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1. Introduction

The need for handling inconsistent knowledge bases has been recognized by the Artificial Intelligence community in re-
cent years. Although it is the overruling opinion that inconsistencies are undesirable, they still appear in practice, mostly for
two reasons: unreliable sources of information and presence of rules with exceptions.

Even if every set of formulas Ti which represents the ith source of information (or expert opinion) is consistent it is pos-
sible that

S
Ti is inconsistent – a typical example is a working schedule list of demands which overlap. Hunter and Konieczny

[1] also points to the following examples: a group of clinicians advising on a patient, a group of witnesses of some incident
and a set of newspaper reports covering some event.

Another common reason that leads to inconsistencies is the presence of default rules (rules with possible exceptions, for
example ‘‘birds fly”) in knowledge bases. If a knowledge base consists of a consistent set of defaults (‘‘quakers are pacifists”,
‘‘republicans are not pacifists”) formalized as entailments, and a consistent set of facts (‘‘Nixon is a quaker”, ‘‘Nixon is a
republican”), it is still possible that the whole base is inconsistent (‘‘Nixon is a pacifist”, ‘‘Nixon is not a pacifist”).

Contrary to common opinion, some authors claim that inconsistencies may be useful – Gabbay and Hunter [2,3] give an
example of overbooking in airline booking systems. Many logical formalisms are developed for reasoning under inconsis-
tency, like paraconsistent logics, default reasoning, possibility theory, belief revision and formal argumentation (see, for
example [4–12]). Unlike classical logic, they enable inferring non-trivial conclusions from inconsistent knowledge bases,
so that two different inconsistent sets can lead to different sets of conclusions.

Development of those techniques points out to the need for analyzing and comparing inconsistent sets. As it is pointed
out in [13], defining degree of inconsistency turns out to be important in software specifications, databases, decision support,
ontologies and information merging.
. All rights reserved.
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http://dx.doi.org/10.1016/j.ijar.2010.05.007
mailto:ddoder@mas.bg.ac.rs
mailto:miodragr@mi.sanu.ac.rs
mailto:zoranm@mi.sanu.ac.rs
mailto:zorano@mi.sanu.ac.rs
http://dx.doi.org/10.1016/j.ijar.2010.05.007
http://www.sciencedirect.com/science/journal/0888613X
http://www.elsevier.com/locate/ijar


D. Doder et al. / International Journal of Approximate Reasoning 51 (2010) 832–845 833
In several papers, the measure of inconsistency depends on the proportion of the language that is affected by the incon-
sistency in a theory ([14–16]). The limitation of this approach (except in [15]) is the fact that it doesn’t consider the distri-
bution of contradiction among the formulas.

The second approach considers the number of formulas needed to produce a contradiction. According to Sorensen ([17]),
an inconsistent set A is better than an inconsistent set B, if the shortest derivation of a contradiction requires more members
of A than B. This idea implies that the set of formulas {/1, . . .,/n} is not equivalent to the singleton {/1^� � �^ /n}. This property
is valid in non-adjunctive logics (see [18,19]), special class of paraconsistent logics, and it can be meaningful in some prac-
tical applications.

For instance, we often have to deal with an inconsistent database. If we have to choose between several inconsistent dat-
abases, this way of measuring can be appropriate for answering the question which one is the least inconsistent. A more tol-
erable database is the one with a larger number of entries required for a contradiction. Similarly, in a court proceeding, it
makes the difference whether each two testimonies are contradictory, or only several of them taken together produce a
contradiction.

Our idea was to study this simple syntactic measure of inconsistency and to see how it compares with a more semantic
notion of existence of a probability measure which assigns a high probability to each formula of the theory. In particular, we
defined a theory T to be n-consistent if each n-element subset of T is was consistent, and wanted to connect this number n
with the existence of a probability higher than 1� 1

n for every formula of T, in which case we called T n-probable. However we
soon discovered that Knight [20] had already investigated extensively this semantic notion based on the existence of appro-
priate probability, but he called it g-consistency. Our syntactic notion also appears in one of Knight’s theorems ([20, Theo-
rem 3.5]) but he does not have a name for it as he is concerned mainly with semantic side. Since our aim was to study in
parallel both the syntactic and semantic approach and to try to find precise relationship between them, we needed two
expressions. We choose to keep our definitions because consistency is a syntactical notion based on the non-existence of
a formal proof of contradiction, so n-consistency seems more appropriate to denote the non-existence of a proof of contra-
diction from n hypotheses. For the semantic notion we decided to use the expression ‘‘n-probable”. Even though this might
confuse a reader familiar with Knight’s work, we though that calling the semantic notion ‘‘n-consistency” and inventing
some new name for the syntactic notion might be even more confusing. More precise comparison of our results to Knight’s
is given in Remark 3.1. Our approach differs significantly from the approach in [14,16] in the sense that their measures of
inconsistency do not differentiate between {/1, . . .,/n} and {/1^� � �^/n} so singletons containing different contradictions
may have different measures.

Section 2 introduces the syntactic notions of n-consistency and strict n-consistency, and establishes some basic facts. Sec-
tion 3 introduces the semantical notion of n-probability (there exists a probability measure assigning to all formulas prob-
ability greater then 1� 1

n). It is demonstrated that this property is stronger than n-consistency, so a weaker property of local
n-probability is introduced, which is shown to be equivalent to n-consistency. Relations to Knight’s results are discussed and
a generic example is given, which demonstrates that the obtained equivalence is the best possible. Section 4 uses conditional
probability to introduce the notion of n-probability modulo some ‘‘certain knowledge”. Connections to n-probability and n-
consistency are proved and two examples are given indicating possible applications. A syntactic notion of n-consistency
modulo a set of formulas is also introduced. In Section 5 we modify the approach from Section 4 by using non-standard prob-
ability measure. We define the notions of strong n-probability and strong probability for a non-standard measure l which
are preserved under l-consequence, defined as conditional probability infinitesimally close to 1. Finally, in Section 6, two
applications of results of Sections 4 and 5 to defaults are given. First, using the connection between defaults and non-stan-
dard conditional probability infinitesimally close to 1 established in [9], we show that strong n-consistency (syntactic ana-
logue of strong n-probability introduced in Section 5) is preserved under default derivation. Second application is quite
opposite in spirit. Using the results of Section 4 we define new relations which may be regarded as a finite approximation
of default consequence. It is shown that these relations satisfy a weakened version of the Kraus et al.’s system of rules for
defaults P ([8]). We also consider a system which combines these new relations with the standard defaults, similar to the
system of Lukasiewicz [25].

The main contributions of this paper can be summarized as follows:

� We introduced new syntactic and semantic notions (one of them is very similar to Knight’s) for measuring inconsistency,
and investigated relations between them. (Sections 2 and 3).
� We generalized the introduced notions to measure inconsistency of theories resulting from beliefs of different agents.

(Sections 4 and 5).
� We investigated relations between our results and default reasoning. (Section 6).

2. n-Consistency

Let P denotes a nonempty set of propositional letters. In this section, we assume that P is finite, while this restriction will
not be imposed in the rest of the paper.

Definition 2.1. Let P ¼ fp1; . . . ; pmg. An atom is any formula of the form
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�p1 ^ � � � ^ �pm;
where +p is p and �p is :p.
The term ‘‘atom” comes from Boolean algebras where it denotes an element whose intersection with any other element

gives 0 or itself. In the Lindenbaum algebra of formulas over P, considered as a Boolean algebra, formulas of the form
±p1^� � �^±pm are exactly the atoms. For each / 2 ForP there are atoms a1, . . .,ak such that / is equivalent with a1_� � �_ak,
which is called the disjunctive normal form of /.

Definition 2.2. A theory T is n-consistent if each T0 # T of cardinality n is consistent.

For instance, each consistent theory T is also n-consistent, for all n. On the other hand, there are many examples of incon-
sistent theories that are n-consistent for some, sometimes quite large, n.

Example 2.1 (Lottery Paradox). The standard example of this kind is the so called lottery paradox with n players. If we
denote by /i the claim ‘‘ith ticket will win the lottery”, it is common sense to believe in :/i, for all i 6 n. However, the fact is
that some ticket will win the lottery. Putting these beliefs together, we get the following inconsistent, but n-consistent
theory f:/1; . . . ;:/n;/1 _ � � � _ /ng.

Suppose that P ¼ fp1; . . . ; pmg. Then there are 2m atoms and 22m

different equivalence classes of formulas (ele-
ments of the corresponding Lindenbaum algebra). Thus, we may assume that there are only 22m

different formulas.
Further on we will assume that sets of formulas we consider consist of representatives of equivalence classes, i.e.
that they contain no equivalent formulas. As representatives of equivalence classes we take the formulas in disjunc-
tive normal form.

Note that if all the formulas in a set of formulas have a common atom, this atom defines a valuation which satisfies the
whole set, i.e., demonstrates its consistency. Thus, maximal consistent theories over the finite language are sets of formulas
containing a common atom (in disjunctions). Consequently, they are of cardinality 22m�1.

For example, if P ¼ fp; qg, fixing the atom p^q we obtain maximal consistent theory T ¼ fp ^ q; ðp ^ qÞ _ ðp ^ :qÞ;
ðp ^ qÞ _ ð:p ^ qÞ; ðp ^ qÞ _ ð:p ^ :qÞ; ðp ^ qÞ _ ðp ^ :qÞ _ ð:p ^ qÞ; ðp ^ qÞ _ ðp ^ :qÞ _ ð:p ^ :qÞ; ðp ^ qÞ _ ð:p ^ qÞ _ ð:p ^ :qÞ;
ðp ^ qÞ _ ðp ^ :qÞ _ ð:p ^ qÞ _ ð:p ^ :qÞg of cardinality 8. On the other hand, adding any formula / to the theory T makes it
highly inconsistent: it contains both / and :/ (for some /), so it is not even 2-consistent.

That leads to the following question: if the theory is inconsistent, but n-consistent, how large n can be? In order to answer
the question, we introduce a more precise notion of ‘‘strict n-consistency” which should enable us to better classify incon-
sistent theories.

Definition 2.3. A theory T is strictly n-consistent if it is n-consistent and it is not (n + 1)-consistent.

Note that,unlike n-consistent theories, strictly n-consistent theories are always inconsistent. Observe that the theory from
Example 2.1 is strictly n-consistent. The main advantage of the new notion is that a theory may be strictly n-consistent for
only one n, while it will be k-consistent for every k 6 n.

Although we saw that there are consistent theories of cardinality 22m�1, the next theorem says that there are no strictly n-
consistent theories for large n.

Theorem 2.1. Let P ¼ fp1; . . . ; pmg. Then, there exists a strictly n-consistent theory T # ForP iff n < 2m.
Proof. The set S of negations of all atoms (i.e. set of complements of atoms in Lindenbaum algebra) forms a (2m � 1)-con-
sistent theory that is not 2m-consistent. Indeed, a negation of an atom is equivalent to the disjunction of the remaining
2m � 1 atoms, and so, a conjunction of any k of formulas from the set S is equivalent to a disjunction of 2m � k atoms. Espe-
cially, a conjunction of the length 2m � 1 is equivalent to some atom, and a conjunction of the length 2m is a contradiction.
Similarly, for k < 2m, the set formed by the negations of any k atoms and the conjunction of negations of the remaining 2m � k
atoms will be a strictly k-consistent theory.

Conversely, suppose that T ¼ f/1;/2; . . . ;/2m ; . . .g is strictly n-consistent, for some n P 2m. Without loss of generality, we
may assume that {/1, . . . ,/n+1} is a minimal inconsistent subset of T, and that all formulas in T are disjunctions of atoms.
Obviously, /1 is not a tautology, so /1 contains at most 2m � 1 atoms.

We claim that there exists an atom in /1 that does not appear in /2 and vice versa, that there exists an atom in /2 that
does not appear in /1. Otherwise, /1 implies /2 or /2 implies /1, so {/1, . . .,/n+1} is not minimal inconsistent. Therefore, /1

and /2 contain together at most 2m � 2 atoms.

Similarly, for any k < 2m, there is an atom that appears in /1^� � �^/k, but not in /k+1, and an atom that appears
in /k+1 but not in /1^� � �^/k, therefore /1, . . .,/k+1 contain together at most 2m � (k + 1) atoms. It follows that there
is no common atom in the formulas /1; . . . ;/2m and that f/1; . . . ;/2mg is inconsistent, which contradicts the
assumption. h

This theorem shows that strict n-consistency is a sharper tool for classifying inconsistent theories, because strictly n-con-
sistent theories exist only for a quite limited number of n’s.
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3. n-Probability

Recall that P denotes a nonempty set of propositional letters. From now on, P can be finite or countable. By ForP we will
denote the set of all propositional formulas over P. A theory is any subset of ForP .

Definition 3.1. A function l : ForP ! ½0;1� which satisfies

1. l(/) = 1, whenever / is a tautology;
2. l(/) = l(w), whenever / M w is a tautology;
3. l(/_w) = l(/) + l(w), whenever /^w is a contradiction;

will be called a probability measure. A probability measure l is said to be neat if l(/) = 0 implies that / is a contradiction.
Lemma 3.1. For all /;w 2 ForP and for any probability measure l, the following holds:

1. l(:/) = 1 � l(/).
2. l(/) 6 l(w), whenever / ? w is a tautology;
3. l(/_w) = l(/) + l(w) � l(/^w).

As a consequence of Lemma 3.1, we have that equivalent formulas have the same measure. By induction on n, one can
easily show that
lð/1 ^ � � � ^ /nÞP lð/1Þ þ � � � þ lð/nÞ � ðn� 1Þ: ð1Þ
If l is any probability measure and / is a formula equivalent to the disjunction of atoms a1_� � �_ ak, then
lð/Þ ¼ lða1Þ þ � � � þ lðakÞ:
Definition 3.2. A theory T # ForP is n-probable for the probability measure l : ForP ! ½0;1� if
lð/Þ > 1� 1
n

for all / 2 T.
A theory T is n-probable if there exists a probability measure l such that T is n-probable for l.
Lemma 3.2. Each n-probable theory is n-consistent.
Proof. Suppose that T is n-probable. If T is not n-consistent, then there is an inconsistent subset {/1, . . .,/n} of T, so
lð/1 ^ � � � ^ /nÞ ¼ 0;
for any probability measure l. It follows that
lð:/1Þ þ � � � þ lð:/nÞP lð:/1 _ � � � _ :/nÞ ¼ 1:
On the other hand, T is n-probable, so lð:/iÞ < 1
n, for some l; a contradiction. h

The following example shows that the converse implication in Lemma 3.2 need not be true.

Example 3.1. We will define a strictly n-consistent theory of cardinality n + 2, that is not n-probable. To do that, we will
construct the formulas of the theory in such a way that any n formulas of the theory have a common atom (of some finite
language).

For that purpose, let n be an arbitrary positive integer and let P0 be an arbitrary subset of P of cardinality m such that
2m > ðnþ2Þðnþ1Þ

2 . Furthermore, let {aij j1 6 i < j 6 n + 2} be some set of atoms over P0 and let
T ¼ f/1; . . . ;/nþ2g;
where /k is the formula
W

k – i;jaij (in other words, aij appears as a disjunct of every formula of the theory T except ith and jth).
T is strictly n-consistent, since any n formulas of T have a common atom which defines a model for this set of formulas, and
there is no common atom for any n + 1 formulas of T. (For illustration, if n = 3 we have /1 = a23_a24_a25_a34_a35_a45,
/2 = a13_a14_a15_a34_a35 _a45, /3 = a12_a14_a15_a24_a25 _a45, /4 = a12_a13_a15_a23_a25 _a35, /5 = a12_a13_ a14_a23_
a24veea34. For example, the atom a45 secures the consistency of the set {/1, /2, /3}.)

Suppose that {/1, . . .,/n+1} is n-probable for a probability measure l. We will show that the number
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s ¼ lð/nþ2Þ ¼
X

j–nþ2

lðaijÞ
has to be very small. Without loss of generality, we may assume that
X
16i<j6nþ2

lðaijÞ ¼ 1:
Since, by assumption, lð/iÞ > 1� 1
n ; i 2 f1; . . . ;nþ 1g, it follows that
Xnþ1

i¼1

lð/iÞ > ðnþ 1Þ 1� 1
n

� �
;

so
nð1� sÞ þ ðn� 1Þs > ðnþ 1Þ 1� 1
n

� �
:

Consequently,
s < n� ðnþ 1Þ 1� 1
n

� �
¼ 1

n
ð2Þ
and, therefore, T is not n-probable (for n > 2).
Since the notion of n-consistency is strictly weaker then the notion of n-probability, we define a new notion that turns out

to be the probabilistic analogue of n-consistency.

Definition 3.3. A theory T # ForP is locally n-probable if each subset of T of cardinality n + 1 is n-probable.

It is easy to see that each n-probable theory is also locally n-probable. Obviously, the converse is not true.

Theorem 3.3. A theory T is locally n-probable if and only if it is n-consistent.
Proof. Suppose that T is n-consistent. Let T0 = {/1, . . .,/n+1} be an arbitrary finite subset of T of the cardinality n + 1. Let
PT0 ¼ fp1; p2; . . . ; pmg be the set of all propositional letters from T0, and let P0T0

¼ fr1; r2; . . . ; rng be another set of propositional
letters such that PT0 \ P

0
T0
¼ ;. Now, we consider the set of atoms over PT0 [ P

0
T0

. Since T is n-consistent, the formulas
/2, . . .,/n+1 will contain at least one atom in common. We choose one of then and denote it by a1. In a similar way we define
the atom aj for the set {/1, . . .,/n+1}n{/j} so that aj – ai, for every i < j. Note that we can always find such an atom since we
consider the set of atoms over PT0 [ P

0
T0

.
Let l : ForP ! ½0;1� be any probability measure such that:

� lðaiÞ ¼ 1
nþ1 ; i 2 f1; . . . ;nþ 1g.

� l(ai) = 0,i 2 In{1,. . .,n + 1}.

Then, lð/jÞP n
nþ1, for j 2 {1, . . .,n + 1}. Note that, if {/1, . . .,/n+1} is inconsistent, then lð/jÞ ¼ n

nþ1, for each j.
The proof of the converse implication is identical to the proof of Lemma 3.2. h
Corollary 3.4. A theory is strictly n-consistent iff it is locally n-probable and not locally (n + 1)-probable.
Theorem 3.5. Let T be a strictly n-consistent theory of cardinality n + 1. Then there exists a probability measure l such that for
every / 2 T;lð/ÞP 1� 1

nþ1, but T is not (n + 1)-probable.
Proof. This theorem is an immediate consequence of the proof of Theorem 3.3. Note that, since T is strictly n-consistent, it is
not (n + 1)-consistent, so it is not (n + 1)-probable (by Lemma 3.2). h
Remark 3.1. Theorem 3.5 is actually identical to Knight’s theorem [20, Theorem 3.5], only translated in our terminology. It is
the closest contact between our results and Knight’s. We stated it primarily in order to clarify relations between this paper
and Knight’s [20]. As noted in the Introduction, the main difference between our approach and Knight’s is that his principal
concern is semantic while our idea was to study the interplay between syntax and semantics. Our notion of ‘‘n-probable” is
almost like a special case of his ‘‘g-consistency” (for g ¼ 1� 1

n) except that in our case the probability is > 1� 1
n and in his it is

Pg(g 2 [0,1]). However, our interest is only in high probability, so 1� 1
n is good enough, while providing a nice symmetry

between syntax (n-consistent) and semantics (n-probable). Also, our first concern was to find a semantic analogue of
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n-consistency and for that purpose even our n-probability is too strong. As Theorem 3.3 shows, the appropriate notion is the
even weaker ‘‘local n-probability”.

A natural question concerning Definition 3.3 would be whether the size of the subsets (n + 1) is necessarily connected
with the restriction on the measure lð/Þ > 1� 1

n

� �
, i.e., do we need the same number n in both places. Example 3.2 shows

that if we want to preserve the equivalence in Theorem 3.3, the size of subsets cannot be increased.

Example 3.2. Let T = {/1, . . .,/n+2} be the theory defined in Example 3.1. We will compute the maximal r 2 [0,1] such that
there exists a probability measure l which satisfies
lð/iÞP r; i 2 f1; . . . ; nþ 2g:
In the same way as we derived the inequality (2) we can conclude
s 6 n� ðnþ 1Þr: ð3Þ
On the other hand, since
lð/nþ2ÞP r;
we obtain
s P r: ð4Þ
From (3) and (4) we can conclude that
r 6
n

nþ 2
:

The previous example illuminates the following Knight’s theorem [20, Corollary 4.12] which we reformulate according to
our terminology.
Theorem 3.6. Suppose that T is a n-consistent theory of cardinality m. Then, there exists a probability measure l such that
lð/ÞP n

m, for all / 2 T.
Example 3.2 shows that Theorem 3.6 cannot be strengthened in the sense that n

m is maximal, i.e. there is no r > n
m such that

there exists a probability measure l such that l(/) P r for all / 2 T.
Finally, Example 3.2 demonstrates also that n-consistency and local n-probability are in better accord with the Sorensen’s

criterion: ‘‘as the number of beliefs required to obtain the inconsistency increases, the inconsistency becomes more tolera-
ble”. Namely, theory T from Example 3.1 is n-consistent but not even (n � 1)-probable. On the other hand, it would be easy to
construct a theory T0 which would be strictly (n � 1)-consistent and also (n � 1)-probable (it is enough to take strictly
(n � 1)-consistent theory T0 of cardinality n, so local (n � 1)-probability becomes (n � 1)-probability). In accordance with
Sorensen’s criterion, it would seems that theory T is better than T0, since in T0 we can derive a contradiction from n-formulas.
On the other hand, there is a probability measure which assigns higher probabilities to formulas of T0 than any probability for
T. Therefore, n-consistency might be considered as a more precise tool for measuring inconsistency than n-probability.

4. Conditional n-probability and n-consistency

If we have some body of knowledge which might be inconsistent it makes sense to split this body into two parts: one part
would consist of some ‘‘certain facts” believed to be certainly true and the second part would consist of some statements
believed to be probable, on the basis of the ‘‘certain facts”. Returning to the Lottery Paradox, we may say that, due to the
rules of the game, it is a certain fact that some ticket will win (/1_� � �_/n), while, on the basis of this fact, we believe that
:/i is probable. Thus, assuming /1_� � �_/n, the theory T ¼ f:/1; . . . ;:/ng would be strictly (n � 1)-consistent and (n � 1)-
probable. This motivates us to introduce a notion of ‘‘n-probable modulo /”. We will use the results from the previous sec-
tion and the notion of conditional probability.

Let / 2 ForP and let l be a probability measure on ForP such that l(/) > 0. Then, a conditional probability measure is de-
fined by
lðwj/Þ ¼ lðw ^ /Þ
lð/Þ :
It is well known that a function l/ : ForP ! ½0;1�, defined by l/(w) = l(wj/) is a probability measure.

Example 4.1 (Lottery Paradox – revisited). Returning to the lottery paradox, it seems reasonable to grant special status to the
fact that someone will win the lottery and consider this as ‘‘certain knowledge”. Then we may ask how many elements of the
set T ¼ f:p1; . . . ;:png will be consistent with the fact p1_� � �_pn.

A natural probability measure l (assuming that the lottery is fair) should satisfy: lð:piÞ ¼ 1� 1
n for every i 2 {1, . . .,n} and,

of course, l(p1_� � �_pn) = 1. This would make T (n � 1)-probable ‘‘assuming” p1_� � �_pn. If some other probability measure
would satisfy lð:piÞ > 1� 1

n for i 2 {1, . . .,n}, this would imply lð:p1 ^ � � � ^ :pnÞ > 0 and therefore l(p1_� � �_pn) < 1.
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Definition 4.1. A theory T is n-probable modulo / if there exists a probability measure l such that l(/) > 0 and
lðwj/Þ > 1� 1

n, for all w 2 T.
Lemma 4.1. If theory T is n-probable modulo /, then T is n-probable and n-consistent.
Proof. According to Lemma 3.2, it is sufficient to show that T is n-probable. The latter is an immediate consequence of Def-
inition 4.1 and the fact that l/ is a probability measure. h

We may ask for which formulas we can go in the opposite direction: from n-probability to n-probability modulo /.

Theorem 4.2. Let T be a finite n-probable theory and let / 2 ForP . If / is consistent with every consistent subset of T, then T is n-
probable modulo /.
Proof. Let l be the probability measure such that lðwÞ > 1� 1
n, for all w 2 T.

Here we will use the proof of [20, Lemma 4.7], where it is shown that if there exists a probability measure l such that
l(w) P r for all w 2 T and some r 2 [0,1], and if / is consistent with every consistent subset of T, then there exists probability
measure m such that m(w) P l(w) for w 2 T and m(/) = 1.

Now, for w 2 T we have
mðwj/Þ ¼ mðwÞP lðwÞ > 1� 1
n
: �
We further generalize this to the notion of ‘‘n-probable modulo {/1, . . .,/k}”. This would correspond to a situation where
we have k agents, each knowing some fact /i, and each formula in our (inconsistent) theory is believed to be probable by at
least one agent. It turns out that this can make some sense only in case that the agent’s beliefs are highly compatible.
Definition 4.2. A theory T is n-probable modulo {/1, . . .,/k}, if there exists a probability measure l such that
l(/1^� � �^/k) > 0, for all i,j 2 {1, . . .,k}, lð/ij/jÞ > 1� 1

n, and, for all w 2 T, there exists an index i 2 {1, . . .,k} such that
lðwj/iÞ > 1� 1
n
:

The following example illustrates the need for the ‘‘facts” /1, . . .,/k to support each other.
Example 4.2. Let us use the variation of the usual bird – penguin example. We introduce propositional letters for the
following facts:

b – ‘‘is a bird”.
p – ‘‘is a penguin”.
f – ‘‘flies”.
s – ‘‘lives on South Pole”.
e – ‘‘the female sits on eggs”.
d – ‘‘dives”.

Let T1 ¼ ff ;:s; e;:dg and T2 ¼ f:f ; s;:e; dg. Let l be a measure such that for some large n:

� l(p^b) > 0.
� lð/jbÞ > 1� 1

n for / 2 T1.
� lðwjpÞ > 1� 1

n for w 2 T2.
� lðbjpÞ > 1� 1

n, and
� lðpjbÞ < 1

2.

Clearly, any reasonable measure will satisfy these conditions. Note that all requirements from Definition 4.2, except
lðpjbÞ > 1� 1

n, hold. However, T1 [ T2 is not even 2-consistent. So, if l testified to the n-probability of T1 [ T2 modulo {p,b},
this notion would be in total discord with the notion of n-consistency. Furthermore, there is no measure satisfying Definition
4.2 in this situation, which can be seen from Corollary 4.4.
Theorem 4.3. If theory T is n-probable modulo {/1, . . .,/k}, then T is (n � k + 1)-probable modulo /1^� � �^/k.
Proof. Let m(w) = l(wj/1^� � �^/k). For each w 2 T there exists i 2 {1, . . .,k} such that
lðwj/iÞ > 1� 1
n
:



D. Doder et al. / International Journal of Approximate Reasoning 51 (2010) 832–845 839
Choose an arbitrary w 2 T. Without loss of generality, we may assume that the corresponding index i in the previous for-
mula is equal to 1. Then:
mðwÞ ¼ lðw ^ /1 ^ � � � ^ /kÞ
lð/1 ^ � � � ^ /kÞ

¼ lðw ^ /1 ^ � � � ^ /kÞ=lð/1Þ
lð/1 ^ � � � ^ /kÞ=lð/1Þ

¼ lðw ^ /2 ^ � � � ^ /kj/1Þ
lð/2 ^ � � � ^ /kj/1Þ

P
lðwj/1Þ þ lð/2 ^ � � � ^ /kj/1Þ � 1

lð/2 ^ � � � ^ /kj/1Þ

¼ 1� 1� lðwj/1Þ
lð/2 ^ � � � ^ /kj/1Þ

> 1�
1� 1� 1

n

� �
lð/2 ^ � � � ^ /kj/1Þ

¼ 1� 1
nlð/2 ^ � � � ^ /kj/1Þ

:

Applying (1), we obtain that
lð/2 ^ � � � ^ /kj/1ÞP lð/2j/1Þ þ � � � þ lð/kj/1Þ � ðk� 2Þ > ðk� 1Þ 1� 1
n

� �
� ðk� 2Þ ¼ n� kþ 1

n
:

It follows that
mðwÞ > 1� 1
n � n�kþ1

n

¼ 1� 1
n� kþ 1

: �
The next example, a generalization of ‘‘3 prisoners example”, shows that Theorem 4.3 cannot be improved, i.e. that the
bound (n � k + 1) is the best possible.
Example 4.3. Let there be n + 2 prisoners (enumerated by 1,2, . . .,n, n + 1, n + 2) on the death row and let there be k guards,
where n is ‘‘much” larger then k. By random choice one prisoner will be pardoned and this fact is confirmed by every guard.

Let the prisoners be divided into k groups. We may assume, without the loss of generality, that ith prisoner is not in the
ith group. Assume that the ith group of prisoners asks the ith guard to tell them the name of one randomly selected prisoner
which will be executed, and that his answer is ‘‘the prisoner number i”.

After that, each prisoner sees his chance of survival increase from 1
nþ2 to 1

nþ1.
Let wi be the sentence ‘‘ith prisoner will be executed”, for i 2 {1, . . .,n + 2}.
Let h be the sentence ‘‘exactly one prisoner will be pardoned”, and let, for i 2 {1, . . .,k},/i be the answer of the ith guard,

i.e., /i = wi^h, and let l be a probability measure that intuitively corresponds to the fact that a pardoned prisoner is chosen by
the random choice.

Let T = {w1, . . .,wn+2}. For each w 2 T there exists some i 2 {1, . . .,k} such that
lðwj/iÞ > 1� 1
n
:

Furthermore, for all i; j 2 f1; . . . ; kg;lð/ij/jÞ > 1� 1
n, so the conditions of Theorem 4.3 are satisfied.

It is easy to see that, for i 6 k
lðwij/1 ^ � � � ^ /kÞ ¼ 1
and for i > k
lðwij/1 ^ � � � ^ /kÞ ¼ 1� 1
n� kþ 2

:

This shows that T is (n � k + 1)-probable modulo /1^� � �^/k.
However, if for some l, T were (n � k + 2)-probable modulo /1^� � �^/k, we would have, for that l, that
lðwkþ1 ^ � � � ^ wnþ2j/1 ^ � � � ^ /kÞ > 0
which is impossible since w1^� � �^wn+2^h is a contradiction.
Corollary 4.4. If theory T is n-probable modulo {/1, . . .,/k}, then T is (n � k + 1)-probable, hence (n � k + 1)-consistent.
We may define also a syntactic analogue of ‘‘n-probable modulo a set of formulas”.

Definition 4.3. If T and S are sets of formulas, T is n-consistent modulo S if for any w1, . . .,wn 2 T, {w1, . . .,wn} [ S is consistent.
Obviously, if T is n-consistent modulo S it is also n-consistent.

Corollary 4.5. If theory T is n-probable modulo {/1, . . .,/k}, then T is (n � k + 1)-consistent modulo {/1, . . .,/k}.
Proof. For the probability measure m from the proof of Theorem 4.3 and for any w 2 T we have m(/1 ^� � �^/k) = 1 and
mðwÞ > 1� 1

n�kþ1. Hence, m(w1^� � �^wn�k+1^/1 ^� � �^/k) > 0 for all w1^� � �^wn�k+1 2 T. h
Remark 4.1. In [20] Knight defines a finite theory T = {w1, . . .,wm} to be g-consistent given b = (b1, . . .,bm) (g 2 [0,1],b 2 [0,1]m),
if there exists a probability measure l such that l(w) P g for all w 2 T and l(wi) P bi. However, Knight considers only a very
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special case of the constraint vectors where b 2 {0,1}m. In that case, each b represents a characteristic function, i.e., it defines
a subset {wijbi = 1} of T. We may obtain that a very particular case of n-probability modulo {/1, . . .,/k} is still stronger then
Knight’s property. Namely, if T is n-probable modulo {/1, . . .,/k}, and if we restrict T to be finite and {/1, . . .,/k} # T, the mea-
sure m from the proofs of Theorem 4.3 and Corollary 4.5 testifies that T is 1� 1

n�kþ1

� �
-consistent given b, where b is the vector

corresponding to the set {/1, . . .,/k}.
In [20, Theorem 7.4] Knight obtains a similar conclusion from syntactical premise (that T is minimally inconsistent theory

of cardinality n + 1), which illustrates one of the differences between our approaches: while he is mainly interested in
semantical conclusions, we start from semantical notion (n-probability modulo {/1, . . .,/k}) and obtain syntactical
conclusions (n-consistency in Corollary 4.4 and n-consistency modulo {/1, . . .,/k} in Corollary 4.5).

It is interesting that ‘‘conditioning” a theory T on the conjunction /1^� � �^/k rather than on the set {/1, . . .,/k} results in a
significant downgrade of its consistency level (from n to n � k + 1) even though we assumed that the formulas /i are highly
compatible lð/ij/jÞ > 1� 1

n

� �
. The reason is, as can be seen from the proof of Theorem 4.3, that replacing any two formulas

from {/1, . . .,/k} by their conjunction, reduces the bound for conditional probabilities from 1� 1
n to 1� 1

n�1 and results in n-
probability being replaced by (n � 1)-probability.
5. Strong n-probability

In this section, we try a different approach to ‘‘conditioning” by using a non-standard probability measure. Namely, in-
stead of ‘‘high” conditional probability we use a much stronger notion of conditional probability infinitesimally close to 1.
This will allow simpler definitions and stronger theorems.

Let R* be a non-standard elementary extension of the standard real numbers (see [22]). An element e of R* is an infinites-
imal if jej < 1

n for every positive integer n. For non-standard real numbers r and s we write r � s to denote the fact that jr � sj is
an infinitesimal. We may define non-standard probability measures as in Definition 3.1. Furthermore, all definitions we
introduced and all previous results hold for non-standard probability measures as well.

Definition 5.1. For a non-standard probability measure l we say that w is a l-consequence of /, if l(wj/) � 1. We also say
that the set T # ForP is a set of l-consequences of the set U # ForP , if for every w 2 T there exist / 2U such that w is a l-
consequence of /.
Example 5.1. Let /; h 2 ForP , lð/Þ ¼ 1
2, l(h) � 0 and l(h) – 0. It follows that l(/j/_h) � 1, lð:/ j :/ _ hÞ � 1 and

lðð/ _ hÞ ^ ð:/ _ hÞÞ ¼ lðhÞ– 0. So, the set U ¼ f/ _ h;:/ _ hg is consistent, but the set of l-consequences T ¼ f/;:/g is
inconsistent.

Our aim is to define a new notion of n-probability (relative to probability measure l) which will be preserved under l-
consequence.

Definition 5.2. Let n be a positive integer. The theory T is strongly n-probable for l, if for each n formulas w1, . . .,wn 2 T the
number l(w1^� � �^wn) is not infinitesimal.

The theory T is strongly probable for l, if it is strongly n-probable for l for all n 2x.
Note that, for a fixed probability measure l, strong n-probability (for l) is the notion strictly stronger then n-consistency.

Furthermore, strong probability for l implies consistency; the converse implication does not hold.

Theorem 5.1. Let U be a nonempty set, strongly n-probable for l and let T be the set of l-consequences of U.Then, T is also
strongly n-probable for l.
Proof. Let T = {wiji 2x} and suppose that, for all i 2x,/i is an element of U such that l(wij/i) � 1 holds (note that for i – j /i

is not necessarily distinct from /j). Without the loss of generality, it is sufficient to prove that l(w1^ � � �^wn) � 0 does not
hold. Let w 2 {w1, . . .,wn} and for the sake of simplicity suppose that w = w1. As in the proof of Theorem 4.3, it holds that
lðw j /1 ^ . . . ^ /nÞP 1� 1� lðw1j/1Þ
lð/2 ^ � � � ^ /nj/1Þ

:

Since l(w1j/1) � 1 and l(/2^� � �^/nj/1) P l(/1^� � �^/n) is not an infinitesimal, by assumption, it follows that
l(wj/1^� � �^/n) � 1, for all w 2 {w1 , . . .,wn}.

Applying inequality (1) to measure l(�j/1^� � �^ /n), we get
lðw1 ^ . . . ^ wnj/1 ^ . . . ^ /nÞP lðw1j/1 ^ � � � ^ /nÞ þ � � � þ lðwnj/1 ^ � � � ^ /nÞ � ðn� 1Þ � 1:
In other words,
lðw1 ^ � � � ^ wn ^ /1 ^ � � � ^ /nÞ
lð/1 ^ � � � ^ /nÞ

� 1:
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or, equivalently,

lðw1 ^ � � � ^ wn ^ /1 ^ � � � ^ /nÞ � lð/1 ^ � � � ^ /nÞ:
Since l(/1^� � �^/n) is not infinitesimal, by the assumption, using Lemma 3.1 we conclude that l(w1^� � �^wn) is not infin-
itesimal either. It follows that T is strongly n-probable for l. h

This theorem is similar to Theorem 4.3 in the sense that we replaced the condition lðwj/iÞ > 1� 1
n by a much stronger

condition l(w—/i) � 1, which allowed us to drop the condition on ‘‘mutual support” of elements of U. Note that here U
may be infinite.

Corollary 5.2. Let U be a nonempty set, strongly probable for l, and let T be the set of l-consequences of U. Then, T is also strongly
probable for l.

By this corollary, strong probability of the theory U is sufficient to provide strong probability of the set of its ‘‘conse-
quences” T. If we are only interested in consistency of the set T, this assumption is not necessary:

Example 5.2. Suppose that U = {/iji 2x} is a consistent theory and T = {wiji 2x} is a set of formulas. Let l be a probability
measure which satisfies the following conditions:

– For all i 2x there exists an infinitesimal number ei such that l(wij/i) = 1 � ei holds,
– l(/1^� � �^/n) > n max{eiji = 1, . . .,n}, for all n 2x (this assumption is weaker then strong consistency of U for l).

As in the proof of Theorem 4.3, we can derive the inequality (for i 2x)
lðwij/1 ^ � � � ^ /nÞP 1� 1� lðwij/iÞ
lð/1 ^ � � �/i�1 ^ /iþ1 ^ � � � ^ /nj/iÞ

:

Hence, by assumption, we have
lðwij/1 ^ � � � ^ /nÞP 1� ei

lð/1 ^ � � � ^ /nÞ
lð/iÞP 1� 1

n
:

It follows that the set {w1, . . .,wn} is n-probable and, therefore, consistent. Consistency of T is a consequence of Compactness
Theorem.

Since the notion of l-consequence corresponds to defaults, as will be discussed in the next section, Theorem 5.1 may be
understood as saying that the property of strong n-probability is preserved under default derivation. Corollary 5.2 says the
same for the property of strong probability.

6. Application to defaults

Defaults are, roughly, rules with exceptions, like ‘‘birds fly”, which allow deriving some conclusion in the absence of com-
plete information. It has long been proposed that they should be interpreted as conditional probability infinitesimally close to 1
([23,24]). Alternative proposals for interpreting defaults using standard probability were given in [25–27]. The paper [28] con-
tains a proposal based on belief functions, while [29] uses confidence and possibility relations. Kraus et al. defined in [8] a sys-
tem P of formal derivation rules which is generally recognized as capturing the core of default reasoning. Lehmann and Magidor
proved in [9] that any consequence relation satisfying the system P and the rule of Rational Monotonicity (RM) may be inter-
preted by some non-standard probability measure (in the sense that a b iff (l(bja) � 1 orl(a) = 0)), and conversely, that every
relation defined in this way, starting from some non-standard probability measure l, will satisfy the system P and RM.

In this sense, the relation of l-consequence introduced in Definition 5.1 may be regarded as defining a default relation
and, as mentioned at the end of the Section 5, Theorem 5.1 may be interpreted as speaking of preservation of strong n-prob-
ability under default derivation. Now we define a syntactic analogue of strong n-probability.

First we need a notion from [9]. We say that a formula / is exceptional (for a default relation ) iff > :/.

Definition 6.1. The theory U is strongly n-consistent for a default relation , if for any n formulas /1, . . .,/n 2U the formula
/1^� � �^/n is not exceptional.

The theory U is strongly consistent for , if it is strongly n-consistent for for all n 2x.
Using Theorem 5.1 and the correspondence between default relations and non-standard probability measures from [9]

we immediately obtain the following theorem:

Theorem 6.1. Let U be nonempty set, strongly n-consistent for and let W be the set such that for every w 2W, / w holds for
some / 2U. Then, W is also strongly n-consistent for .

The meaning of this theorem may be illustrated by the familiar example ‘‘Nixon Diamond”. If we denote the default
‘‘quakers are pacifists” by q p and ‘‘republicans are not pacifists” by r :p, we see that from a consistent set {r,q} we
may obtain, by default derivation, an inconsistent set fp;:pg. Theorem 6.1s shows that an inconsistent set of consequences
results from an ‘‘exceptional” set of assumptions.
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We turn now to another application of our results to non-monotonic reasoning. It is clear that the people applying de-
faults to practical problems would prefer having a conditional probability finitely close to 1 rather than the one infinitely
close to 1, i.e., they would rather work with the standard probability. The problem with such approach is that using standard
conditional probability, with each step of deduction the probability decreases, so after a number of steps we may get a use-
less conclusions (e.g., that the probability is greater than 0).

We try now, in the style of Nilsson [30], or more recently Paris et al. [31], to define some device which would allow using
standard measure but with controlled decrease of the probability throughout the derivation. We may notice that the condi-
tions in the definition of ‘‘n-probable modulo {/1, . . .,/k}” resemble one of the rules of the system P, so called rule of Cautious
Monotonicity:
a b;a c
a ^ b c

:

Restricting, in Definition 4.2, T to a single formula w and assuming k = 2 we obtain that w is n-probable modulo {w1,w2} if (for
some l) lðwj/1Þ > 1� 1

n and lð/2j/1Þ > 1� 1
n (plus l(/1^/2) > 0). Applying Theorem 4.3 we get that w will be at least

(n � 1)-probable modulo (/1^/2). This gave us the idea to try to formulate ‘‘finite approximations” of rules of P in such a
way that we obtain precise estimates of how much the probability decreases in each step of a deduction. In the sequel
we define a series of non-monotonic consequence relations indexed by n, where n may be regarded as a degree of belief
in entailment.

Definition 6.2. Let l be a neat probability measure over ForP . For every n 2x we define binary relation l
n on ForP , by a l

n b
iff lðbjaÞ > 1� 1

n.
In the sequel we will omit l from l

n whenever it is determined by the context. The following theorem expresses the P-like
properties of this relation.

Theorem 6.2. Let l be a neat probability measure over ForP . If the binary relations n are defined as above, then the following
rules hold:
REFn :
a n a

; LLEn :
‘ a$ b;a nc

b n c
;

RWn :
‘ a! b; c na

c n b
; ANDn :

a 2n b;a 2n c
a n b ^ c

;

ORn :
a 2n c;b 2nc

a _ b n c
; CMn :

a n b;a n c
a ^ b n�1 c

:

Proof. The proofs of REFn, LLEn and RWn are trivial.

CMn is already discussed.
ANDn: Let lðbjaÞ > 1� 1

2n and lðcjaÞ > 1� 1
2n; using CM2n we obtain lðcja ^ bÞ > 1� 1

2n�1. From the equality
lðb ^ cjaÞ ¼ lðbjaÞlðcja ^ bÞ
it follows that lðb ^ cjaÞ > 1� 1
2n

� �
1� 1

2n�1

� �
¼ 1� 1

n and hence a n b^c.
ORn: Let lðcjaÞ > 1� 1

2n and lðcjbÞ > 1� 1
2n. We will use abbreviations a0 and b0 for a ^ :c and b ^ :c, respectively.
lðcja _ bÞ ¼ lðða ^ cÞ _ ðb ^ cÞÞ
lða _ bÞ ¼ lðða _ bÞ ^ :ða0 _ b0ÞÞ

lða _ bÞ P
lða _ bÞ � lða0 _ b0Þ

lða _ bÞ ¼ 1� lða0 _ b0Þ
lða _ bÞ
By assumption, lða0Þ < lðaÞ
2n 6

lða_bÞ
2n and lðb0Þ 6 lða_bÞ

2n , which implies lða0 _ b0Þ < lða_bÞ
n .

Finally, lðcja _ bÞ > 1� 1
n, or, equivalently, a_b n c. h
Example 6.1. This example demonstrates how the relations n may be used to overcome the so called ‘‘inheritance blocking”
problem in default reasoning. Other proposals for solving this problem were given in [28,32,33].

Let the default base consist of the following rules:

The Swedes are, generally, blond (s b).
The Swedes are, generally, tall (s t).

The problem is that in most default systems we cannot derive the intuitively plausible conclusion that Swedes which are
not tall, generally are also blond ðs ^ :t bÞ. We propose two solutions, based on adding different types of additional
assumptions.
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In the first approach, along the lines proposed in [34] (see also [35]), our belief in blondness of Swedes is much higher
than our belief in their tallness. Say s n2 b and s n�1 t but not s n t. Then we obtain (as in the proof of Theorem 4.3)
lðbjs ^ :tÞ > 1� 1� lðbjsÞ
lð:tjsÞ :
As 1� lðbjsÞ < 1
n2 and lð:tjsÞP 1

n we conclude
lðbjs ^ :tÞ > 1� 1
n
:

Therefore s ^ :t n b.
Note, however, that in this approach we cannot obtain s ^ :b n t!
In another approach, we note that the desirability of the conclusion s ^ :t b results from our intuition that height and

hair color are independent features. However, independence of two variables on a set does not imply their independence on
every subset. Obvious solution seems to be to add assumption that on the ‘‘set of Swedes”, blondness and tallness are
independent:
lðb ^ tjsÞ ¼ lðbjsÞlðtjsÞ:
Now, assuming s m b and s n t (where m and n are any two ‘‘large” numbers) we get
s ^ :t m b;

s ^ :b n t:
This is seen from the condition of independence:
lðb ^ s ^ :tÞ
lðsÞ ¼ lðb ^ sÞ

lðsÞ
lð:t ^ sÞ

lðsÞ ð5Þ
(note that independence of b and t implies also the independence of b and :t, and :b and t).
Finally, from
lðbjs ^ :tÞ ¼ lðb ^ s ^ :tÞ
lðs ^ :tÞ
and equality (5) we obtain
lðbjs ^ :tÞ ¼ lðb ^ sÞlð:t ^ sÞ
lð:t ^ sÞlðsÞ ¼ lðbjsÞ > 1� 1

m
:

Remark 6.1. Note that the converse of Theorem 6.2 does not hold. Namely, there are obvious properties of the probability
measure which are not captured by the given rules. For example,
a l
n b

a l
m b
will be interpreted as true for any l and m < n, but it is not a consequence of the above rules. Therefore, we could have some
relation which satisfies all the rules from Theorem 6.2, but not this one. It would not be possible to find a probability which
would interpret this relation.

We have shown that applying non-monotonic rules to consequence relations n, the strength of the conclusion is, in the
worst case, twice weaker then the strength of assumptions.

Next, we turn to the following question: if we use both rational relation and n in one of the non-monotonic rules, does
the strength (n) transfer to the conclusion? Consider the following example, which is essentially a modification of examples
from [25].

Example 6.2. Suppose that the statistical knowledge ‘‘more than 95% of birds fly” is available, and that we accept the default
rule ‘‘generally, birds have wings”. (The former can be expressed in our terminology with b 20 f, while the later is expressible
by default rule b w, usually interpreted as ‘‘conditional probability of w knowing b is approximately 1”.)

What can we say about the birds with the wings? Intuitively, the conclusion that they fly with the probability greater
than 95% is quite acceptable. On the other hand, the best we can calculate is that the probability is either greater than or
infinitely close to 95%.

We overcome the above difficulty by slightly changing the notion of n.

Theorem 6.3. Let be a rational relation on ForP , and let l be a corresponding neat non-standard probability measure. If the
binary relations n on ForP are defined by a n b iff lðbjaÞ > 1� 1

n or lðbjaÞ � 1� 1
n, then the following rules hold:
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LLE�n :
‘ a$ b;a n c

b n c
; RW�

n :
‘ a! b; c n a

c n b
;

OR�n :
a c; b n c
a _ b n c

; AND�n :
a b;a n c
a n b ^ c

;

CM1�n :
a n b;a c
a ^ b n c

; CM2�n :
a b;a n c
a ^ b n c

:

Proof. The proof is an easy modification of the proof of Theorem 6.2. We give just one example. For the proof of OR�n let us
suppose l(cja) = 1 � e1 and lðcjbÞ > 1� 1

n� e2 (e1,e2 � 0). As in the proof of ORn, we can obtain lðcja _ bÞP 1� lða0_b0Þ
lða_bÞ ,

where a0 is a ^ :c and b0 is b ^ :c. From l(a0) 6 e1 l(a_b) and lðb0Þ < ðe2 þ 1
nÞlða _ bÞ we conclude

lða0 _ b0Þ 6 ðe1 þ e2 þ 1
nÞlða _ bÞ. Thus, lðcja _ bÞP 1� 1

n� e1 þ e2 � 1� 1
n. h

The above statement is in spirit of [25, Theorem 5.1] where some rules with similar combinations of default knowledge
and probabilistic knowledge are presented.

The LPPS-logic introduced in [34] is a suitable syntactic framework for modeling default reasoning. The logic enriches
propositional calculus with probabilistic operators which are applied to propositional formulas: CPPs(a,b), CP6s(a,b) and
CP�s(a,b), with the intended meaning ‘‘the conditional probability of a given b is at least s”, ‘‘at most s” and ‘‘approximately
s”, respectively. The corresponding range of probabilistic functions is chosen to be the unit interval of a recursive nonarchi-
medean field, making it possible to express formulas of the form CP�1(a,b) that may be used to model defaults b a. For
example, the above rule OR�n can be written as
CP�1ðc;aÞ ^ ðCPP1�1
n
ðc; bÞ _ CP�1�1

n
ðc;bÞÞ ! ðCPP1�1

n
ðc;a _ bÞ _ CP�1�1

n
ðc;a _ bÞÞ:
The paper [34] provides a consistent and strongly complete axiomatization of the logic, so that (the LPPS-translations) of all P-
rules are theorems of the logic. The same holds for (the LPPS-translations) of all rules from the Theorems 6.2 and 6.3. Addition-
ally, [34] proves decidability of the LPPS-logic. It follows easily that if a formula (representing the LPPS-translation of defaults
and/or approximate defaults) is not an LPPS-theorem, then it is not a consequence of (the LPPS-translations) of the above rules.

7. Conclusion

Attempting to differentiate inconsistent theories we introduced a syntactic notion of n-consistency (based on the number
of formulas needed to derive a contradiction) and a semantic notion of n-probability (based on the existence of a probability
measure which assigns the probability greater than 1� 1

n to every formula of the theory). Our notion of n-probability is sim-
ilar to Knight’s notion of g-consistency from [20] (as discussed in detail in the Introduction and Remark 3.1).

It turned out that the notion of n-probability is stronger and we introduced the weaker notion of local n-probability which
is equivalent to n-consistency. This seems quite reasonable because both notions refer to (n + 1)-element subsets of the the-
ory, unlike the notion of n-probability.

Using conditional probabilities we introduced the notion of n-probability modulo a formula / and n-probability modulo a
set of formulas, and showed the connections between these two properties and the property of n-consistency. Similar, but
more elegantly formulated results are obtained by switching to non-standard probability measure.

Finally, we apply these results to default systems. Using the connection between rational default relations and non-stan-
dard probabilities ([9]), we introduced the notion of strong n-consistency (for a default relation ) and showed that it is pre-
served under default derivation. Another application tries to define finite approximations of defaults in the style of Nilsson
([30]). Using our notion ‘‘w is n-probable modulo /” we defined relations n which satisfy a weak version of system P from
[8]. If we interpret / n w as saying that we believe with degree n that w follows from /, the new rules determine by how
much the degree of belief decreases in each step of possible deduction. We also show that if we combine n with the usual
defaults in such way that in the rules of the system P with two premises, one premiss is with and the other with n (similar
to [25]), the probability of the conclusion does not decrease.

We may sum up the relations between the introduced notions in the following diagram:
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One possible line of continuing this research would be to investigate if there are any relations of measures of inconsistency

introduced in this paper with other syntactic measures of inconsistency which are inspired by paraconsistent logic like ones
defined by Schotch and Jennings [36] or Brown [37]. Also, since the converse of Theorem 6.2 does not hold, it would be inter-
esting to find additional rules that would make the system complete for the probability measure semantics.
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