
J. Math. Anal. Appl. 330 (2007) 364–376

www.elsevier.com/locate/jmaa

A rate of convergence for asymptotic contractions

E.M. Briseid ∗

Department of Mathematics, Darmstadt University of Technology, Schlossgartenstrasse 7, 64289 Darmstadt, Germany

Received 3 March 2006

Available online 24 August 2006

Submitted by Steven G. Krantz

Abstract

In [P. Gerhardy, A quantitative version of Kirk’s fixed point theorem for asymptotic contractions, J. Math.
Anal. Appl. 316 (2006) 339–345], P. Gerhardy gives a quantitative version of Kirk’s fixed point theorem for
asymptotic contractions. This involves modifying the definition of an asymptotic contraction, subsuming the
old definition under the new one, and giving a bound, expressed in the relevant moduli and a bound on the
Picard iteration sequence, on how far one must go in the iteration sequence to at least once get close to the
fixed point. However, since the convergence to the fixed point needs not be monotone, this theorem does not
provide a full rate of convergence. We here give an explicit rate of convergence for the iteration sequence,
expressed in the relevant moduli and a bound on the sequence. We furthermore give a characterization of
asymptotic contractions on bounded, complete metric spaces, showing that they are exactly the mappings
for which every Picard iteration sequence converges to the same point with a rate of convergence which is
uniform in the starting point.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The notion of asymptotic contractions was introduced by W.A. Kirk in [8]. There also a fixed
point theorem is proved, stating that given a complete metric space (X,d) and a continuous
asymptotic contraction f :X → X, if for some x ∈ X the Picard iteration sequence (f n(x)) is
bounded, then for every starting point x ∈ X the iteration sequence (f n(x)) converges to the

* Fax: +49 6151 163317.
E-mail addresses: briseid@mathematik.tu-darmstadt.de, eyvindbriseid@gmail.com.
0022-247X/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2006.07.069



E.M. Briseid / J. Math. Anal. Appl. 330 (2007) 364–376 365
unique fixed point of f . (Note that, as remarked in e.g. [1,7], in the statement of the theorem
in [8] the assumption that the mapping must be continuous was inadvertently left out.) Kirk’s
proof of this theorem uses ultrapowers. An elementary proof was given by I.D. Arandelović
in [1]. We will first for reference give the definition of an asymptotic contraction in the sense of
Kirk.

Definition 1.1. [8] A function f :X → X on a metric space (X,d) is called an asymptotic
contraction in the sense of Kirk with moduli φ,φn : [0,∞) → [0,∞) if φ, φn are continuous,
φ(s) < s for all s > 0 and for all x, y ∈ X,

d
(
f n(x), f n(y)

)
� φn

(
d(x, y)

)
,

and moreover φn → φ uniformly on the range of d .

In [7], J. Jachymski and I. Jóźwik prove a similar theorem, relaxing the requirements on φ,φn,
but in addition assuming f to be uniformly continuous. They also give a criterion which makes
the assumption that one iteration sequence is bounded superfluous. Also Y.-Z. Chen [4] develops
a version of the theorem proved by Kirk. For details, see the remarks preceding Proposition 3.10.
However, none of the above treatments gives explicit numerical information concerning the con-
vergence to the fixed point. A quantitative version of Kirk’s theorem on asymptotic contractions
is given by P. Gerhardy in [6]. Here Gerhardy makes use of techniques from the program of
proof mining, as developed by U. Kohlenbach (see e.g. [9,10]). In [6], an alternative definition
of asymptotic contractions is given, according to which a function is an asymptotic contraction
if it has certain moduli expressing its asymptotic contractivity. This covers the usual definition.
An explicit bound is then presented, expressed by these moduli and the bound on the iteration
sequence, on how far one must go in the iteration sequence to at least once get within a specified
distance of the fixed point. The proof is completely elementary. This theorem does not, however,
give a rate of convergence to the fixed point in the general case. The convergence needs not be
monotone, and so for m > n it is not the case that f m(x) needs to be close to the fixed point if
f n(x) is. For an example of such a function, see Example 2 in [7]. In contrast to this, the results
in [6] do give a rate of convergence when the convergence to the fixed point is monotone, and
this is the case for a very large class of functions, including the nonexpansive ones.

We here give for the general case an explicit rate of convergence to the unique fixed point for
sequences (f n(x)). The assumptions are in general the same as in [6]. We will, however, con-
sider a slightly more general definition of asymptotic contractions. This will be of importance in
relation to a further result. We show also that the rate of convergence only depends on the start-
ing point and the function through a bound on the iteration sequence and the moduli mentioned
above.

2. Preliminaries

We give for reference the alternative definition of an asymptotic contraction from [6]. We
will in the following make reference to certain results from [6], including some lemmas, some
propositions and a theorem. These will be readily identifiable, but we will not repeat them here.

Definition 2.1. [6] A function f :X → X on a metric space (X,d) is called an asymptotic con-
traction in the sense of Gerhardy if for each b > 0 there exist moduli ηb : (0, b] → (0,1) and
βb : (0, b] × (0,∞) → N and the following hold:
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(1) There exists a sequence of functions φb
n : (0,∞) → (0,∞) such that for all x, y ∈ X, for all

ε > 0 and for all n ∈ N,

b � d(x, y) � ε gives d
(
f n(x), f n(y)

)
� φb

n(ε)d(x, y).

(2) For each 0 < l � b the function βb
l := βb(l, ·) is a modulus of uniform convergence for

(φb
n)n∈N on [l, b], i.e.

∀ε > 0 ∀s ∈ [l, b] ∀m,n � βb
l (ε)

(∣∣φb
m(s) − φb

n(s)
∣∣ � ε

)
.

(3) Define φb := limn→∞ φb
n . Then for each 0 < ε � b we have

φb(s) + ηb(ε) � 1

for each s ∈ [ε, b].

We modify this definition as follows.

Definition 2.2. A function f :X → X on a metric space (X,d) is called a (generalized) as-
ymptotic contraction if for each b > 0 there exist moduli ηb : (0, b] → (0,1) and βb : (0, b] ×
(0,∞) → N and the following hold:

(1) There exists a sequence of functions φb
n : (0,∞) → (0,∞) such that for each 0 < l � b the

function βb
l := βb(l, ·) is a modulus of uniform convergence for (φb

n)n∈N on [l, b], i.e.

∀ε > 0 ∀s ∈ [l, b] ∀m,n � βb
l (ε)

(∣∣φb
m(s) − φb

n(s)
∣∣ � ε

)
.

Furthermore, if ε < ε′ then βb
l (ε) � βb

l (ε′).
(2) For all x, y ∈ X, for all b � ε > 0 and for all n ∈ N such that βb

ε (1) � n, we have:

b � d(x, y) � ε gives d
(
f n(x), f n(y)

)
� φb

n(ε)d(x, y).

(3) Define φb := limn→∞ φb
n . Then for each 0 < ε � b we have

φb(s) + ηb(ε) � 1

for each s ∈ [ε, b].

If f is an asymptotic contraction in the sense of Gerhardy, then it is also an asymptotic
contraction in our sense. However, one might have to modify the moduli βb

l . As pointed out
in Remark 8 in [6], we can equivalently give the moduli ηb,βb as functions ηb : N → N and
βb : N × N → N, with real numbers approximated from below by rationals 2−n. This is the case
for the moduli in Definition 2.2 as well as the moduli in Definition 2.1. Then βb in the sense of
Definition 2.2 is effectively computable in βb in the sense of Definition 2.1. We will for short
call the mappings defined in Definition 2.2 just asymptotic contractions.

Unless otherwise specified we will throughout let (X,d) be a complete metric space, and
given x0 ∈ X and f :X → X we will let (xn) be the sequence defined by xn+1 := f (xn). When
there is no risk of ambiguity we will drop the superscripts from ηb and βb . We first note that
in particular the following results from [6] go through also for our generalized definition of
asymptotic contractions: Proposition 4, Lemmas 10, 11, 13–15, and Theorem 16. This can be
verified by inspection of the proofs, and by in so doing noting that η(ε)/2 < 1. We mention in
passing that in Lemma 11 in [6] one must modify the conclusion by writing d(xm,f N(xm)) � δ
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instead of d(xm,f N(xm)) < δ, whether one considers asymptotic contractions in the sense of
Definition 2.1 or in the sense of Definition 2.2. This has no further implications, since the lemma
is only used in the proofs of Lemmas 13 and 14, and there the modified conclusion of Lemma 11
works just as well. We will from now on assume Lemma 11 thus modified. (One could of course
instead have slightly modified the functional M appearing in the lemma.)

We note also that the results in [6] which subsume Definition 1.1 under Definition 2.1 tacitly
assume the equivalence of Definition 1.1 with a version of the definition where the sequence of
moduli φn is required to converge to φ uniformly on [0,∞). It is indeed straightforward to see
that given a mapping f on a nonempty metric space (X,d) satisfying Definition 1.1 with moduli
φn,φ, one may modify the moduli as follows to get uniform convergence on [0,∞). Denote by
ran(d) the closure of the range of d . For x ∈ [0,∞) define a(x) := sup{y ∈ ran(d): x > y} and
b(x) := inf{y ∈ ran(d): x < y} when possible. Define φ′

n : [0,∞) → [0,∞) by

φ′
n(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φn(x) if x ∈ ran(d),

φn(a(x)) + (
x−a(x)

b(x)−a(x)

)
(φn(b(x)) − φn(a(x))) if x /∈ ran(d) and b(x) exists,

φn(a(x)) if x /∈ ran(d) and

b(x) does not exist.

Define likewise φ′ from φ. Since φn, φ are continuous, and φn → φ uniformly on ran(d), it
follows that φ′

n, φ′ are continuous and that φ′
n → φ′ uniformly on [0,∞).

Our first result is an improvement on the bound in Theorem 16 in [6]. The following theorem
is identical to Theorem 16 in [6], except that it involves asymptotic contractions in our sense,
and that η(ε) · ε/4 is replaced by ε in the definition of Mε . So the ‘modulus of uniqueness’ from
Lemma 10 in [6] no longer plays any part in the bound. This will in most cases, depending on η,
constitute a significant numerical improvement. The following theorem, as well as Theorem 16
in [6], does not provide a rate of convergence, but rather what in [3] is called a rate of proximity.

Theorem 2.3. Let (X,d) be a complete metric space, let f :X → X be a continuous asymptotic
contraction and let b > 0 and η,β be given. If for some x0 ∈ X the sequence (xn) is bounded by
b then f has a unique fixed point z, (xn) converges to z and for every ε > 0 such that b � ε there
exists m � Mε such that

d(xm, z) � ε,

where

Mε(η,β, b) := k

⌈
lg(ε) − lg(b)

lg
(
1 − η(ε)

2

)
⌉
,

with k := βε(
η(ε)

2 ).

Proof. Suppose (xn) is bounded by b. Let b � ε > 0. Let

Mε := k

⌈
lg(ε) − lg(b)

lg
(
1 − η(ε)

2

)
⌉
,

where k := βε(
η(ε)

2 ). By Theorem 16 in [6] we have that (xn) converges to the unique fixed
point z of f . Let l ∈ N be arbitrary and let N be such that d(xn, z) < 2−l for all n � N . By
Lemma 11 in [6] there exists m � Mε such that

d
(
xm,f N(xm)

)
� ε.
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Note that Mε does not depend on N . Since f N(xm) = xm+N and m + N � N , we have
d(f N(xm), z) < 2−l . Therefore

d(z, xm) � d
(
xm,f N(xm)

) + d
(
f N(xm), z

)
< ε + 2−l .

Since there are only finitely many m � Mε there must exist m1 � Mε such that

d(z, xm1) < ε + 2−l

holds for infinitely many l. Hence

d(z, xm1) � ε.

All the rest follows from Theorem 16 in [6]. �
3. Main results

Our main result is an explicit rate of convergence for asymptotic contractions. We begin with
the continuous case.

Theorem 3.1. Let (X,d) be a complete metric space, let b > 0 be given, and let f :X → X be
a continuous asymptotic contraction with moduli η and β . If for some x0 ∈ X the sequence (xn)

is bounded by b, then (xn) has the following rate of convergence. Let z be the unique fixed point.
Let b � ε > 0 and let n ∈ N satisfy

n� max
{
k · (2Mγ +β( ε

2 )(δ)+Kγ −1
)
, (k −1) · (2Mγ +β( ε

2 )(δ)+Kγ −1
)+Mγ +1

}
,

where

k :=
⌈

lg(ε) − lg(b)

lg
(
1 − η(γ )

2

)
⌉
, Mγ := Kγ ·

⌈
lg(γ ) − lg(b)

lg
(
1 − η(γ )

2

)
⌉
, Kγ := βγ

(
η(γ )

2

)
,

and δ := min{ ε
2 ,

η( ε
2 )

2 }, γ := min{δ, δε
4 }. Then

d(xn, z) � ε.

Proof. Let b � ε > 0. Let δ := min{ ε
2 ,

η( ε
2 )

2 } and γ := min{δ, δε
4 }. Let x0 ∈ X be such that (xn)

is bounded by b. For a > 0 let

Ba := {
x ∈ X: d(x, z) � a

}
.

By Theorem 2.3 there exists m′ � Mγ such that xm′ ∈ Bγ . Suppose there exists m > m′ such that
xm /∈ Bε . Then let

m := min{n: n > m′ and xn /∈ Bε}.
Then for xn ∈ Bγ we get d(xn, xm) > ε

2 since

d(xn, xm) � d(xm, z) − d(xn, z) > ε − ε

2
= ε

2
.

Assume m − n � β( ε
2 )(δ). Note that δ < 1. Then for all k � m − n we have |φb

k ( ε
2 ) −

φb
m−n(

ε
2 )| � δ, and hence |φb( ε

2 ) − φb
m−n(

ε
2 )| � δ. The definition of an asymptotic contraction

gives

φb

(
ε
)

+ η

(
ε
)

� 1,

2 2
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and so

φb

(
ε

2

)
� 1 − η

(
ε

2

)
,

and

φb
m−n

(
ε

2

)
� 1 − η

(
ε

2

)
+

∣∣∣∣φb

(
ε

2

)
− φb

m−n

(
ε

2

)∣∣∣∣.
We therefore have

φb
m−n

(
ε

2

)
� 1 − 2δ + δ = 1 − δ.

Since we by definition have

d
(
f m−n(xn), f

m−n(xm)
) = d(xm,x2m−n) � φb

m−n

(
ε

2

)
· d(xn, xm),

we get

d(xm,x2m−n) � (1 − δ) · d(xn, xm).

So in this case

d(x2m−n, xn) � d(xn, xm) − d(xm,x2m−n)

gives

d(x2m−n, xn) � d(xn, xm) − (1 − δ) · d(xn, xm) = δ · d(xn, xm) >
δε

2
.

If x2m−n ∈ Bγ then we would have

d(x2m−n, xn) � d(x2m−n, z) + d(z, xn) � 2γ � δε

2
.

So x2m−n /∈ Bγ . Let

m′′ := min{n: n > m′ and xn /∈ Bγ }.
If

m′′ − m′ = M ′ + β( ε
2 )(δ)

for some M ′ � 0, then since m � m′′ we have

m − m′,m − (m′ + 1), . . . ,m − (m′ + M ′) � β( ε
2 )(δ),

and xm′, xm′+1, . . . , xm′+M ′ ∈ Bγ . By the above argument this gives that respectively x2m−m′,
x2m−m′−1, . . . , x2m−m′−M ′+1 and x2m−m′−M ′ are not in Bγ . By arranging the indices in increas-
ing order, we have

x2m−m′−M ′, x2m−m′−M ′+1, . . . , x2m−m′ /∈ Bγ .

By taking x2m−m′−M ′ as the starting point of a b-bounded Picard iteration sequence de-
fined by xn+1 := f (xn), we get by Theorem 2.3 that there exists m′′′ � Mγ such that
x2m−m′−M ′+m′′′ ∈ Bγ . So M ′ < Mγ . (And so in this case 0 < Mγ .) In total, if there exists m > m′
such that xm /∈ Bε , then we get that for some n < 2Mγ + β( ε

2 )(δ) we have

γ < d(xn, z).
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Since (xn) converges to z, we have

d(xn, z) � b.

So in this case by Proposition 4 in [6], for n ∈ N such that

n � 2Mγ + β( ε
2 )(δ) + Kγ − 1

we have

d(xn, z) �
(

1 − η(γ )

2

)
· b.

Likewise, by then treating x2Mγ +β( ε
2 )(δ)+Kγ −1 as the starting point y0 of a Picard iteration se-

quence (yn) bounded by b with the property that

d(yn, z) �
(

1 − η(γ )

2

)
· b

for all n � 0, either there exists no n ∈ N with

n > 3Mγ + β( ε
2 )(δ) + Kγ − 1

such that xn /∈ Bε , or else for n ∈ N such that

n � 2 · (2Mγ + β( ε
2 )(δ) + Kγ − 1

)
we have

d(xn, z) �
(

1 − η(γ )

2

)2

· b.

We get that for n ∈ N such that

n� max
{
k · (2Mγ +β( ε

2 )(δ)+Kγ −1
)
, (k −1) · (2Mγ +β( ε

2 )(δ)+Kγ −1
) + Mγ +1

}
,

where k � 1, have

xn ∈ Bε or xn ∈ B
(1− η(γ )

2 )k ·b.

By letting

k :=
⌈

lg(ε) − lg(b)

lg
(
1 − η(γ )

2

)
⌉

we get for n ∈ N such that

n� max
{
k · (2Mγ +β( ε

2 )(δ)+Kγ −1
)
, (k −1) · (2Mγ +β( ε

2 )(δ)+Kγ −1
)+Mγ +1

}
,

that

xn ∈ Bε. �
We note that completeness and continuity in the above theorem was only needed to show the

existence of a fixed point z. If a fixed point exists, then by Proposition 4 in [6] every Picard iter-
ation sequence is bounded, irrespective of completeness and continuity, and hence by Lemma 15
in [6] it is Cauchy. By Lemma 10 in [6] it converges to the fixed point z, and by inspection we
see that the proof of Theorem 3.1 goes through. Then Theorem 3.1 gives a rate of convergence
for a b-bounded Picard iteration sequence. Hence we have the following theorem.
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Theorem 3.2. Let (X,d) be a metric space, let b > 0 be given, and let f :X → X be an as-
ymptotic contraction with moduli η and β . Assume that f has a fixed point z. Then every Picard
iteration sequence is bounded, and if for x0 ∈ X the sequence (xn) is bounded by b then (xn)

converges to z with the rate of convergence specified in Theorem 3.1.

Proof. Follows by the above remarks. �
If in the metric space (X,d) some iteration sequence (f n(x)) is bounded, where f is an as-

ymptotic contraction with moduli ηb , βb for b > 0, then by Proposition 4 and Lemmas 15 and 10
in [6] all iteration sequences are Cauchy even if none of them converges, and if some z ∈ X is
the limit of one sequence, then z is the limit of all the iteration sequences. Namely, by Lemma 15
(f n(x)) is Cauchy, and if we let n ∈ N be such that m � n gives d(f n(x), f m(x)) < 1, then
taking f n(x) as x in Proposition 4 gives that any (f n(y)) is bounded. Then (f n(y)) is Cauchy
by Lemma 15 and limn→∞ d(f n(x), f n(y)) = 0 by Lemma 10. If (f n(x)) does not converge
then we consider the completion X of X, in which the limit z exists. We can then extend f to
be defined on X ∪ {z} by letting f (z) = z. It is then easy to see that f is an asymptotic con-
traction with moduli ηb

1 : (0, b] → (0,1) and βb
1 : (0, b] × (0,∞) → N defined by for example

ηb
1(ε) := η2b(ε/2), βb

1 (l, ε) := β2b(l/2, ε).
If the b-bounded iteration sequence (xn) converges in X to z, and z is not a fixed point, then

we have the following.

Theorem 3.3. Let (X,d) be a metric space, and let f :X → X be an asymptotic contraction
with moduli ηb and βb for each b > 0. Let x0 ∈ X be such that the Picard iteration sequence
(xn) is bounded. Then all Picard iteration sequences are Cauchy. Assume that z := limn→∞ xn

exists. Then for any x0 ∈ X the iteration sequence (xn) converges to z, irrespective of whether
z is a fixed point or not. If (xn) is bounded by b > 0 then (xn) converges to z with the rate of
convergence specified in Theorem 3.1.

Proof. Proposition 4 and Lemmas 15 and 10 in [6] still imply that all iteration sequences con-
verge to z. The rate of proximity in Theorem 2.3 only depends on Lemma 11 in [6] and the fact
that (xn) converges to z, all of which is independent of whether z is a fixed point or not. However,
in the proof of Theorem 3.1 we use that z is a fixed point when we use Proposition 4 in [6] to
infer

d(xn, z) �
(

1 − η(γ )

2

)
· b

for n � 2Mγ +β( ε
2 )(δ)+Kγ −1 from the fact that γ < d(xn, z) � b for some n < 2Mγ +β( ε

2 )(δ).
In this manner we in the proof repeatedly make use of the fact that z is a fixed point. When z is not
a fixed point we can proceed as follows. Assuming that there exists n > Mγ such that xn /∈ Bε ,
we have γ < d(xn, z) � b for some n < 2Mγ + β( ε

2 )(δ). Choose such n ∈ N, and choose a real
number a > 0. Choose then K ′ ∈ N such that for this n we have

d(xk, z) < min
{
a,

(
d(xn, z) − γ

)}
for all k � K ′. We can find such K ′ since (xn) converges to z. Then γ < d(xn, xK ′) � b, so
Proposition 4 in [6] gives

d
(
f k(xn), f

k(xK ′)
)
�

(
1 − η(γ )

)
· b
2
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for k � Kγ . Now the triangle inequality gives

d(xn, z) �
(

1 − η(γ )

2

)
· b + a

for n � 2Mγ + β( ε
2 )(δ) + Kγ − 1. Since a > 0 was arbitrary we get

d(xn, z) �
(

1 − η(γ )

2

)
· b

for n � 2Mγ + β( ε
2 )(δ) + Kγ − 1. Then, following the proof of Theorem 3.1 we get that either

there does not exist n ∈ N with n > 3Mγ + β( ε
2 )(δ) + Kγ − 1 and xn /∈ Bε , or else we have

γ < d(xn, z) �
(

1 − η(γ )

2

)
· b

for some n < 2Mγ + β( ε
2 )(δ) + Kγ − 1 + (2Mγ + β( ε

2 )(δ)). Choose such n ∈ N, and choose a
real number a > 0. Then we can choose K ′ ∈ N as above and get

γ < d(xn, xK ′) �
(

1 − η(γ )

2

)
· b + a.

We can assume (1 − η(γ )
2 ) · b + a < b, so

d
(
f k(xn), f

k(xK ′)
)
�

(
1 − η(γ )

2

)2

· b +
(

1 − η(γ )

2

)
· a

for k � Kγ . And so

d(xn, z) �
(

1 − η(γ )

2

)2

· b +
(

1 − η(γ )

2

)
· a + a

for n � 2 · (2Mγ + β( ε
2 )(δ) + Kγ − 1). Since this holds for all sufficiently small a > 0 we get for

such n that

d(xn, z) �
(

1 − η(γ )

2

)2

· b.

We can now obviously employ the same strategy each time we have that for a given k ∈ N either
there does not exist n ∈ N with n > k · (2Mγ + β( ε

2 )(δ) + Kγ − 1) + Mγ and xn /∈ Bε , or else we
have

γ < d(xn, z) �
(

1 − η(γ )

2

)k

· b
for some n < k · (2Mγ + β( ε

2 )(δ) + Kγ − 1) + (2Mγ + β( ε
2 )(δ)). We get that for n ∈ N such that

n� max
{
k · (2Mγ +β( ε

2 )(δ)+Kγ −1
)
, (k −1) · (2Mγ +β( ε

2 )(δ)+Kγ −1
) + Mγ +1

}
,

where k � 1, we have

xn ∈ Bε or xn ∈ B
(1− η(γ )

2 )k ·b.

Thus we have the same rate of convergence as in Theorem 3.1. �
We will use the following theorem to give a characterization of asymptotic contractions on

bounded, complete metric spaces.
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Theorem 3.4. Let (X,d) be a metric space, and let f :X → X. Let now Ψ : R∗+ × R
∗+ → N

satisfy

∀ε ∈ R
∗+ ∀x, y ∈ X ∀b � d(x, y) ∀n � Ψ (ε, b)

(
d
(
f n(x), f n(y)

)
� ε

)
.

Assume further that ε < ε′ implies Ψ (ε, b) � Ψ (ε′, b). Then f is an asymptotic contraction.

Proof. For b > 0 and n ∈ N define φb
n : (0,∞) → (0,∞) by φb

n(ε) := 1/2. Define further
ηb : (0, b] → (0,1) by ηb(ε) := 1/2 and βb

l : (0,∞) → N by βb
l (ε) := Ψ (l/2, b). These mod-

uli satisfy Definition 2.2. �
Corollary 3.5. Let (X,d) be a complete metric space, and let f :X → X. Let for each x0 ∈ X

the Picard iteration sequence converge to the point z ∈ X with a rate of convergence which is
uniform in the starting point. Then f is an asymptotic contraction.

Proof. By assumption there exists Ψ : R∗+ → N such that

∀ε ∈ R
∗+ ∀x, y ∈ X ∀n � Ψ (ε)

(
d
(
f n(x), f n(y)

)
� ε

)
.

We can furthermore assume that ε < ε′ implies Ψ (ε) � Ψ (ε′). Thus Theorem 3.4 applies. �
The above corollary also follows from Proposition 3 in [7], which implies that f in this case

is an asymptotic contraction in the sense of Kirk.

Corollary 3.6. Let (X,d) be a nonempty, bounded, complete metric space, and let f :X → X.
Then f is an asymptotic contraction if and only if there exists z ∈ X such that for each x0 ∈ X

the Picard iteration sequence converges to z with a rate of convergence which is uniform in the
starting point.

Proof. That f is an asymptotic contraction if such a z ∈ X exists follows from Corollary 3.5.
The other implication follows from Theorem 3.3, since we assume that the space is bounded. �
Proposition 3.7. Let (X,d) be a nonempty, bounded, complete metric space, and let f :X → X.
Then the following are equivalent:

(1) The function f is an asymptotic contraction.
(2) The function f is an asymptotic contraction in the sense of Gerhardy.
(3) The function f is an asymptotic contraction in the sense of Kirk.
(4) There exists z ∈ X such that for each x0 ∈ X the Picard iteration sequence converges to z

with a rate of convergence which is uniform in the starting point.
(5) There exists α : (0,∞) → N such that

∀x, y ∈ X ∀ε > 0 ∀n � α(ε)

(
d(x, y) � ε → d

(
f n(x), f n(y)

)
� 1

2
d(x, y)

)
.

Proof. Assume first that f is an asymptotic contraction in the weakest sense, i.e., in the sense
of Definition 2.2. Then by the previous corollary, (4) holds. Furthermore, by Theorem 3.3 and
the proofs of Corollary 3.5 and Theorem 3.4, (5) holds. Now assume that (4) holds. Then
diamf n(X) → 0. Following the proof of Proposition 3 in [7], we define φ,φn : [0,∞) → [0,∞)
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by φn(t) := diamf n(X) and φ(t) := 0. These moduli satisfy Definition 1.1, so f is an asymp-
totic contraction in the sense of Kirk. Thus (1)–(4) are equivalent. Now assume that (5) holds. For
b > 0 and n ∈ N define φb

n : (0,∞) → (0,∞) by φb
n(ε) := 1/2. Define further ηb : (0, b] → (0,1)

by ηb(ε) := 1/2 and βb
l : (0,∞) → N by βb

l (ε) := α(l). These moduli satisfy Definition 2.2, so
(5) is equivalent to (1). �

Theorem 3 in [7] gives a characterization of continuous asymptotic contractions in the sense of
Kirk on compact metric spaces, showing among other things that they are exactly the continuous
functions such that the core Y := ⋂

n∈N
f n(X) is a singleton (assuming the space is nonempty).

If we in Proposition 3.7 require that f be continuous, we get a generalization of this fact from
the compact case to the case where the space is bounded and complete. Namely, we get by
Theorem 3.1 that if a continuous f is an asymptotic contraction, then there exists a fixed point z,
and Y = {z}. If on the other hand the core Y is a singleton {z}, then Proposition 3.7 implies that
f is an asymptotic contraction (in all three senses considered).

The above proposition also has consequences for other kinds of contractive type mappings on
bounded, complete metric spaces. In [11], B.E. Rhoades systematized 25 basic definitions of vari-
ous contractive type mappings, and also considered several standard generalizations of these. The
comparison between the 25 basic definitions was completed by P. Collaço and J. Carvalho e Silva
in [5]. In [2] we treat so-called uniformly generalized p-contractive mappings, and we now get
the following results regarding this.

Corollary 3.8. Let (X,d) be a bounded, complete metric space, and let f :X → X be uniformly
generalized p-contractive and uniformly continuous. Then f is an asymptotic contraction.

Proof. Let b be a bound on the space. Then for each x0 ∈ X we have that b is a bound on
the Picard iteration sequence (xn). We can assume X nonempty, for else the proof is trivial.
Thus Theorem 3.1 in [2] (and the comments directly following it) assures the existence of a
fixed point z ∈ X and a rate of convergence for Picard iteration sequences (xn) to z, and this
rate is moreover uniform in the starting point x0. Then by Proposition 3.7 we have that f is an
asymptotic contraction. �
Corollary 3.9. Let (X,d) be a compact metric space. Let f :X → X be continuous and such
that it satisfies one of the conditions (1)–(50) from [11]. Then f is an asymptotic contraction.

Proof. Since f satisfies one of the requirements (1)–(50) we know from [11] and [5] that there
exists k ∈ N such that f k satisfies (25). Then in the terminology of [2] f is generalized p-
contractive. Since X is compact we know that f is uniformly continuous, and by Proposition 2.5
in [2] f is uniformly generalized p-contractive. Thus by the previous corollary it follows that f

is an asymptotic contraction. �
In [4], Y.-Z. Chen proves Kirk’s theorem on asymptotic contractions under conditions which

are weaker than the ones in [8]. In particular, it is no longer assumed that f is continuous, and
it is enough that φ and one particular φn′ are upper semicontinuous (here φ, φn′ are as in Kirk’s
definition). It is furthermore enough that limn→∞ φn = φ uniformly on any bounded interval
[0, b]. (A condition which allows one to drop the requirement that one iteration sequence is
bounded is also specified.) It is, however, assumed that φn′(0) = 0. We can adapt a part of the
argument in [4] to the situation with asymptotic contractions in the sense of Gerhardy. In the
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following proposition we develop a criterion which allows us to infer the existence of a fixed
point without the assumption of continuity. This will in a sense work like the condition φn′(0) = 0
in [4].

(Note that the arguments in [6] which allow us to subsume Definition 1.1 under Definition 2.1
would work just as well if the φ, φn in Definition 1.1 were assumed to be upper semicontin-
uous instead of continuous, since upper semicontinuous functions φ,φn : [0,∞) → [0,∞) are
bounded on bounded closed intervals [s, b]. So Definition 6 and Propositions 7 and 9 in [6]
would remain unchanged. These arguments would also work if for φ, φn in Definition 1.1 we
had limn→∞ φn = φ uniformly only on bounded intervals [0, b]. Definition 6 in [6] would be
unchanged, in Proposition 7 one would have to say that the sequence (φ̃n) converges uniformly
to φ̃ on [l, b] for all b > l > 0 instead of saying that it converges uniformly on [l,∞) for all
l > 0, but the second part of Proposition 7 and also Proposition 9 would remain unchanged.)

Proposition 3.10. Let (X,d) be a complete metric space, and let f :X → X be an asymptotic
contraction in the sense of Gerhardy with moduli ηb and βb for each b > 0. For each b > 0
let (φb

n) be a sequence of functions which satisfy Definition 2.1. Let b′ > 0 and let x0 ∈ X

be such that the sequence (xn) is b′-bounded. Let z := limn→∞ xn. Let m ∈ N be such that
lim supt→0 φb′

m(t) < ∞. Then f (z) = z.

Proof. We have for each n ∈ N that

d
(
f n+m(x0), f

m(z)
)
� φb′

m

(
d
(
f n(x0), z

)) · d(
f n(x0), z

)
.

Since limn→∞ d(f n(x0), z) = 0 and lim supt→0 φb′
m(t) < ∞, we get

lim
n→∞d

(
f n+m(x0), f

m(z)
) = 0,

i.e. limn→∞ f n+m(x0) = f m(z). Thus f m(z) = z. We know by Lemma 15 in [6] that (f n(z)) is
a Cauchy sequence, hence f (z) = z. �

We note that in the case covered by Proposition 3.10 each iteration sequence converges to z,
and the rate of convergence from Theorem 3.1 applies. This follows from Theorem 3.2 or Theo-
rem 3.3.
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