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A uniform, algebraic proof that every number-theoretic assertion provable in any 
of the intuitionistic theories T listed below has a well-founded recursive proof tree 
(demonstraby in T) is given. Thus every such assertion is provable by transfinite 
induction over some primitive recursive well-ordering. T can be higher order num- 
ber theory. set theory, or its extensions equiconsistent with large cardinals, It is 
shown that there is a number-theoretic assertion B(n) (independent of T) with a 
parameter tt such that any primitive recursive linear ordering R on w for which 
transfinite induction on R for B(n) is provable in T is in fact a well-ordering. 
’ 1985 Academic Press. Inc. 

0. INTRODUCTION 

Elementary number theory extended with the schema of transtinite 
induction on all primitive recursive well-orderings proves all true number- 
theoretic assertions [ll]. This is not true for such an extension of con- 
structive elementary number theory, We give a concise, uniform argument 
that this extension proves any number-theoretic assertion provable in prac- 
tically any constructive theory consistent with the recursiveness of all 
functions f: N -+ N. Besides the extended constructive elementary number 
theory under consideration, these include, e.g., higher order number theory, 
set theory, and its extensions equiconsistent with the existence of large car- 
dinals. The result is known in the case of higher order number theory by 
elaborate proof-theoretic arguments [12, IS] which do not extend to 
stronger theories. 

* This research was partially supported by National Science Foundation. 
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Our proof involves the constructive metatheory T with the additional 
assumption that every function f: N + N is recursive. In this metatheory, 
the extension of constructive elementary number theory described above 
coincides with the extension with the full o-rule 

A(O)A(l)...A(C)..., alln 
VnA(n) 

We embed its Lindenbaum algebra into a complete Heyting algebra, 
preserving all infs and sups (that already exist). This completion is given by 
all sup-closed ideals. Then it suffices to look at the Heyting-valued model 
over this completion. Finally, we use a transfer lemma that eliminates the 
additional assumption on the metatheory. This maneuver of switching 
metatheories is similar to the one we used in [S], except that here it is 
accompanied with an algebraic construction of a completion of a Heyting 
algebra and with a forcing extension, rather than with the slash. 

In Section 1 we state constructive set theory, and discuss several 
equivalent versions of the extension of elementary number theory with 
transfinite induction schemata, particularly in terms of well-founded recur- 
sive proof trees in the system with w-rule. 

The main construction is given in Section 2. We give the transfer lemma 
on recursive realizability in Section 3. 

Section 4 contains an application of the main theorem which shows that 
if transfinite induction for a particular number-theoretic formula on a 
primitive recursive binary relation R is provable in any of the constructive 
theories T mentioned above, then R is in fact well founded. This is an 
extension of the first author’s result for elementary number theory [4]. It is 
known to be false for classical theories [lo]. 

We conclude with the remark on the extension of these results to 
theories stronger than set theory. 

1. DESCRIPTION OF THEORIES 

We shall use a formulation of intuitionistic set theory ZFI based on two- 
sorted Heyting’s predicate logic, with variables n, m, k,..., over natural num- 
bers and variables x, y, z, u, v, u’,..., over sets, the number constant 0, and 
primitive recursive function symbols. Equality will be used only between 
numerical terms. The relation symbol E will be used only as t E X, where t is 
a numerical term, or a set variable. The axioms are as follows: 

(1) l(s(n)=O),s(n)=s(m)+n=m 
n = n, n=m-+m=n , n=m r\m=k+n=k, 
n, = m, A . . A ni = mi -+ F(n, ,..., ni) = F(m, ,..., m,), 
n=m+(nExomEx). 



(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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Primitive recursive defining equations. 

Induction. A(0) A Vn(A(n) + A(s(n))) + V’nA(n). 

Infinity. 3x.Vn.n E ?c. 

Pairing. 2.x( u E .Y A u E x). 

Union. !l.u.Vy.V’tl( Jo E ~1 A u E u + y E x). 

Separation. 3x[Vn(nEs~A(n)) A V.\)(J)E .u++y E 21 A E(y))] 
where x is not free in A(n), B(J). 

Foundation. V.Y(VJEX.A(~) + A(x)) + VxuA(.u), where I does 
not occur in A(J)). 

Power set. 3.u.V~~( Vr E ~‘2 E zi -+ j’ E x). 

Collection. V.u E u.3~,.A(.u, J’) -+ 3v.V.~ E u.3~~ E v.A(x, ~a), 
vn E zdy.B(n, y) -+ 3w.vn E U.31’E w.E(n, y) 

where t‘, ~1 are not free in A(s, .v ), B(n, y). 

Extensionality. 

V’n(n~.uctn~y) A V~(_~.~tt=~?‘)--r(A(.~)ttA(y)). 

Axioms (l)-(7), (9), (11) with all quantifiers in A(n), B(y) bounded are 
equivalent to higher order arithmetic (HAH), which is often formulated in 
terms of finite types over natural numbers. Its fragment (l)-(3), (7) in the 
form hVn(n~.uo A(n)) with x not free in A(n), and with or without (11) 
in the restricted language which allows only numerical terms as elements is 
called second order arithmetic (HAS). Further restriction of the language 
obtained by barring set variables altogether, and retaining the appropriate 
fragment of ( I)-( 3 ) as axioms, gives ,first order (Heyring) arithmetic (HA). 
Formulae of HA are often called arithmetic formulae. 

Our main theorem concerns the extension of HA with the transtinite 
induction schema over recursive well-founded relations. We wish to give 
several equivalent formulations of this theory. 

A binary relation R on a set S is said to be wellfounded if the following 
holds: 

We shall also be interested in a more precise information on whether such 
a formula is provable in HAS or a stronger system. 

Let R be a well-founded primitive recursive binary relation on natural 
numbers (i.e., given by a binary primitive recursive function symbol). Con- 
sider the following schema in the language of HA: 

Vn(Vm(mRn -+ A(m)) -+ A(n)) + V&(n), TI(R, A 1, 
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where A(n) is an arithmetic formula. The theory HA* is obtained from HA 
by adding the schemata TI(R, A) for all well-founded primitive recursive 
(binary) relations (on natural numbers). Equivalently (cf. below), one can 
allow all recursive well founded relations, given by their recursive indices. 
In fact, it suffices to let R be a primitive recursive well-ordering, i.e., a well- 
founded ordering linear on its field. 

PA* (obtained from HA* by adding the Law of Excluded Middle) 
proves all (classically) true arithmetic sentences [ 111. HA* is complete for 
q sentences (cf. below). However, the schema 

Vn3m A(n, m) + 3eVn A(n, {e}(u)) (CT) 

is known to be both consistent with and independent of HA*, so the com- 
pleteness of HA* is inconsistent, as observed by Kreisel. The consistency of 
HA* + CT was established by the method of recursive realizability, the 
extension of which we use in Section 3. Here we briefly sketch known 
equivalences of several formulations of HA*, in particular in terms of 
infinitary systems. We include them here to provide the background for our 
main theorem. They do not appear to be readily available in the literature. 

Let HA” be HA with full w-rule, i.e., the least collection of sentences 
satisfying the inductive definition of provability given, e.g., in a Gentzen- 
style system as follows. 

A sequent is an expression of the form f + A, where A is an arithmetic 
sentence, and r is a finite set of arithmetic sentences. The axioms are the 
sequents Tt- A, where either A is atomic and true, or A is atomic and 
some element of r is atomic and false. 

HA” has the following rules: 

Z-+A I-+B I-,A+C f, BF-C 

1-+AAB I-,AAB+C’ I-,A/\B+-C 

I-F-A I-+B r,Ak--C I-,B+C 

TI-AvB’ l-r-AvB T,AvB+C 

r,A+B ftA I-,B+C 

T+A+B T.A-tB+C 

l-t- A(r) f, A(n) + B all n 

f + 3mA(m) r, 3mA(m) + B 

I- + A(n), all n f t-VmA(m) 

f t-VmA(m) I-I- A(r) 

I-,A+B A+A 

I-.A+B 
(cut). 
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From a classical viewpoint, HA” is the same as true arithmetic. From an 
intuitionistic viewpoint, it is not clear what HA” is. In fact, under CT in 
the metatheory, it is equivalent to HA*. To see this, we will now consider 
recursive well founded proof trees. 

One gives an inductive definition (of their godelnumbers) analogous to 
the one of HA” above, except that in the infinitary rules one requires a 
recursive sequence of (godelnumbers of trees that end with) the premises. 
This is analogous to Kleene’s 0. 

Alternatively, e is a giidelnumber of a well-founded proof tree if 

(i) {nl (e}(n) # 0} is the set of (codes of) finite sequences of natural 
numbers that are nodes of a tree w.r.t. the reverse extension of sequences, 
so that 

(e}(u) = 0 --+ (e)(u*(n))=O, 

{e)(u*(n)) =0 + {e)(u*(n + 1)) =O, 

where * denotes concatenation. 

(ii) For every node U, {e}(u) gives the code of one of the inference 
rules given above in the definition of HA”, as well as the codes of the 
premises and the conclusion. 

(iii) The tree is well founded. 

One readily shows by induction on the first definition that it is included in 
the second. In the other direction, given an index e that satisfies (i)-(iii), 
one uses (iii) to show that for each node U, {u 1 o 6 U} is a well-founded 
recursive proof tree in the first definition. 

This defines the theory HAzc. It is worth pausing to note that HAzc is 
complete for Z7: sentences. Let us show that it is equivalent to HA* in any 
metatheory extending HAS. 

For any well-founded (in the metatheory) recursive binary relation R on 
o, TI( R, A ) has a well-founded recursive proof tree (a related question is 
discussed in [ 12, Sect. A.2.31). Indeed, if for each kRp, ek is a proof (tree 
that ends with a code) for 

Prog c Vm(mRk + A(m)), (1) 

where Prog is the assumption of TI(R, A), then the proof ep of 

Prog + Vn(nRp + A(n)) (2) 

is constructed by the intinitary V-introduction from the premises 

Prog + (kRp + A(E)) all k, (3) 

607 56'3.7 
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that are easily obtained if kRp is false, and if it is true, (1) and the clearly 
provable 

give 

Prog t- V’m(mRk + A(m)) -+ A(k) 

Prog +-A(L) 

and thus the relevant instance of (3). Because R is well founded, the recur- 
sion theorem gives a recursive sequence { ek }k of proof trees for ( 1). By 
another application of the inlinitary V-introduction, one gets a recursive 
proof tree for 

Prog + Vn.Vm(mRn + A(m)), 

and thus a recursive proof tree for TI(R, A). One shows that it is well foun- 
ded by induction on R (in the metatheory). 

For the other direction, let e be an index of a well founded recursive 
proof tree. We construct a well-founded primitive recursive linear ordering 
as follows. Suppose 

(e}((no,..., n,>)=m 

is computed in exactly k steps. We consider all pairs ((n,,..., n,), k) for 
which m = 0, i.e., (no ,..., n,) is a node of the given tree. This primitive 
recursive set can be linearly ordered a la Brouwer-Kleene: let 

n >, k) <‘, ( (par..., 
: ;::.:;y7, j, 

p,), q) iff either s > Y and (n,,..., n,) extends 
or nj <pi for the first id r, s for which n,#p,. Note that the 

ordering is itself primitive recursive. It is well founded because the given 
tree is well founded [ 17, Sect. 14.11. 

Cut-elimination for HA” works in HA&: indeed, there is an index c so 
that for any well-founded recursive proof tree with index d, e = {c}(d) is an 
index of a well-founded recursive proof tree with the same conclusion in 
which the cut rule does not occur. Index c is obtained by recursive trans- 
finite induction [13, Chap. 161. All formulae in e are of bounded com- 
plexity, so one shows by transtinite induction on <, that the conclusion at 
any node is true. Here we have to use the fact that e describes a correct 
derivation. This is a true Lry sentence VnE(n), E primitive recursive, and 
therefore provable by TI on the primitive recursive well-ordering given by 
mcEn iff either m<n and Vkdn. E(k), or n<m and lk<n.lE(k) L-12, 
TN4]. Thus every sentence provable in HAzc is provable by TI on 
primitive recursive well-orderings. 
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2. EMBEDDING HA* INTO A HEYTING-VALUED MODEL OF SET THEORY 

LEMMA 2.1. HAH proves that any Heyting algebra can be embedded in a 
complete Heyting algebra so that all sups and infs that exist are preserved. 

Proof Such a completion is folklore from a classical viewpoint. We give 
a construction here because we need a sharper result concerning 
provability in HAH, and because it does not appear to be directly available 
in the literature. Given a Heyting algebra H, let L consist of all ideals in H 
closed w.r.t. the sups that exist in H. Define finite infs in L by intersection, 
and let V {Xi E L 1 i E I} be the smallest YE L for which Xi E Y, for all i E I. 
TheembeddingofHintoLisgivenbyp-*p={qEHIq~p},forallpEH. 
It readily preserves all infs in H. We show that it preserves all sups and 
implication. If p = V {pi 1 iE I} in H, it suffices to show that p s Y for any 
YE L such that pi c Y, for each i E I. But p E Y follows from pi E Y, each 
i E Z, because YE L. The implication in L is given by 

x=> Y=V {SELIX&E Y}. 

One readily has p-*4&p+q because XA z<y iff z<x-+y in any 
Heyting algebra. For the reverse inclusion it suffices to show that for each 
SEL: 

pnscq implies S s p. 

The antecedent gives s A p d q for any s E S because S is downward closed 
in H. Therefore s 6p + q in H for any s E S. 1 

Similar issues are discussed in [9, Chap. 21. The construction is an 
exemple of a general forcing method given in [ 16, Chap. 11. 

For the rest of this section, fix the metatheory T+ CT, where T is HAS, 
HAH, or ZFZ; and specify H as the Lindenbaum algebra of HA with o- 
rule, and let L be its completion. We refer to [l, 7, 151 for the details on 
Q-valued models of HAS, HAH, and ZFZ for any complete Heyting 
algebra 52 in T. We concentrate on truth-values of arithmetic sentences in 
the L-valued model: 

[t=s] =H if t = s, 

{ 1 ) otherwise, 

where t, s are closed numerical terms, 
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c~.A~)I = n CAM, 
TIEW 

[3n.A(n)] = v [A(C)]. 
nEW 

LEMMA 2.2. (T+ CT) Let A be an arithmetic sentence, and let [A] be 
its equivalence class in H, the Lindenbaum algebra of HA*. Let L be the 
completion of H given in Lemma 2.1. Then, in the L-valued model: 

Proof By induction on the complexity of A. For atomic arithmetic sen- 
tences, the statement is true by definition of the L-valued model. In the 
inductive step, note that for propositional connectives 0, [A 0 B] = 
[A] c [B] in H. Then the statement follows from Lemma 2.1. For the 
quantifiers, note that the inlinitary rules (given in Section 1) state that 
lYMn)l = A,,, CA(fOl, Pn.A(n)l = V,,,, CA@)1 in H. Again, apply 
Lemma 2.1. 1 

Soundness theorem for Heyting-valued models [l, 7, 151 then gives 

LEMMA 2.3. Let A be an arithmetic sentence provable in T. Then T+ CT 
proves that HA” proves A. 

Proof: [[An is the top element in L, i.e., [An = H. By Lemma 2.2, [A] is 
the top equivalence class in H, i.e., HA” proves A (provably in T+ CT) 1 

Remark. For Lemma 2.2, we need only that certain subcountable sups 
in H are preserved by the embedding into L. Lemma 2.1 can be thus refor- 
mulated accordingly. By using a standard coding procedure, one can have 
T= HAS in Lemma 2.3. 

3. RECURSIVE REALIZABILITY 

We now eliminate CT from the metatheory by the recursive realizability 
interpretation of T+ CT into T. This interpretation was first given for HA 
by Kleene, and extended to ZFI in [2]. We present it here as a syntactical 
translation. 

Fix an enumeration of set variables. Without loss of generality, work 
with even-indexed ones only (keeping odd-indexed ones for the trans- 
lation). Let xii = xZi+ 1 for set variables, and t’ = t for numerical terms. 
Given a formula A, we define a formula n r A with one additional free 
number variable n as follows (n,, rci are primitive recursive coordinates of 
a pairing function): 
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nrt,=t, is tl=t,, 

nrUEX is (n, u’ ) E x’, u any term, 

nrA A B is rcO(n) rA, and 7cj(n) r A, 

7r,(n)=O+7rc,(n)r.4 
nrAvB is 

[ 

A 1 n,(n)#O+n,(n)rB , 

nrA+B is Vk(k r A + {n}(k) 1 and 

nrImA(m) is 7-c1(n) r A(dn)), 

j(k) r B), 

nrVmA(m) is V,m({n}(m)Jand (n)(m)rA(ti)), 

n r 3xA(s) is 3Y.n r A(x), 

n r VxA (X ) is V.u’.n r A(X). 

Soundness theorem for recursive realizability [2] states that if T- Exten- 
sionality proves A, then for some numeral fi, T proves fi r A. One can inter- 
pret T in T- Extensionality by a translation that preserves formulae of 
HAS, as in [3]. 

LEMMA 3.1. Let WFPT(n) be the formula of HAS stating that n is an 
index of a well-founded recursive proof tree (say, in the second definition, cf 
Section 1). Then T proves (m r WFPT(n)) + WFPT(n). 

Proof: The only problem is the condition (iii) requiring that the tree is 
well founded. Assume R is the tree ordering, and 

i.e., 

mr [Vn(Vi(iRn+iEx)-+nEx)+Vn.nEx], 

Vx’.mr [Vn(Vi(iRn-+iEx--,nEx)--,Vn.nEx], 

i.e., for each .Y’ and each k, if 

(4) 

kr [Vn(Vi(iRn+iEx)+nEx], (5) 

then {m}(k) is defined, and 
(m}(k) r Vn.n E x. (6) 

As (4) holds for each x’, it holds in particular for x’ of the kind j = 
{Nk ~,)I~,EY), h w  ere x is a primitive recursive pairing function with 
primitive recursive coordinates Q, rc, . Given any set y such that 

Vn(Vi(iRn+iey)+nEy), 
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we wish to show Vn.n E y. So, for each n, let 

Vi(iRn+i~y)+n~y, 

and let k be an index so that 

WlUH(~)=O 

for every 1, j. We claim that (5) holds. Indeed, let 

(7) 

jr Vi(iRn + iEy), 

i.e., for each i, {j}(i) r (iRn + i E y), i.e., for each p, if p r (iRn), then 
{ (j}(i)}(p) r (i E y). Because the tree is recursive, iRn is a Cy formula, so 
the last implication means that iRn implies i E y, for each i. Therefore, n E y 
by (7). Thus 0 r (n E y), so (5) holds. Because of (4), one now has (6), i.e., 

W<{(n)(k))(n), n> E.9, 

i.e., Vnn E y, as required. 1 

Now we can eliminate CT from the metatheory. 

LEMMA 3.2. Let A be an arithmetic sentence such that T+ CT proves 
that HA” proves A. Then T proves that HA$ proves A. 

Proof T + CT proves HA” = HAgC. Apply Lemma 3.1. 1 

This gives our main result: 

THEOREM 3.1. Let A be an arithmetic sentence provable in T. Then there 
is a numeral ii so that T proves that n is an index of a recursive well-founded 
proof tree with A as its conclusion. In particular, T is conservative over HA*. 

Proof: By Lemma 2.3, HA” proves A, demonstrably in TS CT. By 
Lemma 3.2, T proves that A has a recursive well-founded proof tree. Apply 
the numerical existence property for T, as in [5]. 1 

4. PROVABLE TRANSFINITE INDUCTION 

There are primitive recursive linear orderings R which are not well foun- 
ded, yet TI(R, A) is provable in PA for any arithmetic A [lo]. On the 
other hand, it was shown in [4] that there is an arithmetic formula B(n) 
with only n free, such that if R is any primitive recursive binary relation on 
w  for which HA proves TI(R, B), then R is in fact well founded. We now 
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use Theorem 3.1 to extend this result from HA to theories T discussed at 
the beginning of Section 1. 

B(n) is obtained as follows. By a recursion-theoretic infinite injury 
argument [14], there is an effective sequence { Qn}, of very independent 
r.e. subsets of w, i.e., an r.e. set QGW x o such that for each m, 
Qm=(WmA~Q, lsnotrecursivein {(~,k)lk~Q~,~#m}.LetB(n)be 
an arithmetic formula saying Vm(m E Q,, v nz 4 Q,!). The following result 
was proved in [4] : 

LEMMA 4.1. Let R be a primitive recursive binary relation on co. Then R 
is well founded iff HAzC proves TI(R, B). 

THEOREM 4.1. There is an arithmetic formula B(n) with n free, such that 
any primitive recursive binary relation R on w  for which T proves TI( R, B) is 
in fact well founded. 

ProoJ If TI(R, B) is provable in T, it is provable in HAgC by 
Theorem 3.1, Thus by Lemma 4.1, R is well founded. 1 

The Heyting-valued model given in Section 2 corresponds to a mild forc- 
ing extension in the sense of [8, Sect. 37.11. Because we need to consider 
only subcountable sups, the definition of the cHa L is absolute w.r.t. inner 
models. By the methods in [6. Sect. 51, Theorems 3.1 and 4.1 extend to all 
six theories given in [6] that claim the existence of large sets, and are 
equiconsistent, respectively, with ZF plus the existence of inaccessible, 
Mahlo, measurable, supercompact, and huge cardinals, and Reinhardt’s 
Axiom. 
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