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A b s t r a c t - - W e  give an affirmative answer to a question formulated by Aulbach and Van Minh by 
showing that  the linear difference equation 

Xn+l ~ Anxn, for n E N 

in a Banach space B is exponentially stable if and only if for every f = {f~}~=l E /p(N, B), where 
1 < p < oQ, the solution of the Cauchy problem 

xn+1 = A ~ x n + f n ,  f o r n E N ,  xl = 0  

is bounded on I~. © 2004 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - D i f f e r e n c e  equations in Banach spaces, Linear equation, /p-spaces, Exponential sta- 
bility. 

Let B be a real or complex Banach space. Consider the linear difference equation 

X n + l  -~- A,~xn, for n • N, (1) 

where xn • B and the operators A,  belong to £(B), the space of bounded linear operators acting 
in B. Let ]. [ denote the norm on B and the induced operator norm on £(B). Throughout the 
pape r ,  we sha l l  a s s u m e  t h a t  t h e  coefficients in (1) are  u n i f o r m l y  b o u n d e d ,  

sup  [A~ I < oo. (2) 
hEN 

With equation (1), we ean associate the nonhomogeneous equation 

x~+l = A~z~ + f~, for n e N, (3) 
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~o where f = {f~}n=l belongs to one of the sequence spaces 

lp= { f :  N--* B 

l~ = { f :  N--+B 

i l A I  p < co}, 
~=1 

sup lfnt < CO}- 
hEN 

(We use the notation f (n)  = f,~ 
standard norms 

for 1 < p <  co, 

for n E N.) The spaceslp, 1 < p < co, equipped with the 

/ oo ~ lip 

) 
IIflI~ = sup IAh 

hEN 

for l_<p  < co, 

are Banach spaces. 
In [1], Aulbach and VanMinh formulated the following problem (see [1, p. 262]). Given 1 < 

p < 0% is it true that equation (1) is exponentially stable if and only if for every f E lp, the 
solution of the Cauchy problem 

z~+l = Anz~ + f~, for n E N, xl = 0 (4) 

is bounded. 
The following theorem gives an affirmative answer to the above question. 

THEOREM 1. Suppose (2) holds and let 1 < p < co. Then, equation (1) is exponentially stable 
if and only if for every f E lp, the solution of the Cauchy problem (4) is bounded on N. 

Some remarks are appropriate at this point. 

REMARK 1. The conclusion of the theorem is also true for p = co (see Theorem 2 below), but it 
is no longer valid when p = 1. As shown in [1, Theorem 6], the boundedness of the solution of 
the Cauchy problem (4) for every f E 11 is equivalent to the uniform stability of (1). 

REMARK 2. Suppose that (1) is exponentially stable and let f E Ip for some p, 1 < p _< co. Then, 
all solutions of the nonhomogeneous equation (3) are bounded, not just the particular solution 
of the Cauchy problem (4). This is a simple consequence of the variation-of-constants formula 
and the inclusion Ip C l~  for 1 < p _< co. With a little more effort, using the discrete version of 
Young's convolution theorem, it can be shown that all solutions of (3) belong even to Ip. Note 
also that this result is true without assuming the uniform boundedness of the coefficients in (1). 

REMARK 3. A similar characterization of the exponential stability for linear ordinary differential 
equation was given by Ku~er (see [2, Theorem 1]). For further related results and discussions in 
the continuous case, see the monographs by DaleckiY and KreYn [3, Chapter III] and Coppel [4, 
Chapter V]. 

The proof of Theorem 1 will be based on the following characterization of the exponential 
stability of (1) due to Aulbach and VanMinh [1]. 

THEOREM 2. (See [i, Corollary 5].) Suppose (2) holds and Iet 1 < p < ce. Then, equation (1) 
is exponentially stable if and only if for every f E Iv, the solution of the Cauchy probiem (4) 
belongs to lp. 

PROOF OF THEOREM 1. 

NECESSITY. Suppose that (1) is exponentially stable. If f E lp, then by Theorem 2 the solution 
x( f )  = {x~(f)}~= 1 of the Cauchy problem (4) belongs to lp. Since l v c  l~, x ( f )  is bounded 
o n  N.  
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SUFFICIENCY. Suppose that  for every f C lp, where p E (1, oc) is fixed, the solution x( f )  of (4) 

is bounded on N. We must show that  (1) is exponentially stable. 

It  follows by easy induction on n that  the solution x(f)  of (4) has the form 

n 

xn(f) = E X(n, i)fi-1, n e N, (5) 
i=2 

where X(n, i) is defined by the operator product 

X(n,i)  = A ~ - I A , - 2 . . . A i ,  for n > i 

and 
X(n,  n) = I, I being the identity on B. 

(As usual, an empty sum is defined to be zero.) It follows from (5) and Hhlder's inequality that  
for every fixed n E N, the linear operator xn(.) : lp ~ B is bounded. Further, by our assumption, 

sup Ixn(f)l < oc, for every f e Ip. 
n C N  

By the uniform boundedness principle, 

g = s n p  rl  (')lI < 
n o n  

where I1' II denotes the operator norm. From this, 

Ix,~(f)l < KUfllp, for every n e 5] and f E lp. (6) 

We shall show that  

IX(n, k)l _< C(n - k) 1/p exp ( - ~ ( n  - k)~/q) , for n > k _> 2, (7) 

where q is the conjugate exponent o fp  (1/p + 1/q = 1) and C, ~ > 0 are constants (independent 
of n and k) which will be specified later. 

Let n > k >_ 2 be fixed. If IX(n, k)[ -- 0, then (7) trivially holds. So from now on suppose that  
IX(n,k)[ > O. Since 

IX(n, k)l = IX(n, i)X(i, k)I < IX(n, i)l IX(i, k)l , for k < i < n, 

it follows that  
IX(i,k)[ > 0, for k < i < n. 

Therefore, we can define a sequence g = {gi}i=l E lp by 

0, 
X(i  + 1, k)y 

gi = IX(i + 1, k)[ '  

0, 

for l _ < i < k ,  

for k < i < n - 1 ,  

f o r / > _ n ,  

where y is an arbitrary, but fixed element of B. The definition of g and the representation 
formula (5) yields for n e N, 

x (g) x(i,k)y ( ) 
 =k+l Ix(i,  k)[ 
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Consequently, 

IX(n, k)yl IX(i ' k)l = Ixn(g)l ~ Kllgllp ~ KlYl(n - k)l/p, 
i=k+l  

the last but one inequality being a consequence of (6). Since y E B was arbitrary, the last 
inequality implies 

1 
IX(n, k)] IX(/, k)~ <- K(n - k) 1/p. 

As noted before, 1X(j,k)l > 0 for all j between k and n. Therefore, we can repeat  the same 
procedure with n replaced by j and we conclude tha t  

%lX(j ,k) l  < K ( j - k )  Wp, for k < j  <_n, (s) 

where 
J 1 

Iz(i,k)L' 
i -~k+l  

Without  loss of generality, we may (and do) assume tha t  the constant K in (8) is greater than 
one. From (8), we find for k < j _< n, 

1 ~j 

aj - %-1 - IX(j, k)---~ > -- K ( j _ k ) l / p '  

~j > i 1 
-- K ( j  k) 1/p 

O/j--1. 

Hence, 

m = 2  Kml/p 

(An empty  product  is defined to be one.) Taking into account tha t  ak+l  = ]Ak] -1 and using the 
last inequality in (8) (with j = n), we obtain 

]Z(n,k)[ < L ( n - k )  1/p H 1 KmWP ' (9) 
m=2 

where L = K supkeN IAk[. The last product can be written as 

I-[ 1 Kin1~ p = exp ( E  in 1 Kml/P <_ exp \ - ~  ~ T~I/-------- ~ ; ,  
m=2 \m=2  

where we have used the inequality ln(1 - x) < - x  for x E (0, 1). For the last sum, we have the 
estimate 

where q is the conjugate exponent of p. Thus, 

H 1 K~nl/p _<Mexp  
m=2 
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where 7 = q / K  and M = exp(q21/q/K). Using the last inequali ty in (9), we conclude tha t  (7) 
holds with C = LM.  

Using inequali ty (7), we can easily complete the  proof. Let f E loo and consider the solu- 
tion x ( f )  of (4). By vir tue of (5) and (7), we have for n C 1~1, 

Ix,~(f)l -< Iffl[~ ]X(n,k)l = Hflfoo 1 + ~ IX(n, k)f 
k=2 k=2 

<<- Ilfl]oo I + C  E ( n - k ) l / p e x p ( - 7 ( n - k )  l/q) 
k=2 

where the convergence of the last infinite series follows from Cauchy's  integral  criterion. The last 

es t imate shows tha t  for every f E lo~, the solution x ( f )  of (4) belongs to loo. By the applicat ion 
of Theorem 2 (p = ~ ) ,  we conclude tha t  equation (1) is exponential ly stable. | 
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