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Abstract

Given any representation of an arbitrary Lie algehraver a field K of characteristic 0, we
construct representations of a central extensiom oh bosonic and fermionic Fock space. The
method gives an explicit formula for a (sometimes trivial) 2-cocyc|e(-ﬁ%(g; K). We illustrate
these techniques with several concrete examples.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Clifford and Weyl algebras have natural representations on exterior and symmetric
algebras, respectively. In the early 1980s, Frenkel, Kac, and PetdrsbB]) explicitly
constructed the orthogonal affine Lie algels@y using the quadratic elements of a
Clifford algebraC. These elements were viewed as quadratic operators on a certain
highest weightC-module, called fermionic Fock space. Feingold and Frenkel [5] later
gave an analogous construction of the symplectic affine Lie alggha from quadratic
elements of a Weyl algebra acting on bosonic Fock space, a highest wegimodule.

The natural inclusion ol into bothsozy andsp,y meant that the affine Lie algebra
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of type A(l) admits a uniform construction of both fermionic and bosonic modules.
Notably, the bosonic construction (which has levdl) was the first known construction
of a nonstandard irreducible highest weight representtifor an affine Lie algebra.
Seligman [18] later modified the Feingold—Frenkel construction to produce a large class
of irreducible integrable highest-weight modules fary and sp,y. The fermionic
construction (for type#\ and D) is isomorphic to the vertex operator construction (in
[8,14] for instance), giving a boson—fermion correspondence. A generalization of this
boson—fermion correspondence appears in [15].

In 2002, Gao [10] used techniques similar to those of Feingold and Frenkel [5]
to construct bosonic and fermionic representations of the extended affine Lie algebra

aly(Cy), whereC, is the quantum torus in two variables. This was accomplished by
defining an interesting module fayi (C,), a central extension ofly (C,).

The Feingold—Frenkel construction fgf, (C) and Gao’s construction fogm)
are special cases of a more general phenomenon addressed in this paper. Both con-
structions define a Weyl or Clifford algebfl from generators that we view as basis
elements of modules for the Lie algebras. These mod@é&sg C[z, r~1] and its dual
module (CY ® C[r, r~1])*, can be thought of as natural modules for the Lie alge-
brasgly (C[z, r71]) and gly(Cy). Selecting some of these generators to be “positive”,
Feingold—Frenkel and Gao define an associative subal@braf 2. Their Fock spaces
are trivial " -modules induced to all ofl.

Our construction replacesl y (Cl, t~1)) and gl (Cy) with any Lie algebrag over a
field K of characteristic 0, and replac&€ ® C[r, r—1] with an arbitrary g-moduleW.
We use Weyl- (resp., Clifford-) type relations to generate a unital associative algebra
a. This algebra is constructed from a basisWf® W’ where W’ is the g-submodule
of the dual space¥* generated by the restricted dual Spaw; | « € 7}, where
{w, | @ € Z} is a basis folW. The generators foat are partitioned into “positive” and
“negative” elements, and the division is used to define a vacuum vector and an induced
module for a, called bosonic (resp., fermionic) Fock spa¢e Some care is needed
so thatV remains a well-defined module under the action of quadratic opergiors
defined for each elememntin g. We treat the operatorg, as elements of a completion
of a. The fact that the completion is itself an associative algebra simplifies some of
the most difficult computations of Feingold—Frenkel and Gao.

The assignmenk — f, extends to a representation of a certain one-dimensional
central extensiony of g. For Feingold—Frenkelg is S|mply the affine Lie algebra

qIN((D) and for Gao,g is a homomorphic image ocﬁIN(C ). The representation he

constructs forgly (C,) is the pullback of the Fock representation we constructgfor
When this representation is faithful, it gives an embeddingy afito a Lie a/lgibra

of “infinite matrices”, analogous to that found by Kac and Peterson [12]gfQC).

It also affords a simple formula for the 2-cocycle defining the central extension, and

we use it to explicitly compute the 2-cocycle of the (universal) central extension of

1The level k of a representation of an affine Lie algebra is the constant by which the canonical
central element acts. Ik is anything other than a nonnegative integer, the representation is said to be
nonstandard
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the Lie algebra ofN x N matrices over the ring of differential operators of the form
S 0 fn( (L) (where f, (1) € Clt, 171 is O for n > 0).

2. Bosonic and fermionic realizations

Assumep = 1 or —1. If p = —1 (resp.,+1), we call the resulting constructions
bosonic(resp.,fermionig. For elements:, b of any associative algebwy, let {a, b}, =
ab+ pba. Note that{a, b}, = p{b, a},, and[ab, c] = a{b, c}, — pla, c},b for a, b, c €
A, where|a, b] is the usual commutatarb — ba.

Let g be a Lie algebra over a fielék of characteristic 0, and l&tV be an arbi-
trary g-module with K-basis®B = {w, | « € Z}. The universal enveloping algebra
U(g) has a natural action on the dual moduig* = Homy (W, ) coming from
the g-action (x - ))(w) = —A(x -w) forall x € g, 21 € W*, w e W. Let W =
> sz U(g) - wj where the linear functionals; : W — K are defined byw; (wp) =
0,8 Vo, p € Z. If Wis infinite-dimensional, it is possible théit’ O Span{w} | « € Z},
so we fix alK-basis®' = {w}, s | a € Z, eI’} for W

Definition 2.1. The choice ofB, B’, and a subset7 C T is called arealization of
(g, W) if card{o € J | x-wy ¢ Sz} < oo for eachx € g, whereS s = Spang{wg | f €
T}

Realizations always exist—for example, any finite sulygget 7 will trivially satisfy
the “finiteness condition”, cafet € J | x - wy ¢ Sz} < 0o. The purpose of a realization
is to define an associative algehrawith “positive” and “negative” partsa™ anda™,
for later use in constructing bosonic (resp., fermionic) Fock space.

Given a realization of a Lie algebraand representatiow, let a = a(g, W, Z, 7', p)
be the (unital) associative algebra generatediby, w;, Az | « € Z, f € Z'}, modulo
the relations

(Rl) {Us w}p = {iv 71};0 = 07
(R2) {4, w}y, = Aw)

for all v,w € W, 2,5 € W. Let at C a denote the (unital) subalgebra generated
by those elements, € B, 1 € B such thate € J and (wg) =0 for all e J.
Likewise, leta™ be the (unital) subalgebra generated{boy, € B,. B |a e\ J,
and i(w/;) # 0 for somep € J}. We will sometimes use theestricted algebraayes,
defined as the (unital) subalgebra generatedwby, w; | o € Z}. Analogously,a;t. and
0,65 are the (unital) subalgebras generated{toy € B, w;; e®B |acT, feI\JT}
and{w, € B, w;} e®B |aeI\J, pe J} respectively. Note that in many interesting

cases (see Examplésl-6.7 below),Z’ = @, SO ares= a and af = a*.?

2An example whereZ’ # @ is where g = Span{>_n2 j‘n(z)(%)” | fa() € K[t]}, viewed as a Lie
algebra of infinite series of differential operators &n= [K[¢].
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We will use the multiindex notatiom, = wy, wy, - - wy,, wy = wj wy, -+ wy , and
A= ;Lﬁl;“ﬁz _ ’1/35 whereo = (a1, ..., %) andﬁ = (f4,..., P,). Fix a total ordering
< on bothZ and Z'. We say thatwgkﬁw:/k # 0 is astandard monomialf «; < o;,

Bi < B, andy; < y; wheneveri < j. By relations (R1) and (R2), the standard
monomials sparm. The length ¢(«) of a multindexa = (a1, ..., «) is r, the number
of its entries. Ifu = ¥, we say that‘(z) = 0, and we letw, = 4, = w} = 1.

Let @ be the [<-vector space of linear combinations of (p053|bly infinitely many)
distinct standard monomlalwylﬁwy of a. That is, the elements df are those that
can be expressed as (possiblyiinfinite) suEg By cg/;ng}tﬂw;f where c,g, € €, and
the sum runs over all finite multiindices 7 with entries inZ and § with entries in
7’ such thatwy/gwy is a standard monomial. Elements written in this way (as linear

combinations of distinct standard monomials) are said to be @taadard form For
the remainder of the paper, we will restrict our attention to the subspacensisting
of those element$ By Cgﬂywzﬂuﬁw;( € a with the following property:

(P1) For eacty, there are only finitely many pairg., ) such thatc,g, # 0.

Lemma 2.2. Term-by-term multiplication givesig the structure of an associative
algebra.

Proof. It is enough to show that this multiplication is well-defined and the resulting

products are img. Associativity then follows immediately from the associativity of
Fix a multindex{ = ({y, ..., ;) of elements fronZ. Let

T = Z cg&wgiﬁw;
wp.y

and

T = Z dl y/wa/lﬁ/w,/
vy

be elements ofig written in a standard form.

We consider the product8 = ﬁ/Jj/ )= caﬁywa)lgw dy, /wa/lﬁ/w which, when
written in a standard form, contain a nonzero muIt|pIe of a standard monomial of the
form wy,/wwg Note thatw € {wv, | 1< j <t} forall w , occurring in the expression

for P. Thus, there are onIy flnltely many possm}é that may occur. For each suq:h
there are only finitely many’ = («3, ..., o)), ﬁ = (ﬁl, ..., B.) for which dygy #0,

sinceT’ € ap. For each of these (finitely many) possible triptes, f', 7') occurring in
the expression foP, we see that every)/ € {w} ,,wy |1<j<r 1<k<t}). (Any

w ¢ {w , | 1< j <r} would commute Wlthwy/)uﬁ and thus contribute au* term
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to the expressionlqu, which is impossible unlesw;fi € {w;fk | 1 <k <1t}.) For each of
these finitely many possiblg, there are only finitely manyz, ) such thate,g, # 0,

so there are only finitely mang, [_'3 ?s o, E/ Z) such that a standard form expression
for P contains a term of the formw,4,w?, wherek is a nonzero scalar. That is, the

product7T’ is well-defined and imp. [
For eachx e g ando € Z, write x - wy = Y x;‘wy with xﬁj‘ € K. Note thatx;‘ =0
vel
for all but finitely manyy. Define the normal ordering) coﬁﬁwmwz*g =) Chp wmw;} :

wherec,; € K and

. . —pu);;wgc if o=peJ,
- Walp = { Y otherwise (2.3)
Let
fe= Z C(xawgwy . (2.4)
ael

Note that fy = 3_, 7 x) : wyw : is a well-defined member aip for eachx € g.
Thus, we may conduct the multiplications of the following two lemmas
within ap.

Lemma 2.5. For everyx € g, n€Z, and 1 € W/,

() [fxs wy] = Zyelx;?w“/ =X-wy,
(i) [fe, A= =2, ez xiAwpwy =x - 4.

Proof. If y=a € J, then: wyw} : = —pwiw, = wyw} + 1. Otherwise, wyw} : =
wywj. Therefore ad w,w} : = ad wyw;}, So

[fX7 wi’]] = ZO{ "/EI x;‘[: w'}vw; s wn]
— o ES
= Za ™ [wyw}, wyl
— o *
- Zoc sez %7 WriWo, Wikp

— n — .
= Z"/EI Xy Wy = X - Wy.

Similarly,
Uer A= =p 3, 5wy, Zpw;

o *
= — xX 2 (w-)w
D er A
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and

—A(x - wy)
_ ZyeI x;‘}v(wy).

Thus,x - A= — Za,yeI x,f,‘/l(u)«,)w; =[fu,.Al. O

(x - A(w)

Lemma 2.6. [ fv, fyl = fix,y) + Q% for someQl , € ag such that[Q¥ ,, a] = 0.

Proof. By the Jacobi identity (o, viewed as a Lie algebra), if ¢ W or W’, then

([fxs fylsul = U, Uy, ull=[fy, [fxsull = x - (y-uw)—=y - (x-u) =[x, y]-u = [ fix,y), ul.
Thus{ fx, fy]1— fix,y) cOmmutes with the generators @fand hence centralizes [

3. Fock space

Define an augmentation map o™ — K by the rule that

s(wylpwy) = {0 otherwise

Let IKvg be the one-dimensional lefit-module given by
uvo = e(u)vo for pe a™.

Inducing toa gives theFock spaceV =V (g, W, J,Z,7, p) = a Q.+ Kup.
Analogously, we define the lefiesmodule Vies= V(g, W, 7, Z, p) = ares®,+_Kuo,
where a;f¢ acts onlKvg by restriction of thea™-action. We writeavg to denotea ® vg
in either ofV or Vies Which moduleavg inhabits should be clear from context.
By the relations ofa, eachv € V (resp., Vieg can be written in the formuug
for somea € a~ (resp.,ag. From the relations ofi, we have the following useful
formulas:

Lemma 3.1. Let o, y € Z. Then

. Wy Wy if p=-1,
| y = .
() Wo Wy { —wy Wy if p=1
fwy — 0yl if p=—1,
(i) wot = { 0t P
—wiwy + Oyl ifp=1;



M. Lau/Advances in Mathematics 194 (2005) 225-245 231

o fwpwi 40,1 if p=—1,
() wywy = { —wwk + 0y, if p=1;
. wiw:  if p=—1
Kk y Wy ?
V) wyw, = { wiwy ifp=1 O

Iterating Lemma3.1 gives

Lemma 3.2. Supposex € Z, and let

— wM™2 ..M R w;ns € Qres
S

*
0# wywy 7 Wiy Wiy

where eachm;, n; is a positive intege? the y; are all pairwise distingt and they;

are all pairwise distinct

Then
: L(y)+L
0 wawzwz = (—p) D+, wﬂw
2 1
— —_)f+i+1l, * wnjoy =l el g
wy D (=) P 0wt w Tt wig w wt,
j=1
. ()+e
(i) w;wzwz = (—p) D+, wuw
mi_1 -1 mit+1 my ., ok
+ Z( ,0) m; 0.y, "/1 cwy, wl’ o wy ~w>,r’wﬁ. O

i=1

Thus if wzwé € a~, the action ofw, (resp.,wz)e at on wzu)Zvo is, up to a factor

0 ay.
of +1, P (resp.,a—wﬂ).

Lemma 3.3. Let wy, w;} € at, and supposev,w), is as in LemméB.2. Then

0 wawzw;vo

N
- _ _ o+ N wnjoy o wnj=l o wnjen
= E (—p)"Lt njéa,ujwzwﬂl Wy Wy Wi ws v,
Jj=1
M1 my =1 mitl my
(i) wk w),w#vo— E (—p)im; 0oy, 71 wy, W T Wy e wl w* 1 VO- O
i=1

3Note that if p = 1, then eachn; and nj is equal to 1.
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Corollary 3.4. Supposet(x) + E(E) > L(y) + L), wgw; € a*, and wzw}i is as in
Lemma3.2. Then

wlwzwzw;ivo = k(y, ﬁ)ég,ﬁ%,zml!mz! cemplnging! - ongluo,

Wherek(z, w==1. 0

Proposition 3.5. Vies is a simpleaesmodule withlK-basis

B= {wlw;}vo | wgw;} € a” is a standard monomial}.

Proof. By the observations before Lemntal, the elements o5 span Vies Let
v € Vies Write v = Za,ﬁ cgﬁwgw;;vo = 0 where eachugwg is a standard monomial in

a~—. Choose multiindices/ andﬁfso thatwg/wﬂ/ c€a” andY(g’)JM(ﬁ’) = max{£ (o) +
£(B) | cyp # 0}. Then by Corollary 3.4, N

wﬁ/w;,v = kcz/ﬁ/vo (3.6)

for somek € K\ 0. If v # 0, then cyp C€an be taken to be nonzero. Hence every

nonzero submodulé’’ containsvg. But sincewg generatesVies, V' must be Vies, SO
Vies IS simple.
If v =0, then 8.6) reads 0= wyw) v = kc,pvo. Hencec,y = 0, and by the

maximality of £(/) +€(§’), we see that everygﬁiis zero. Therefore the elements of
B are linearly independent and forml&-basis for Vies O

Proposition 3.7. Let v € Vies Thenv € Kuvg if and only if

(L - e)(ahd)v =0.

Proof. If v € Kuvo, then ((1 — ¢)(ajtg)v = 0, by the definition ofVies. Conversely,
assume that(1—e¢)(akg))v = 0. Write v = Z%ﬁ czﬁwgw;}vo = 0 where each*gﬁ e KK,

and wz“’? is an element ofy in standard form. Choose multiindice$ E/ such that
£@) +L(B) = max{t(w) + £(P) | cup # 0} and cyp # 0. By Corollary3.4, wyw} v =

keypvo for somek € K\ 0. But wg/w/’;, € o SO by the definition ofyLg wﬁ/w;, €

ats If o and f" are not both equal t@, then wywiv = (1 - &)(wpw}))v = 0O,

a contradiction. Hence/ = B = ¢, so we are done by the maximality @f«’)

+ep). O -
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Modules likeV play an important role in statistical mechanics, where they represent
the “space of states” for a given system. The cyclic veetpis viewed as a vacuum,
and the element

m my w;r:r)ﬂl s kg1 *qr

Wt Wy B B Wi Wy, vo

(with every m;,n;, gr a nonnegative integer, anw“,.,/lﬁj,w;‘k € a~) corresponds
to a state withm; particles in statew,,, n; particles in state%ﬁj, and g, particles in
statew} . Whenp = —1 (resp.,+1), V is calledbosonic(resp.,fermionig Fock space
since the “particles” inV satisfy Bose—Einstein (resp., Fermi—Dirac) occupancy
statistics.

Due to the normal ordering and the “finiteness condition” in our definition of a
realization, the elementg, defined in Sectior2 have a well-defined left-multiplication
action onV. This follows easily from Lemma 2.5 and the fact that all but finitely many
monomials in anyf, act as 0 on the vacuum vectog. We can therefore interpret the
elementsf, as operators on the Fock spaée

Moreover, for anya, f,y,n € Z, the bracketl[: waw;; L, wyw;; :] is an element
of Spanc{: wywy @ | u,v € Z} ® K1, so [fy, fy] may be written in the form
2 ez Cuv + wpwy : for somecy, € K. Since f; and f, are given by a realization
(g, W,J,Z,T), the “finiteness condition” ensures that there are only finitely many
(u,v) € (Z\ J) x J such thatc,, # 0. Thus[fx, fylvo € Vies Now by Lemma 2.6,

Q% yvo € Vies But sinceQy , commutes with the elements aof we see that

(1 — &) (ajh) 2% yvo = 2, (1 — ) (arhgd)vo = 0.

Hence by PropositioB.7, Q% ,vo € Kvg. Writing Q% yvo = ck.,vo With ¢k, € IS gives

Corollary 3.8. Span{fx | x € g} & [Ke is a Lie algebra with bracket defined by
Lfx, fyl = fien + c)’?yye and [e, fy] =0 for all x,y € g.

4. Central extensions

A central extensiorof g is a Lie algebrag and an epimorphisng : g — g with
ker¢ contained in the centeZ(g) of §. Given two central extensiong, =) and (g, ¢)
of g, a morphism(from (g, n) to (g, ¢)) in the category of central extensions is a Lie
algebra homomorphism : g — § such thatpu = n. We say thai(g, =) and (g, ¢) are
isomorphicif the morphismy is a bijection. The central extensia@, =) is universal
if there is a unique morphism from it to every other central extensiop. of

Isomorphism classes of one-dimensional central extensions are in bijective correspon-
dence with cohomology classes Hiz(g; K). In particular, each clasig] e HZ(g; K)
determines a central extensian= g @ [Kc with the bracket[-,-]” in § given by
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[x, ] = [x, y] + c(x, y)c for x,y € g, wherec is central andc is a representative

of the class[c]. Conversely, ifc : g x g — K is K-bilinear andg = g @ Kc is

a Lie algebra under the brackgt -1~ defined above, thew is a representative of a

cohomology clas$e] in H?(g; [K). Direct computation from the chain complex defining
H?(g; IK) shows thatlc] € H?(g; IK) if and only if ¢ satisfies the2-cocycle identities

@) c(x,y) = —c(y,x) and
(i) c(x,ly,z]) +c(y, [z, x]) + c(z, [x, y]) = 0.

Theorem 4.1. For everyx, y € g, let c(x, y) = pck.y. Then[c] € H2(g; K).

Proof. Sincex — f, is a linear map, the space= Span{f: | x € g} is a Lie algebra
under the bracketfx, fyls = fix,»1. Then by Corollary3.8, the map(fy, f,) — cﬁ,y
is a 2-cocycle forS Finally, [c] € H?(g; ) sincex — f, is a homomorphism from
g to S andc(x, y) is a constant multiple of:fc’,y. O

Corollary 4.2. Letg = g® Kc with [x, y]” = [x, y] +c(x, y)Cc wherec is central and
let = : §—g be the canonical projection. The@, n) is a central extension of. [J

Theorem 4.3. The actionc.v = pv, x.v = fyv for x € g, v € V gives a representation
of § on V.

Proof. The mapx — f:, ¢ — pl extends to a linear transformation @p so it
suffices to check that

[.X, yr v = ([.X, y]+c(xv y)C) v

f[x,y]v + pe(x, y)v

= ([fx, fy] = Q8 v + pe(x, y)v
= [fx, fy]U
= fxfyv - fyfxv

x-(y-v)—y-(x-v). O

The reIationc;?,yvo = [fx, fylvo — fix.yjvo (Lemma 2.6 and the discussion after
Proposition 3.7) gives a way to calculatéx, y) explicitly. In the notation of Section 2,
X wy =), c7xjw, for everyx € g ando € Z, and

Theorem 4.4.c(x,y) = > x&y}“ - > x&y}“
NN ISYAWA LIIAWN IV



M. Lau/Advances in Mathematics 194 (2005) 225-245 235

Proof. Let x: Vies— K be the linear map defined by

. [1 ffa=p=wn
K(wywyvo) = { 0 otherwise

for wywjea”. Since chy is a scalar, cfyvo=I[fr, fylvo — fixyv0

= k([ fx, fylvo)vo — K(fix,yjv0)vo. FoOr anyz € g, we have

K(fzv0) = K Z Zp T wywy i g
o,yel
=K (Zzg D wawy v0> =0,
el

by normal ordering sincev, € a* or w} € at. Thus

k([ fx, fylvo)

P
Cx,y

=K Z y;‘[fx, twyw) Jug

o,yel

=K Z Yy (Lfxs wylwy + wyl fr, wyvo

o, y€L

V.o * *
=K Z x&yy (wyw, — w«/wy)vo
o,yel

Let y: Z — {0, 1} with

1 ifned,

2 = { 0 otherwise

Note thatw, € a* or wj € a* (and likewise forw, and w%). Therefore

if w*eat,

*
* o
Wywivg = X
xWa Y0 { —pwiwyvo + pvo = pvo if wk ¢ at.
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Hence (wywy; — wyw)vo = p(x(@) — x(7))vo, SO

c(x,y) = pcly = pic|[ D xdyipGu(@) — 2o

o,yeL
= > Xyl — 1)
o,yeL
- X bt Y
weJ,yeI\T ae\T,yeT

and both of these sums are finite by the finiteness condition on realizatidns.

5. Embeddings into Lie algebras of infinite matrices

Date et al.[3] and Kac and Peterson [12] have introduced the Lie algélisa
consisting of infinite matricega;;); jez With a;; € K and only a finite number of
nonzero diagonals. The Lie algeb®,, has a central extensioBl,, = s, @ KKc
given by the 2-cocyclex(E;;, E;;) = —o(Ej;, E;j) = 1 fori <0, j > 0, and
o(Eij, Emn) = 0 otherwise (cf. [13]).

By analogy, for any realizationg, W, J,Z,Z', p), we may view the space

A= Z Cap w“w;} € | cup € K
o, el

as a Lie algebra ofcard 7) x (card Z) “matrices” »_ c,pEyp, Where E,g is the
o, el

matrix with 1 in the(a, §) position and 0 elsewhere. The Lie bracket2inis obtained
by linearly extending the ordinary “matrix Lie brackett,g, Eyyl = 6pyEay— duyEyp
to A. Although the matrices iRl may be of arbitrary dimension and need not have
only finitely many nonzero “diagonals,” this bracket is well-defined, since it is simply
the result of restricting the Lie bracket ap to A @ K1 C ap and then projecting
onto 2. o

It is clear that the spac®l = A @ K1, under the restriction of the Lie bracket of
Qo, is a central extension ofl, and the resulting 2-cocycle is simply the “constant
term” that occurs in a given bracket—i.e:(Eyg, Eyy) = &([: waw;g R w«,,w:; D =
0u.n0p,,(x(2) — x(7)), in the notation of Section8 and 4. The restriction of to the

Lie algebra of Corollary 4.2 is the 2-cocycle of Section 4g K= ., W is the natural
representation on (doubly infinite) column vectors (with canonical basis indexed by
Z=17),7 =@, and J is the nonpositive integers, then we get the 2-cocycland

the Lie algebral, of [3] and [12].
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In particular, if V is faithful, the identification of the operatorwuw;; : with the

matrix E,p andc with p1 gives an embedding af = g @ Kc into 2. The following
proposition gives an easy criterion for faithfulness.

Proposition 5.1. The g-moduleV = V (g, W, J,Z, T, p) is faithful if and only if W
is a faithful g-module.

Proof. SupposeéW is not faithful. Then there is a nonzenoe g such thatx - w =0
forall we W. Thus fy = Y : (x - wy)w} :=0, so for everyv e V, x -v = frv=0.
HenceV is not faithful. —*<Z

Conversely, suppos@/ is faithful andkc+ x acts as zero ol for somek € K and
x € g. Then for everya € q,

0= (kc+x) - (avo) = (kp + fx)avo
= [kp + fx,alvo+alkp + fi)vo
= [fx,alvo+ a(kc+ x) - vo
= [fx, alvo.
Therefore by Lemma2.5, (x - wy)vg = 0 = (x - w})vo for all « € Z. By Proposition
3.5, it now follows thatrw, = ) x;‘wy. Then for anyo, ff € Z,
ved
0= (kc+x)- (wwavO) = [fx, wocw;}]vo
= [fx, wa]wzvo + wel fx, w;;]vo
= (x - W)WV + Wa(x - Wp)vo

= (x- wu)wEUO

= Z x;‘wywzvo

ved
=—p Z x;’,‘w};w},vo + Z x){wy, wilpro
yeJ ved
= pxgy(Bvo.

in the notation of the proof of Theorem 4.4, Hemp: OforallaeZ andf € J.
But x - wy, = Zyej x;‘wy, so this givesy - w, = 0 for all @ € Z. SinceW is faithful,
x =0, sokc = kc+ x acts as zero oV. Hencek = 0, andV is faithful. O

We can use the “identity matrixJ := ) : wyw} : to decompos® into submodules:
yeZ
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Proposition 5.2. The g-module V has aZ-grading V = @,.; V», where V, is the
J-eigenspace with eigenvalue r. Each, is a g-submodule of V. Explicitly
V, = Span (wy/pwivo | €@ — £(B) — £() = r}.

Proof. For any

Le W,
[J,A]l = Z[: wyw;f LA=—p Z{w«/, ),}pw;k =— Z)V(w),)w;‘f
vel veZ vel
and for any
oel,
=D Mupw(wa) = —i(wy),
yeZ
so[J,A]=—/.

Likewise, forw € W, [J, w] = w, and Jvg = 0. Thus
Jwg)uﬁw;fvo = [J, wgiéw;]vo + wgiﬁw;.lvo
= [J, wydgwilvo

= (@ — £(p) — L)) wadpwivo.

To see thatV, is a g-submodule, it is enough to observe thhtommutes with f,
andc for all x € g. But this is trivial, since[J, : wmw; d=1J, wm]wz + wylJ, w;;] =
waw’[g —wowh=0forallo, fez. O

As we will see in Examplés.1, the moduled/, need not be irreducible, even \iY/
is irreducible.

6. Examples

In this section, we show that our notion of bosonic and fermionic realizations includes
representations on symmetric and skew-symmetric tensors, as well as generalizes the

Fock space constructions given by Feingold and Frenkel [5] for typeand A,(Zl) and

by Gao [10] forg@), whereC, is the quantum torus in two variables. Also, The-
orem 4.4 may be used to compute interesting central extensions. We illustrate this with
the Virasoro Lie algebra and a central extensiorigf(4), whereA is the ring of dif-
ferential operators on the punctured plab&. We anticipate that the techniques of this
paper may be used to produce nontrivial representations of toroidal and other interesting
Lie algebras, and we plan to investigate these and further applications in a later work.



M. Lau/Advances in Mathematics 194 (2005) 225-245 239

Example 6.1 (Symmetric and skew-symmetric tenyoiset jg be any Lie algebra with
a moduleW. Consider a realizatioqg, W, 7, Z, ') with 7 = (. Thena™ is generated
by {wy, | « € Z} and f,vo = O for everyx € g. The defining relations of make it
clear thatV is the moduleS(W) of symmetric tensors in the tensor algeliraw) if
p = —1, and the module of skew-symmetric tensés., /\" W if p = 1. The central
extensiong = g @ Kc is obviously split, since the 2-cocycteis trivial. Moreover, the
submodules

V.~ S"(W), therth symmetric power ofW if p=-1
"TIANATW if p=1

are seldom irreducible, even W is irreducible.

For instance, takey = slo(C), W = §"™(C?), J = ¥, andp = —1, whereC? is
the natural module anéh > 1. ThenW is irreducible, but the Clebsch—-Gordan rule
(see[9], for instance) givesV, = S2(§™(C?)) =~ Do<n<z §2m=4n(C2), so V, is not
irreducible. Similar arguments can be made it 1.

Example 6.2 (Oscillator and spinor representations fail (K<)). The natural represen-
tation W = K" of the Lie algebrag = gly(K), with Z = {1,2,...,N} and J =

@ gives the usual oscillator and spinor representations (as describfs], ifor ex-
ample) forp = —1 and p = 1, respectively. These are representations that come
from the natural isomorphismly (<) W @ W*, and can be thought of as the model

for all bosonic and fermionic representations described in this paper (as discussed in
Section 5).

Example 6.3 (Matrices over associative algebnasLet A be an associative algebra over
the field K, and letM be anA-module. The Lie algebrgly (A) of N x N matrices over

A has a natural “left-multiplication” action on the spatg¥ of N x 1 column vectors
with entries in M. Specifically, letx(a) = (xjja)i<i, j<N where x = (Xij)1<i,j<N €
gly(K) anda € A, and let

vim V1
vom v2

v(m) = , , wherev=| . | ek" andm e M.
vym UN

Thenx(a) - v(m) = xv(a -m). Realizations of(gly (A), M") give representations for
a variety of interesting Lie algebras, including Exampte4, 6.5, and 6.7 below.

Example 6.4 (Affine Lie algebraAg\})_l). In the notation of Exampleés.3, let A =
K[z, =1, and let M = K[r,r~1] be the (left) regularA-module. ThenW = MV
is a module forg = gly(A). Let Z = {1,2,..., N} x Z with w;, = ¢(n) and
J =1{1,2,...,N} x N, wheree;(n) = ¢;(t") and N denotes the nonnegative inte-
gers. ThenZ' = @, and the realizationg, W, 7,Z,Z') is (with the exception of a
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small change to the normal ordér)the Fock space construction given by Feingold
and Frenkel for the affine Lie algeba=g@® Kcin [5]. If 7 ={1,2,...,N} x Z*
where Z*1 is the positive integers, then we recover the representation given by Gao
[10, Prop 2.25] for his “vertical Lie algebral, ~7g.

Example 6.5(gm)). Let C, = Clx™, y£],.c./(yx — gxy) be the quantum torus in
two variables® The associative algebr@, admits a representation af = C[z, 4

by x -t = andy - t* = ¢%"*. Taking w; ), Z, Z', andW as in Example 6.4, we
let 7 ={1,2,..., N} x Z". This realization gives Gao's representatiby (g™ p")
fijm,n) =3 74" :ei(s +m)ej(s)* :. In order to have the desired commutation
relations between the operatofs (m, n), Gao adjusts his basis of the central extension
spanned byf;;(m,n) and 1 by replacing thef;;(m, n) with F;;(m,n) = fi;j(m,n) +

k(i, j,m,n)1 for some constantg(i, j, m,n) € C. Note that such a change of basis
is included in the boundary map: C! — C? of the Chevalley—Eilenberg complex
for H*égIN(Cq); C), so does not alter the 2-cocycle or the central extension described
above.

Example 6.6 (Virasoro Lie algebry. Let g be the Witt algebra Spg{L,, | m € Z}
with commutation relationdL,,, L,] = (m — n)L,,4, for all m,n € Z. The Witt
algebra has a natural (and faithful) representation as the derivaligns —t’”+1%
on the space of Laurent polynomial¥/ = K[z,7~1]. TakingZ = Z, 7' = @, and
J = 7", we obtain the 2-cocycle

L L) = Y L) L) = D Lw)! (L)'

i>0,j<0 i<0,j>0
Clearly L,, -t/ = —jt"%/, so (L,)] = —jdim+; and

(L Ln) = Y ij0imejOimsi— D ij0imejOjnti
i>0,j<0 i<0,j>0

m—1

= Z 5m,—ni(i - m) -
i=0

3

-1
m—m
5m—n.._ :5m—n .
Z i@ —m) i ( 6 )

i=m

4The normal ordering used by Feingold and Frenkel is

—ej(n)*e;(m) — % if i=jandm=n

1
tei(me; n)* = Z¢; (m)e n)* — gej (n)*e;j(m) = { e (m)e s (n)* otherwise
i j

2

Their change in normal order amounts only to replacifig(0) with E;; (0) — %c in our representation.
They (and Gao[10]) use the notatiom;‘.‘(—n) to denote what we calk;(n)*.

5Hereq € C*, and C[x¥, yi]m, is the space of Laurent polynomials in two noncommuting variables
x andy.

6Gao’s central elements(n) all act as our central elememt and his cy acts as 0.
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Adjusting our 2-cocyclec by a constant factor o#% gives the usual normalization of
the central extensioy = g @ IKc, called theVirasoro Lie algebra It is well known
that this central extension is universal (ff], [13], or [17], for instance).

Example 6.7(51;()/\/1%0)). Let K[p,qil]n‘c_ be the (unital) associative algebra of
noncommuting polynomials in two variablgsand g, localized on the multiplicative
set{g"|m € N}. Let A = K[p, g 1..c./([p,q] — 1). The algebraA is the first Weyl
algebraA; localized on the multiplicative sefy” | m € N}, and thus has a natural
representation ofi[z, r~1] given by p - t¢ = ¢r¢71, g -1t =1 andg~1. ¢ =1L

If K is algebraically closedA is also the ring of differential operators on the “circle”
{(x,y) € K? | x2+ y2 = 1} or the schemek \ {0} (cf. [2,11]).” Viewed as a Lie
algebra in the usual way, the algebkaarises as a limit of objects calleid,-algebras
(see [19], for instance), and is usually denoléd .

In the notation of Example 6.3 = (K[z, t =DV is a representation for the Lie
algebrag = gly(A), and we obtain a realization by taking;, = e (") € W,
I={12...,N}xZ, T =¢,andJ = {1,2,...,N} x N. Let x(k, £) = x(¢gFp")
wherex € gly (), k € Z, and £ € N. Since the module action i8;;(k, £) - win,n) =
87.m (M)W nrk—r) Where (n)e = n(n — 1)+ (n — (L — 1)), we haveE;; (k. )"} =
0i,r0jmOntk—e,s(n)e. Thus the Fock space representation is

Eij(k, €) = > ()¢t Wnk— W 5
neZ

and by Theoren#.4, the resulting 2-cocycle is

C(Eij(k’ Z)? Emn(r’ S))

: b
= > Eij (e, 00 Emn (r, $)(o ')
(a.b)eT,wv)eI\T

s b
- > Eij(k, O ) Emn(r. $)0)
(a,b)eI\T ,(u,v)eJ

:5i,n5j,m Z 5v+k—€,b5b+r—s,v(v)ﬁ(b)s_ Z 5v+k—£,b5b+r—s,v(v)f(b)s
b>0,v<0 b<0,v>0

s—r—1 -1
= Okre+s0jmOin ( D b+r—sub)s— Y (b+r- S)e(b)s>
b=0 b=s—r
with the convention that empty sums are 0.

7Which is the punctured plane in the cabe= C.
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By the lemma and identities in the appendixsif r, then

s—r—1
P
3 b+ —s)eb)s = (~D'els! (S e )
P —r—1
s—r+4L
= (=Dtes!
(=Db"els (s + 4+ 1)
= ptast( 0 ).
S P}

Likewise, if s < r, thenr > 0, so

1
Y (b7 —s)b)s = (=D)els! (r —siﬂ - 1)

b=s—r
—vest( T ).
s+L4+1
Hencec(E;j(k, £), Epn(r, s))

= 5k+r,€+35j,méi,n (_1)s+lZ!S! (S+Z+1>

r

= (B Enn) St (D201 (1044

so by the linearity of the trace,

. r
dﬂhﬁlﬂnﬂ)ZU@yﬁmﬁuﬁ—DH4ﬁﬂ<£+s+l>

for any x, y € gl (K).

The 2-cocyclec was first computed by Kac and Peterd@@], and the corresponding
central extensiorgm) is universal ([4,15,16]). With a slight abuse of notation, we
denote the central extension gfh,?(wlﬂo). By the 2-cocycle formula obtained above,
@;(WHOO) contains full copies of the affine and Virasoro Lie algebras

aly () = Span (x (k, 0) | x € gly (), k € 7} @ Kc,
Vir @Span{l(k,1) | k € Z} & KKc,

where ! € gly (K) is the identity matrix.
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Appendix. A combinatorial lemma
In the statements below, we assume that all variables represent integers, and we

follow the standard conventions that empty sums are 0, empty products are 1, and

(¢) = e where

_Ja@-1--@—-b-1) if b=0,
(“)”—{o b <O.

We will use the following well-known identities without explicit mention:

) (Z)=<—1>b<b_z_1>,
o £
® (5)=(s")

for anya,b,c € Z andd € N (Seel[6], for instance.)

Lemma A.1. Letm, £, s > 0. Then

nl m+ 4
H )2
() ;)(b —m)e(b); = (=D)els! (m . 1>,

-1
(D) > (b+m)(b)y = (1) Lls! (m’fji 1>~

b=—m

Proof. Note that (ii) will follow from (i) by interchanging¢ and s and making the
change of variable$ — b+ m in (i). Thus, we may restrict our attention to the first
identity:

m—1 m—1
D o b—myb)s = Y (=D m—b+ £ —De(b)s

b=0 b=0
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"il(_l)%, (m —b4t— 1) (b)
Is! ,

N
b=s

m—1
o m—b+t—1 ( b )
( 1)£!s!;< b1 ) b
nly 4 s—1
_1yH+m—s—1 T R
(-1 m!hz<m—b—1)(b—s>'

=5

Changing the index of summation fromto » — s now gives

m—1 m—1—s -1 _e—1
Z(b —m)e(b)y = (=1)ttm=s—1p151 Z ( ) 1) < ) )
b=0 b=0 m—o—5-—

— (_1)€+m—x—1g's| _6 B 2

"\m—-s5s-1
- (—1)@£!s!( m e ) O
m—s—1
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