# A Criterion for the Exponential Stability of Linear Difference Equations 

M. Pituk<br>Department of Mathematics and Computing, University of Veszprém<br>P.O. Box 158, 8201 Veszprém, Hungary<br>pitukm@almos.vein.hu<br>(Received and accepted November 2003)

Communicated by R. P. Agarwal


#### Abstract

We give an affirmative answer to a question formulated by Aulbach and Van Minh by showing that the linear difference equation


$$
x_{n+1}=A_{n} x_{n}, \quad \text { for } n \in \mathbb{N}
$$

in a Banach space $B$ is exponentially stable if and only if for every $f=\left\{f_{n}\right\}_{n=1}^{\infty} \in l_{p}(\mathbb{N}, B)$, where $1<p<\infty$, the solution of the Cauchy problem

$$
x_{n+1}=A_{n} x_{n}+f_{n}, \quad \text { for } n \in \mathbb{N}, \quad x_{1}=0
$$

is bounded on $\mathbb{N}$. © 2004 Elsevier Ltd. All rights reserved.

Keywords-Difference equations in Banach spaces, Linear equation, $l_{p}$-spaces, Exponential stability.

Let $B$ be a real or complex Banach space. Consider the linear difference equation

$$
\begin{equation*}
x_{n+1}=A_{n} x_{n}, \quad \text { for } n \in \mathbb{N}, \tag{1}
\end{equation*}
$$

where $x_{n} \in B$ and the operators $A_{n}$ belong to $\mathcal{L}(B)$, the space of bounded linear operators acting in $B$. Let $|\cdot|$ denote the norm on $B$ and the induced operator norm on $\mathcal{L}(B)$. Throughout the paper, we shall assume that the coefficients in (1) are uniformly bounded,

$$
\begin{equation*}
\sup _{n \in \mathbb{N}}\left|A_{n}\right|<\infty \tag{2}
\end{equation*}
$$

With equation (1), we can associate the nonhomogeneous equation

$$
\begin{equation*}
x_{n+1}=A_{n} x_{n}+f_{n}, \quad \text { for } n \in \mathbb{N}, \tag{3}
\end{equation*}
$$

Research supported by the Hungarian National Foundation for Scientific Research Grant No. T 031935.
where $f=\left\{f_{n}\right\}_{n=1}^{\infty}$ belongs to one of the sequence spaces

$$
\begin{aligned}
l_{p} & =\left\{f:\left.\mathbb{N} \rightarrow B\left|\sum_{n=1}^{\infty}\right| f_{n}\right|^{p}<\infty\right\}, \quad \text { for } 1 \leq p<\infty \\
l_{\infty} & =\left\{f: \mathbb{N} \rightarrow B\left|\sup _{n \in \mathbb{N}}\right| f_{n} \mid<\infty\right\}
\end{aligned}
$$

(We use the notation $f(n)=f_{n}$ for $n \in \mathbb{N}$.) The spaces $l_{p}, 1 \leq p \leq \infty$, equipped with the standard norms

$$
\begin{aligned}
\|f\|_{p} & =\left(\sum_{n=1}^{\infty}\left|f_{n}\right|^{p}\right)^{1 / p}, \quad \text { for } 1 \leq p<\infty \\
\|f\|_{\infty} & =\sup _{n \in \mathbb{N}}\left|f_{n}\right|
\end{aligned}
$$

are Banach spaces.
In [1], Aulbach and Van Minh formulated the following problem (see [1, p. 262]). Given $1<$ $p<\infty$, is it true that equation (1) is exponentially stable if and only if for every $f \in l_{p}$, the solution of the Cauchy problem

$$
\begin{equation*}
x_{n+1}=A_{n} x_{n}+f_{n}, \quad \text { for } n \in \mathbb{N}, \quad x_{1}=0 \tag{4}
\end{equation*}
$$

is bounded.
The following theorem gives an affirmative answer to the above question.
Theorem 1. Suppose (2) holds and let $1<p<\infty$. Then, equation (1) is exponentially stable if and only if for every $f \in l_{p}$, the solution of the Cauchy problem (4) is bounded on $\mathbb{N}$.

Some remarks are appropriate at this point.
Remark 1. The conclusion of the theorem is also true for $p=\infty$ (see Theorem 2 below), but it is no longer valid when $p=1$. As shown in [1, Theorem 6], the boundedness of the solution of the Cauchy problem (4) for every $f \in l_{1}$ is equivalent to the uniform stability of (1).
Remark 2. Suppose that (1) is exponentially stable and let $f \in l_{p}$ for some $p, 1 \leq p \leq \infty$. Then, all solutions of the nonhomogeneous equation (3) are bounded, not just the particular solution of the Cauchy problem (4). This is a simple consequence of the variation-of-constants formula and the inclusion $l_{p} \subset l_{\infty}$ for $1 \leq p \leq \infty$. With a little more effort, using the discrete version of Young's convolution theorem, it can be shown that all solutions of (3) belong even to $l_{p}$. Note also that this result is true without assuming the uniform boundedness of the coefficients in (1).
REmark 3. A similar characterization of the exponential stability for linear ordinary differential equation was given by Kučer (see [2, Theorem 1]). For further related results and discussions in the continuous case, see the monographs by Daleckiĭ and Kreĭn [3, Chapter III] and Coppel [4, Chapter V].
The proof of Theorem 1 will be based on the following characterization of the exponential stability of (1) due to Aulbach and Van Minh [1].
Theorem 2. (See [1, Corollary 5].) Suppose (2) holds and let $1 \leq p \leq \infty$. Then, equation (1) is exponentially stable if and only if for every $f \in l_{p}$, the solution of the Cauchy problem (4) belongs to $l_{p}$.
Proof of Theorem 1.
Necessity. Suppose that (1) is exponentially stable. If $f \in l_{p}$, then by Theorem 2 the solution $x(f)=\left\{x_{n}(f)\right\}_{n=1}^{\infty}$ of the Cauchy problem (4) belongs to $l_{p}$. Since $l_{p} \subset l_{\infty}, x(f)$ is bounded on $\mathbb{N}$.

Sufficiency. Suppose that for every $f \in l_{p}$, where $p \in(1, \infty)$ is fixed, the solution $x(f)$ of (4) is bounded on $\mathbb{N}$. We must show that (1) is exponentially stable.

It follows by easy induction on $n$ that the solution $x(f)$ of (4) has the form

$$
\begin{equation*}
x_{n}(f)=\sum_{i=2}^{n} X(n, i) f_{i-1}, \quad n \in \mathbb{N}, \tag{5}
\end{equation*}
$$

where $X(n, i)$ is defined by the operator product

$$
X(n, i)=A_{n-1} A_{n-2} \ldots A_{i}, \quad \text { for } n>i
$$

and

$$
X(n, n)=I, \quad I \text { being the identity on } B .
$$

(As usual, an empty sum is defined to be zero.) It follows from (5) and Hölder's inequality that for every fixed $n \in \mathbb{N}$, the linear operator $x_{n}(\cdot): l_{p} \rightarrow B$ is bounded. Further, by our assumption,

$$
\sup _{n \in \mathbb{N}}\left|x_{n}(f)\right|<\infty, \quad \text { for every } f \in l_{p}
$$

By the uniform boundedness principle,

$$
K=\sup _{n \in \mathbb{N}}\left\|x_{n}(\cdot)\right\|<\infty,
$$

where $\|\cdot\|$ denotes the operator norm. From this,

$$
\begin{equation*}
\left|x_{n}(f)\right| \leq K\|f\|_{p}, \quad \text { for every } n \in \mathbb{N} \text { and } f \in l_{p} \tag{6}
\end{equation*}
$$

We shall show that

$$
\begin{equation*}
|X(n, k)| \leq C(n-k)^{1 / p} \exp \left(-\gamma(n-k)^{1 / q}\right), \quad \text { for } n>k \geq 2 \tag{7}
\end{equation*}
$$

where $q$ is the conjugate exponent of $p(1 / p+1 / q=1)$ and $C, \gamma>0$ are constants (independent of $n$ and $k$ ) which will be specified later.

Let $n>k \geq 2$ be fixed. If $|X(n, k)|=0$, then (7) trivially holds. So from now on suppose that $|X(n, k)|>0$. Since

$$
|X(n, k)|=|X(n, i) X(i, k)| \leq|X(n, i)||X(i, k)|, \quad \text { for } k<i<n,
$$

it follows that

$$
|X(i, k)|>0, \quad \text { for } k<i<n .
$$

Therefore, we can define a sequence $g=\left\{g_{i}\right\}_{i=1}^{\infty} \in l_{p}$ by

$$
g_{i}= \begin{cases}0, & \text { for } 1 \leq i<k, \\ \frac{X(i+1, k) y}{|X(i+1, k)|}, & \text { for } k \leq i \leq n-1, \\ 0, & \text { for } i \geq n,\end{cases}
$$

where $y$ is an arbitrary, but fixed element of $B$. The definition of $g$ and the representation formula (5) yields for $n \in \mathbb{N}$,

$$
x_{n}(g)=\sum_{i=k+1}^{n} X(n, i) \frac{X(i, k) y}{|X(i, k)|}=\left(\sum_{i=k+1}^{n} \frac{1}{|X(i, k)|}\right) X(n, k) y .
$$

Consequently,

$$
|X(n, k) y| \sum_{i=k+1}^{n} \frac{1}{|X(i, k)|}=\left|x_{n}(g)\right| \leq K\|g\|_{p} \leq K|y|(n-k)^{1 / p}
$$

the last but one inequality being a consequence of (6). Since $y \in B$ was arbitrary, the last inequality implies

$$
|X(n, k)| \sum_{i=k+1}^{n} \frac{1}{|X(i, k)|} \leq K(n-k)^{1 / p} .
$$

As noted before, $|X(j, k)|>0$ for all $j$ between $k$ and $n$. Therefore, we can repeat the same procedure with $n$ replaced by $j$ and we conclude that

$$
\begin{equation*}
\alpha_{j}|X(j, k)| \leq K(j-k)^{1 / p}, \quad \text { for } k<j \leq n, \tag{8}
\end{equation*}
$$

where

$$
\alpha_{j}=\sum_{i=k+1}^{j} \frac{1}{|X(i, k)|}
$$

Without loss of generality, we may (and do) assume that the constant $K$ in (8) is greater than one. From (8), we find for $k<j \leq n$,

$$
\begin{aligned}
\alpha_{j}-\alpha_{j-1}=\frac{1}{|X(j, k)|} & \geq \frac{\alpha_{j}}{K(j-k)^{1 / p}}, \\
\alpha_{j} & \geq\left(1-\frac{1}{K(j-k)^{1 / p}}\right)^{-1} \alpha_{j-1}
\end{aligned}
$$

Hence,

$$
\alpha_{n} \geq \prod_{m=2}^{n-k}\left(1-\frac{1}{K m^{1 / p}}\right)^{-1} \alpha_{k+1}
$$

(An empty product is defined to be one.) Taking into account that $\alpha_{k+1}=\left|A_{k}\right|^{-1}$ and using the last inequality in (8) (with $j=n$ ), we obtain

$$
\begin{equation*}
|X(n, k)| \leq L(n-k)^{1 / p} \prod_{m=2}^{n-k}\left(1-\frac{1}{K m^{1 / p}}\right) \tag{9}
\end{equation*}
$$

where $L=K \sup _{k \in \mathbb{N}}\left|A_{k}\right|$. The last product can be written as

$$
\prod_{m=2}^{n-k}\left(1-\frac{1}{K m^{1 / p}}\right)=\exp \left(\sum_{m=2}^{n-k} \ln \left(1-\frac{1}{K m^{1 / p}}\right)\right) \leq \exp \left(-\frac{1}{K} \sum_{m=2}^{n-k} \frac{1}{m^{1 / p}}\right)
$$

where we have used the inequality $\ln (1-x)<-x$ for $x \in(0,1)$. For the last sum, we have the estimate

$$
\sum_{m=2}^{n-k} \frac{1}{m^{1 / p}} \geq \int_{2}^{n-k} \frac{1}{x^{1 / p}} d x=q\left[(n-k)^{1 / q}-2^{1 / q}\right]
$$

where $q$ is the conjugate exponent of $p$. Thus,

$$
\prod_{m=2}^{n-k}\left(1-\frac{1}{K m^{1 / p}}\right) \leq M \exp \left(-\gamma(n-k)^{1 / q}\right)
$$

where $\gamma=q / K$ and $M=\exp \left(q 2^{1 / q} / K\right)$. Using the last inequality in (9), we conclude that (7) holds with $C=L M$.

Using inequality (7), we can easily complete the proof. Let $f \in l_{\infty}$ and consider the solution $x(f)$ of (4). By virtue of (5) and (7), we have for $n \in \mathbb{N}$,

$$
\begin{aligned}
\left|x_{n}(f)\right| & \leq\|f\|_{\infty} \sum_{k=2}^{n}|X(n, k)|=\|f\|_{\infty}\left(1+\sum_{k=2}^{n-1}|X(n, k)|\right) \\
& \leq\|f\|_{\infty}\left(1+C \sum_{k=2}^{n-1}(n-k)^{1 / p} \exp \left(-\gamma(n-k)^{1 / q}\right)\right) \\
& \leq\|f\|_{\infty}\left(1+C \sum_{m=1}^{\infty} m^{1 / p} \exp \left(-\gamma m^{1 / q}\right)\right),
\end{aligned}
$$

where the convergence of the last infinite series follows from Cauchy's integral criterion. The last estimate shows that for every $f \in l_{\infty}$, the solution $x(f)$ of (4) belongs to $l_{\infty}$. By the application of Theorem $2(p=\infty)$, we conclude that equation (1) is exponentially stable.

## REFERENCES

1. B. Aulbach and N. Van Minh, The concept of spectral dichotomy for linear difference equations II, J. Difference Eq. Appl. 2, 251-262, (1996).
2. D.L. Kučer, On some criteria for the boundedness of the solutions of a system of differential equations (in Russian), Dokl. Akad. Nauk SSSR 69, 603-606, (1949).
3. Ju.L. Daleckǐ̆ and M.G. Krě̌n, Stability of Solutions of Differential Equations in Banach Space, Volume 43 , Transl. Math. Monographs, Amer. Math. Soc., Rhode Island, (1974).
4. W.A. Coppel, Stability and Asymptotic Behavior of Differential Equations, Heath, Boston, MA, (1965).
