X)) ,  • • • , I~t (Z t (X)) ) ,  (16) 

we substitute the following problem for problem (15). 

maximize 
x,A 

subject to AlXl + " "  + Atxt  <_ b, 

# i ( z i ( x ) ) > ~ i > A ,  i = l , . . . , t - 1 ,  

m ( ~ ( x ) )  > :~, 

• [0,11, 

x > O .  

(17) 

To solve problem (17), we formulate the 

maximize 
x,A 

subject to 

auxiliary problem 

A, 

AlXl + . . .  + Atxt  <_ b, 

# , (z , (x) )>A,  i----1,. . . , t ,  

A • [o, 1], 

x ~ O .  

(18) 
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i = l , . . . , t - - 1 .  (19) 

At an iteration £, let #i(z~), i = 1, . . .  ,t  and A e denote a satisfactory degrees of the DM (DMi) 
at the ith level, i = 1, . . .  ,t, and a satisfactory degree of all the levels, respectively, and let 
A~ e e t = i ~ i + l ( z i + l ) / # i ( z ~ )  denote a ratio of satisfactory degrees of the ith and the (i + 1) th levels. 
For all i = 1 , . . . ,  t - 1, the DMi is proposed a solution by the DM(i + 1). Then the DMs at 
all the levels except for the t th level obtain the satisfactory solutions and the interactive process 
terminates if the following two conditions are satisfied. 

T e r m i n a t i o n  C o n d i t i o n s  o f  t h e  I n t e r a c t i v e  P r o c e s s  for Mul t i l eve l  
L i n e a r  P r o g r a m m i n g  P r o b l e m s  

(1) For all i = 1 , . . .  , t  - 1, DMi's satisfactory degree is larger than or equal to the minimal 
satisfactory level 5i specified by DMi, i.e., #~(z/) > 5i, i = 1 , . . . ,  t - 1. 

(2) For all i = 1 , . . . ,  t - 1, the ratio A~ of satisfactory degrees is in the closed interval between 
its lower and its upper bounds specified by DMi. 

Suppose that  the DMs from at the (q + 1) th level to at the (t - 1) th level, i.e., DM(q + 1), 
DM(q + 2) , . . . ,  and DM(t - 1), satisfy the proposed solution but  DMq does not satisfy it. Then 
DMq, DM(q + 1) , . . . ,  and DM(t - 1) need to update their minimal satisfactory levels 5i, i = q, 
q + 1 , . . . ,  t - 1. Giving the DM at the upper level serious consideration, the DM at the lower 
level should update his/her the minimal satisfactory level. 

P r o c e d u r e  for U p d a t i n g  t h e  M i n i m a l  S a t i s f a c t o r y  Leve l  

(1) A DM at a level in which condition (1) is not satisfied decreases the minimal satisfactory 
level 5i- 

(2) If the ratio A~ exceeds its upper bound, then DMi increases the minimal satisfactory 
level 5i. Conversely, if the ratio A t is below its lower bound, then DMi decreases the 
minimal satisfactory level 5i. 

(3) If the ratio 5i+1/5i of the minimal satisfactory levels also is not in the valid interval of A~, 
then the minimal satisfactory level 5i is updated in a way similar to the updating Step 2. 

Let 5~ denote the updated minimal satisfactory level. DMt solves the following maximization 
problem with the updated minimal satisfactory level 5~. 

maximize 
x,A 

subject to A l X l  -t- " "  -I- A t x t  <_ b ,  

#i(zi(x)) _> A, i = l , . . . , q - 1 ,  

_> i = q , . . . , t  - 1, 

ttt(zt(x)) >_ 

A e  [0, 1], 

x > O .  

(20 )  

The above-mentioned algorithm is summarized as follows. 



Interactive Fuzzy Programming 79 

Algorithm of  the Interactive Fuzzy Programming for Solving 
Multilevel Linear Programming Problems 

STEP 1. For all i = 1 , . . .  , t  - 1, DMi elicits the membership function/~(z~) of the fuzzy goal of 
DMi, and specifies the minimal satisfactory level ~ and the lower and the upper bounds of the 
ratio of satisfactory degrees A~. 

STEP 2. DMt elicits the membership function #t(zt) of the fuzzy goal of DMt. 

STEP 3. DMt solves the auxiliary problem (18). For all i = t , t  - 1 , . . .  ,2, DMi proposes a 
solution (z~ , . . . ,  z~) to problem (18), A~, #, (z~) ,  and A~ to DM(i - 1) successively. 

STEP 4. If the solution proposed to DMs at all the levels except for the t th level satisfies the 
termination conditions, they conclude the solution as a satisfactory one and the algorithm stops. 

STEP 5. If the DMs from at the (q + 1) th level to at the ( t - 1 )  th level, i.e., DM(q + 1), DM(q+ 2), 
. . . ,  and DM(t -1 ) ,  satisfy the proposed solution but DMq does not satisfy it, DMi, i -- q , . . . ,  t - 1  
update the minimal satisfactory levels ~,  i = q . . . .  , t - 1 in accordance with the procedure of 
updating minimal satisfactory level. 

STEP 6. DMt solves problem (20). For all i = t, t - 1 , . . . ,  2, DMi proposes an optimal solution 
to problem (20) to DM(i - 1) successively. Return to Step 4. If there does not exist any feasible 
solution to problem (20), go to Step 7. 

STEP 7. For all i = q , . . . ,  t - 1, DMi update the minimal satisfactory levels ~i by decreasing the 
values ~ ,  and return to Step 6. 

4 .  N U M E R I C A L  E X A M P L E S  

In this section, we provide illustrative numerical examples for two-level and three-level linear 
programming problems to demonstrate the feasibility of the proposed method. 

EXAMPLE 1. Consider the following two-level linear programming problem: 

m i n i m i z e  z l  = - C l X l  - c2x2 ,  
Level 1 

minimize z2 = - C 3 X l  + c2x2 ,  
Level 2 

subject to Aixl + A 2 x 2  ~ b, 

x ~ > 0 ,  j = 1 , 2 , . . . , 2 0 ,  

(21) 

where xl  = ( x l , . . . ,  xl0) T, x2 = (x11,. . . ,  x20)x; each entry of 25 x 10 coefficient matrices A1 
and A2 is a random value in the interval [-50,50]; each entry of the right-hand side constant 
column vector b is a sum of entries of the corresponding row vector of A1 and A2 multiplied 
by 0.6. Coefficients are shown in Table 1. 

Suppose that  the initial minimal satisfactory level as ~f = 1.0, and the lower and the upper 
bounds of A as [0.6, 1.0]. The membership functions (5) of the fuzzy goals are assessed by using 
values (6) and (7). The individual minima and the corresponding optimal solutions are shown in 
Table 2. 

Then problem (11) for this numerical example can be formulated as 

maximize A, 
X,A 

subject to x E X, 

(zl(x) +384.325) > A, (22) 
(-783.988 + 384.325) 

(Z2(X) - 84.398) 
> A, 

(-127.097 - 84.298) 
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Z~ nin -783 .988  

x l  3.358 1.406 0.071 1.555 0.648 0 3.026 1.463 0.856 2.895 

x2 4.636 2.794 0.196 2.386 2.003 0 0.035 2.309 0 0 

z~ nin - 127.097 

Xl 0.582 0.881 1.431 2.020 0.720 0 1.653 0.959 0.929 1.488 

x2 0.888 0.533 0.620 0 1.250 0 0.116 1.214 0 0 

Table  3. T h e  first i terat ion.  

A 1 0.704 

Xl 1 1.141 2.715 1.382 1.794 2.334 0 2.145 0.930 0.834 1.442 

x~ 3.110 1.315 0.336 1.945 2.865 0 0.305 1.006 0 0 

~ -665.638 ~1 (~f) 0.703874 
z21 - 6 4 . 4 6 8  .2 (z2 8) 0.703874 

h 1 1.000000 

where X denotes the feasible area of problem (21). Data of the first iteration including an optimal 
solution to problem (22) are shown in Table 3. 

Condition (1) of termination of the interactive process is not satisfied because the satisfactory 
degree #] -- 0.703874 of DM1 does not exceed his/her minimal satisfactory level ~ -- 1.0. Con- 
sequently, suppose that  DM1 changes the minimal satisfactory level from ~ = 1.0 to ~' = 0.75. 
Then a problem corresponding to problem (13) is formulated as 

maximize #2(z2(x)), 
x 

subject to x E X, 

(Zl(X) +384.325) > 0.75. 
(-783.988+384.325) - 

(23) 

Data of the second iteration including an optimal solution to problem (23) are shown in Table 4. 

Table  4. A sa t i s fac tory  solution.  

Xl 2 1.471 2.524 1.166 1.784 2.064 0 2.221 0.997 0.877 1.695 

x22 3.338 1.555 0.310 2.022 2.712 0 0.254 1.234 0 0 

z 2 - 6 8 4 . 0 7 2  ~1 (zl s )  0.750000 

z~ - 4 1 . 4 7 3  P2 (z s )  0.595151 

A2 0.793534 

At the second iteration, the satisfactory degree #~ = 0.75 of DM1 becomes equal to his/her 
minimal satisfactory level ~' = 0.75 and the ratio A 2 ---- 0.793534 of satisfactory degrees is in the 
valid interval [0.6,1.0] of the ratio. Therefore, this solution satisfies the conditions of termination 
of the interactive process and becomes a satisfactory solution for both DMs. 

EXAMPLE 2. As an example for a three-level linear programming problem, consider the following 

problem: 
minimize 

Level 1 

minimize 
Level 2 

minimize 
Level 3 

subject to 

Z1 = C l X l  + C2X2 + C3X3, 

2; 2 = C3X 1 + C4X2 + C6X3, 

Z 3 = CTX 1 + C8X2 + C9X3, 

A l X l  + A 2 x 2  + A 3 x 3  ~_ b ,  

xj_>0,  j = 1 , 2 , . . . , 1 5 ,  

(24) 
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where Xl = (Xl, . . .  ,xs) T, x2 = (x6, . . .  ,xl0) T, x3 = (Xl l , . . .  ,Xls)T; each entry of five-dimen- 
sional row constant vectors c~, i = 1 , . . .  ,9 and each entry of 16 × 5 coefficient matrices A1, A2, 
and A3 are random values in the interval [-50, 50]; each entry of the right-hand side constant 
column vector b is a sum of entries of the corresponding row vector of A1, A2, and A3 multiplied 
by 0.6. Coefficients are shown in Table 5. 

Suppose that  DM1 and DM2 determine the initial minimal satisfactory levels as ~1 = ~2 = 1.0, 
and the lower and the upper bounds of A1 and 42 as [0.6, 1.0]. The membership functions (5) of 
the fuzzy goals are assessed by using values (6) and z m = max(z i (x l° ) , . . . ,  Zi(xi-l'°), Zi(xi+l'°), 
. . . ,  z,(xk°)) instead of (7). The individual minima and the corresponding optimal solutions are 
shown in Table 6. 

Table  6. T h e  so lu t ions  preferred by t he  DMs  at  all t h e  levels. 

Z~ in --530.680591 

Xl 2.722648 0 0 2.223594 2.565147 

X2 1.642039 4.417235 0 0 1.051477 

X3 1.289657 0 0 1.556818 0 

z ~  in -466 .089944  

x l  2.722648 0 0 2.223594 2.565147 

x2 1.642039 4.417235 0 0 1.051477 

x3 1.289657 0 0 1.556818 0 

z~ nin -374 .496510 

Xl 2.151865 0 1.058096 2.857073 1.365113 

x2 2.004901 1.582176 0 0 1.287546 

x3 0.854287 0 0 1.507248 1.156342 

Then problem (18) for this numerical example can be formulated as 

maximize A, 
xtA 

subject to x E X, 

(zl(x) + 431.70) 
_> A, 

(-530.68 + 431.70) 

(z2(x) + 407.41) 
>A,  

(-466.09 + 407.41) 

(z3(x) + 364.14) 
_> A, 

(-374.49 + 364.14) 

(25) 

where X denotes the feasible area of problem (24). Data of the first iteration including an optimal 
solution to problem (25) are shown in Table 7. 

)t 1 

x~ 
x~ 
xl 
zt 

41 

Table 7. The first iteration of the three-level problem. 

0.719718 

2.560726 0 0.972062 2.312286 

1.691225 3.141050 0 0 

1.629141 0 0 1.284492 

-512 .281943  

-449 .642029  

-371 .595715  

2.110154 

1.032234 

0.144631 

~1 (~)  0.81410s 
~2 (~I) o.719718 
~ ( ~ )  o.719718 

0.884058 

1.000000 
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Condition (1) of termination of the interactive process is not satisfied because the satisfactory 
degree #~ = 0.719718 of DM2 does not exceed his/her minimal satisfactory level 62 -- 1.0. Con- 
sequently, suppose that DM2 changes the minimal satisfactory level from ~2 = 1.0 to ~ -- 0.75. 
Then a problem corresponding to problem (20) is formulated as 

maximize A, 
X,A 

subject to x E X, 

(Zl (x) -{- 431.70) 
> A, 

(-530.68 + 431.70) (26) 
(z2(x) + 407.41) 

_> 0.75, 
(-466.09 -{- 407.41) 

(za(x) + 364.14) > A. 
( - 3 ? 4 . 4 9  + 364.14) - 

Data of the second iteration including an optimal solution to problem (26) are shown in Table 8. 

Table 8. The second iteration. 

A 1 0.707925 

x~ 2.577929 0 0.968443 

x~ 1.678027 3.206640 0 

x~ 1.661743 0 0 

d 

-515.672186 

-451.419102 

-371.473663 

2.289364 2.141502 

0 1.021492 

1.275119 0.102063 

Pl (z~) 0.848360 

. 2 ( z l )  0.75oooo 

o.7o7925 
0.884058 

0.943899 

Condition (I) of termination of the interactive process is not satisfied because the satisfactory 
degree #~ = 0.848360 of DM1 does not exceed his/her minimal satisfactory level ~1 ~- 1.0. 
Consequently, suppose that DM1 changes the minimal satisfactory level from ~i == 1.0 to ~ = 0.9. 
Then a problem corresponding to problem (20) is formulated as 

maximize A, 
X,A 

subject to x E X, 

(Zl(X) + 431.70) 
_> 0.90, 

(-530.68 + 431.70) (27) 
(z2(x) + 407.41) 

_> 0.75, 
(-466.09 + 407.41) 

(z3(x) + 364.14) 
>A. 

(-3?4.49 + 364.14) - 

Data of the second iteration including an optimal solution to problem (27) are shown in Table 9. 
At the third iteration, the satisfactory degree #31 = 0.9 of DM1 becomes equal to his/her mini- 

real satisfactory level ~ = 0.9 and the satisfactory degree #~ = 0.795653 of DM2 becomes larger 
than his/her minimal satisfactory level ~ = 0.75. The ratios A13 = 0.884058 and A 3 = 0.867396 
of satisfactory degrees are in the valid interval [0.6, 1.0] of the ratios A1 and A2. Therefore, 
this solution satisfies the conditions of termination of the interactive process and then becomes 
a satisfactory solution for all the DMs. 

5. C O N C L U S I O N S  

In this paper, we have proposed interactive fuzzy programming for multilevel linear program- 
ming problems. In our interactive method, after determining the fuzzy goals of the decision 



x~ 
x~ 
x~ 
z~ 
z~ 
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Table 9. A satisfactory solution to the three-level problem. 

0.690146 

2.603864 0 0.962985 2.254808 2.188760 

1.658131 3.305521 0 0 1.005297 

1.710893 0 0 1.260989 0.037889 

-520.783182 

-454.098147 

-371.289662 

~1 (~) 0.900000 
~2(~) 0.795653 
~a(z~) 0.690146 

0.884058 

0.867396 
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makers at all levels, a satisfactory solution is derived efficiently by updating the satisfactory 
degrees of decision makers at the upper level with considerations of overall satisfactory balance 
among all levels. Illustrative numerical examples for two-level and three-level linear programming 
problems have been provided to demonstrate the feasibility of the proposed method. 

A P P E N D I X  

T H E  P R O B L E M  A R I S I N G  W H E N  F U Z Z Y  G O A L S  
F O R  D E C I S I O N  V A R I A B L E S  A R E  I N T R O D U C E D  

In the methods by Led [9] and Shih, Led and Lee [10], fuzzy goals not only for objective functions 
but also for decision variables of DM1 are introduced. We will show an example producing an 
undesirable solution in such a case. 

Suppose that  DM1 defines membership functions of fuzzy goals for decision variables in the 
following by using a solution x* yielding the individual minimum z~ nan = minxex Zl(X) and a 
solution x L -  yielding the individual maximum z~ ax = maxxeX Zl(X). For all i = 1 , . . . ,  10, 

I O, xi > X~ +pi, 

- x ~  + (x* + p~) * < x~ < x* 
c x Pi , x ~ _  _ +Pi, 

~ / 1 i ( i )  ---- Z i -- (X* -- Pi) . 
Pi , x i - P i < - x i ~ x * ,  

0, xi < x~ - P i ,  

where p~ -- Ix~ - xi/~_ I. 
Aggregating the membership functions of fuzzy goals for the objective function and the decision 

variables, Led et al. defined a satisfactory degree of DM1 as 

it1 = min(#l(Zl(X)), #~1(Xl), . . . ,  tt~ 10(xl)). 

A solution to problem (22) substituted the above satisfactory degree #1 for that  defined as (5) is 
shown in Table 10. 

Table 10. A solution to the problem with fuzzy goals for decision variables. 

x~ 1.148982 

0.000000 

x~ 1.287428 

0.118403 

/~xl 0.342160 

0.000000 

4 
A 1 

0.000000 

1.700706 0.383300 0.754668 0.991874 

1.567263 0.951902 0.567960 0.889271 

0.932108 0.394978 1.130434 1.487149 

0.552626 0.264450 0.531488 0.132675 

0.000000 0.383683 0.485395 0.468897 

0.000000 0.327894 0.654584 0.000000 

--408.924218 

-12.713343 

,1 (zl) 0.061550 
~2(4) 0.459167 

7.460065 
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As seen in Table 10, the satisfactory degree of DMs at both levels is A 1 = 0.0 because several 
satisfactory degrees of fuzzy goals for decision variables become zero. DMs cannot help updating 
their membership functions of fuzzy goals to improve their satisfactory degrees. It  seems that  
the possibility that  the overall satisfactory degree becomes zero gets larger if the number of fuzzy 
goals for decision variables increases. 

Furthermore, we can point out another disadvantage from the following example. For the sake 
of simplicity, suppose that  there is only one fuzzy goal for a decision variable. Thus, we have 

#x = min(#l(Zl (x)), #~1 (Xl)). 

At the ~th iteration, suppose that  

~1 : 0.7, ~l(Zl) = 0.88, ~ l ( X l )  = 0.8, 

#2 = 0.62, #2(z2) = 0.62, 

and this solution does not satisfy the condition of the bounds of A e. At the (~ + 1) th iteration, 
suppose that  

~1 = 0.8,  m ( z x )  = 0 .82,  ~ l ( X X )  = 0 .8 ,  

/~2 = 0 .58,  # 2 ( z 2 )  = 0 .58,  

and the interactive process terminates as this solution satisfies all the conditions. 
It is seen that  DM1 increases his/her satisfactory degree while DM2 decreases tha t  of h im/her  

because the pair (#1, #2) changes from (0.7, 0.62) at the ~th iteration to (0.8, 0.58) at the (~+ 1)th 
iteration. 

In contrast, for the pair (/11 (zl), #2 (z2)) of satisfactory degrees for the objective functions, both 
DM1 and DM2 decrease their satisfactory degrees because the pair (#l(Zl), #2(z2)) changes from 
(0.88, 0.62) at the ~th iteration to (0.82, 0.58) at the (£ + 1)th iteration. It should be noted that  
when fuzzy goals for decision variables are introduced, the iterative procedure may terminate, 
having an undesirable (dominated) solutions from the viewpoint of the satisfaction of the fuzzy 
goals for the objective functions. 
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