
Journal of Computational and Applied Mathematics 236 (2011) 1259–1266

Contents lists available at SciVerse ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

On the computational efficiency index and some iterative methods for
solving systems of nonlinear equations

Miquel Grau-Sánchez ∗, Àngela Grau, Miquel Noguera
Technical University of Catalonia, Department of Applied Mathematics II, Campus Nord, Jordi Girona 1-3, 08034 Barcelona, Spain

a r t i c l e i n f o

Article history:
Received 9 December 2010

MSC:
65H10
65Y20
41A58

Keywords:
Order of convergence
System of nonlinear equations
Iterative methods
Computational efficiency index
Computational order of convergence

a b s t r a c t

In this paper two new iterative methods are built up and analyzed. A generalization of
the efficiency index used in the scalar case to several variables in iterative methods for
solving systems of nonlinear equations is revisited. Analytic proofs of the local order
of convergence based on developments of multilineal functions and numerical concepts
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1. Introduction

There is no doubt thatNewton’smethod is one of the best root-findingmethods for solving nonlinear equations, F(x) = 0.
Recent results improving the classical formula at the expense of an additional evaluation of the function, an additional
evaluation of the first derivative or a change in the point of evaluation can be found in the literature on the subject (see
[1–4] and references therein). In those works the order of convergence and the efficiency index in the neighborhood of
a simple root have been improved. In this paper the computation of the local order of convergence for known two-step
and new multi-step iterative methods is performed by means of expansions in formal developments in power series of the
functions F , F ′ and (F ′)−1.

The concept of the computational efficiency index [1,5] is revisited introducing a necessary parameter in order to take into
account the computational cost of all the computations needed and reduced tomultiplication units. The preceding technique
to prove the local order of convergence and the computational efficiency index are illustratedwith several examples inwhich
generalizations of the one-dimensional case tom-dimensions are carried out.

Because of the increase in the number of applications where it is required to use a higher level of numeric precision [6],
numerical experiments presented with multi-precision arithmetics facilities are most appropriate in a modern large-scale
scientific computing environment. An approximation of the computational order of convergence (ACOC) is obtained when
the root is unknown. These results confirm theoretical results obtained previously.

2. Notation and basic results

Let F : D ⊆ Rm
−→ Rm be Fréchet-differentiable in D, and with its differential continuous. For any xn ∈ Rm lying in

a neighborhood of a simple zero, α ∈ Rm, of the system F(x) = 0 we can apply Taylor’s formula and assuming that there
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exists Γ = F ′(α)−1, we have

F(xn) = F(α + en) = F ′(α)


en +

3−
k=2

Akekn + O4


, (1)

where en is the local error en = xn − α, epn denotes (en,
p
˘· · ·, en), Ak =

1
k!Γ F (k)(α), k ≥ 2, and Op+1 = O(ep+1

n ). Note that
Γ ∈ L (Rm) and F (k)(α) ∈ Lk (Rm,Rm). Moreover, we can express the differential of first order as:

F ′(xn) = F ′(α)


I +

3−
k=2

kAkek−1
n + O3


, (2)

where I is the identity. From (2), after developing in a formal series expansion we get

F ′(xn)−1
=

I − 2A2en + (4A2

2 − 3A3)e2n + O3

Γ . (3)

We begin the definitions of the iterative methods in this paper with Newton’s method that we can write as

x(1)
n+1 = Φ1(xn) = xn − F ′(xn)−1F(xn). (4)

The expression of the error E1 = x(1)
n+1 − α in terms of en is built up subtracting α from both sides of (4) and taking into

account (1) and (3). Namely,

E1 = en −

I − 2A2en + (4A2

2 − 3A3)e2n + O3
 

en +

3−
k=2

Akekn + O4


= A2e2n + 2(A3 − A2

2)e
3
n + O4, (5)

where we use the following notation: Aℓ
2e

ℓ+1
n = (A2en)ℓ−1 A2e2n


. The result (5) agrees with the classical asymptotical

constant in the one-dimensional case.
Without using norms we can define the local order of convergence for an iterative method without memory as follows.

The local order of convergence of an iterative method is at least p ∈ N if and only if there exists a p-linear function
L ∈ Lp (Rm,Rm) such that

xn+1 − α = Lepn + Op+1. (6)

Notice that if we apply norms to both sides of (6) then we obtain that there exists L̃ such that ‖en+1‖ ≤ ‖L̃‖ ‖en‖p.

3. Variants of Newton’s method

In this section, using the results presented in the previous one, a known variant of Newton’s method with local order
of convergence equal to three [1,7] is analyzed. We explicitly give its vectorial error equation in which appears a 3-linear
application instead of the asymptotical error constant used in the one-dimensional case. Furthermore, another two new
iterative methods of local order 4 and 5 respectively are presented and they are analyzed applying the same analysis.

The first variant that substitutes the derivative of F(xn) by the harmonic mean of the derivatives of F at the points xn and
x(1)
n+1 is

x(2)
n+1 = Φ2(xn, x

(1)
n+1) = xn −

1
2


F ′(xn)−1

+ F ′(x(1)
n+1)

−1

F(xn), (7)

that we call the harmonic mean Newton’s method. From (3) we obtain

F ′(x(1)
n+1)

−1
= [I − 2A2E1 + (4A2

2 − 3A3)E2
1 + O(E3

1 )]Γ .

Moreover, from the preceding expression, (5) and the developments of F ′(xn), F ′(x(1)
n+1), if we define E2 = x(2)

n+1 − α then
yields

E2 = en −
1
2


2I − 2A2(en + E1) +


4A2

2 − 3A3

e2n + O3][en + A2e2n + A3e3n + O4


=

1
2
A3e3n + O4.

Note that we get the same expression as the one obtained for the one-dimensional case in [1,7].
Generalizing a one-dimensional iterative method derived from [1], the third scheme presented in this section is

x(3)
n+1 = Φ3(xn, x

(1)
n+1) = x(1)

n+1 − 2F ′(xn)−1F (zn) , (8)

where zn = α + εn = x(1)
n+1 −

1
2F

′(xn)−1F(x(1)
n+1) and we call it Traub’s method. The error results in

E3 = x(3)
n+1 − α = E1 − 2F ′(xn)−1F(zn), (9)
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Table 1
Computational cost of elementary functions computed with Matlab 2009b and Maple 13 on an Intel r⃝Core(TM)2 Duo CPU P8800 (32-bit machine) using
Microsoft Windows 7 Professional, where x =

√
3 − 1 and y =

√
5.

Software x ∗ y (ms) x/y
√
x exp(x) ln(x) sin(x) cos(x) arctan(x)

Matlab 2009b 4.5E−7 10 55 80 145 35 50 65
Maple13 16 digits 1.2E−3 1 10 25 45 25 20 95
Maple13 1024 digits 4.0E−2 1 5 45 10 90 90 90
Maple13 4096 digits 3.5E−1 1 5 50 10 105 105 100

and

εn = zn − α = E1 −
1
2


I − 2A2en + (4A2

2 − 3A3)e2n + O3
 

E1 + 2A2E2
1 + O(E3

1 )


=
1
2
A2e2n + A3e3n +

1
2


3A4 − 5A3

2


e4n + O5. (10)

Finally, from (9) and (10), we obtain E3 =
9
2A

3
2e

4
n + O5.

A new three-step iterativemethod that is amodification of the harmonicmeanmethod (7) is presented. It can bewritten
as

x(4)
n+1 = Φ4(xn, x

(1)
n+1, x

(2)
n+1) = x(2)

n+1 − F ′(x(1)
n+1)

−1F(x(2)
n+1). (11)

The vectorial error equation is

E4 = x(4)
n+1 − α = E2 −


I − 2A2E1 + O(E2

1 )

[E2 + O(E2

2 )]

= 2A2E1E2 + O(E2
2 ) = 8A2


A2e2n

 
A3e3n


+ O6.

We can sum up this section with the following theorem.

Theorem 3.1. The iterative methods Φ3 and Φ4, defined in (8) and (11) respectively, have local order of convergence at
least 4 and 5 and their vectorial error difference equations can be written as

E3 = e(3)
n+1 =

9
2
A3
2e

4
n + O5,

E4 = e(4)
n+1 = 8A2


A2e2n

 
A3e3n


+ O6.

4. On the computational efficiency index

In this section, the traditional way to present the computational efficiency index of iterative methods (see [1,4,5]) is
revisited and adapted for systems of nonlinear equations. It will be presented in general form for previous four methods,
and some comparisons are given.

When dealing with a system of nonlinear equations, the total operational cost per iteration is the sum of the
evaluations of functions (the function and the derivatives involved) and the operational cost of doing a step of the iterative
method. Therefore, for systems with m nonlinear equations and m unknowns, we suggest the following definition of the
computational efficiency index (CEI) of an iterative method of order of convergence ρ

CEI(µ0, µ1,m) = ρ1/C(µ0,µ1,m), (12)
where C(µ0, µ1,m) is the computational cost per iteration given by

C(µ0, µ1,m) = µ0a0m + µ1a1m2
+ P(m). (13)

In (13), a0 and a1 represent the number of evaluations of the scalar functions of F(x) and F ′(x) respectively, P(m) is the
number of products per iteration and µ0 and µ1 are the ratios between products and evaluations required to express the
value of C(µ0, µ1,m) in terms of products. Notice that for µ0 = µ1 = 1 and P(m) = 0, (12) is reduced to the classic
efficiency index of an iterative method, EI = ρ1/ν , where ν represents the number of evaluations of the scalar component
functions necessary to apply a step of an iterative method.

According to that, an estimation of the factors µ0,1 is claimed. To do this, we express the cost of the evaluation of the
elementary functions in terms of products, which depends on the computer, the software and the arithmetics used. In [8,9]
comparison studies between a multi-precision library, MPFR, and other computing libraries can be found. In Tables 1–2 an
(own) estimation of the cost of the elementary functions in product units is shown, where the running time of one product
is measured in milliseconds.

In Table 1 the values presented have been rounded to 5 unities because of the huge variability obtained in the different
repetitions carried out. On the contrary, in Table 2 averages are shown, since variability has been very low and, besides, the
compilator of C++ used secures that the functionclock() gives exactly the CPU time invested by the program. Table 2 shows
that some relative values with respect to the product are lower in multiple precision than in double precision, although the
absolute time spent for a product is much higher in multiple precision.
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Table 2
Computational cost of elementary functions computed with a program written in C++, compiled by gcc(4.3.3) for i486-linux-gnu with libgmp
(v.4.2.4) and libmpfr (v.2.4.0) libraries on an Intel r⃝Xeon E5420, 2.5 GHz, 6 MB cache, where x =

√
3 − 1 and y =

√
5.

Arithmetics x ∗ y (ms) x/y
√
x exp(x) ln(x) sin(x) cos(x) arctan(x)

C++ double 2.3E−7 29 29 299 180 181 192 237
C++ MPFR 1024 digits 1.16E−2 2.4 1.7 62 57 69 65 200
C++ MPFR 4096 digits 1.04E−1 2.5 1.7 88 66 116 113 228

Table 3
Coefficients used in (13) and (14), local order of convergence and computational cost of the iterative methods Φℓ, 1 ≤ ℓ ≤ 4.

Method a0 a1 p0 p1 p2 ρ C(µ0, µ1,m)

Φ1 1 1 0 1 0 2 m(2m2
+ 3(2µ1 + k+ 1)m+ 6µ0 + 3k− 5)/6

Φ2 1 2 1 2 0 3 m(2m2
+ 3(2µ1 + k+ 1)m+ 3µ0 + 3k− 2)/3

Φ3 3 1 2 1 2 4 m(2m2
+3(2µ1+k+5)m+18µ0+15k−5)/6

Φ4 2 2 1 2 1 5 m(2m2
+ 3(2µ1 + k+ 2)m+ 6µ0 + 6k− 5)/3

In the first iterative method Φ1, that is Newton’s method, instead of computing the inverse operator we solve a linear
system, where we have m(m − 1)(2m − 1)/6 products and m(m − 1)/2 quotients in the decomposition LU and m(m − 1)
products andm quotients in the resolution of two triangular linear systems. If we suppose that a quotient is equivalent to k
products, then

P(m) =
m(m − 1)(2m + 5)

6
+ k

m(m + 1)
2

=
m(2m2

+ 3(k + 1)m + 3k − 5)
6

.

In general, we denote by p0 the number of scalar products per iteration, and p1 the number of complete resolutions of
a linear system (LU decomposition and resolution of two triangular systems). We call p2 the number of resolutions of two
triangular systems when LU decomposition is computed in another step in the same iteration. Observe that p1 = a1. The
total number of products is

P(m) =
m(2p1m2

+ (3p1(k + 1) + 6p2)m + 6p0 + p1(3k − 5) + 6p2(k − 1))
6

. (14)

Table 3 shows, for each iterativemethod analyzed in this paper,Φ1–Φ4, the number of evaluations of the scalar functions
of F(x), a0, the number of evaluations of the scalar functions of F ′(x), a1, the number of products per scalar of each iteration,
p0, the number of resolutions of linear systems per iteration, p1, and the number of resolutions of two triangular systems,
p2. Moreover, in Table 3 the local order of convergence, ρ, and the computational cost, C(µ0, µ1,m), are presented.

4.1. Comparison between the methods presented

If we denote the computational efficiency indices of Φi by CEIi(µ0, µ1,m) then from (12) we define the ratio

Ri,j =
log CEIi(µ0, µ1,m)

log CEIj(µ0, µ1,m)
=

log(ρi)Cj(µ0, µ1,m)

log(ρj)Ci(µ0, µ1,m)
, (15)

where

Cℓ(µ0, µ1,m) = 2p1ℓm2
+ (6µ1a1ℓ + 3p1ℓ(1 + k) + p2ℓ)m

+ (6µ0a0ℓ + 6p0ℓ + p1ℓ(3k − 5) + 6p2ℓ(k − 1)), ℓ = i, j. (16)
For Ri,j > 1 the iterative method Φi is more efficient than Φj. From the preceding equation (15), (16) and taking into

account that the border between two computational efficiencies is given by Ri,j = 1, this boundary can be expressed by the
equation of a quadric that is written as

µ0 = amµ1 + bm2
+ cm + d, (17)

where

a = −
log(ρi)a1j − log(ρj)a1i

log(ρi)a0j − log(ρj)a0i
,

b = −
1
3
log(ρi)p1j − log(ρj)p1i

log(ρi)a0j − log(ρj)a0i
,

c = −
1
2
log(ρi)(2p2j + p1j(k + 1)) − log(ρj)(2p2i + p1i(k + 1))

log(ρi)a0j − log(ρj)a0i
,

d = −
1
6

[
log(ρi)(6p2j(k − 1) + p1j(3k − 5) + 6p0j)

log(ρi)a0j − log(ρj)a0i
−

log(ρj)(6p2i(k − 1) + p1i(3k − 5) + 6p0i)

log(ρi)a0j − log(ρj)a0i

]
,
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Fig. 1. Boundary surface of the best computational efficiency index, R1,4 = 1 (15) where k = 1.
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Fig. 2. The boundary straight lines in (µ1, µ0)-plain form = 2, 6, 10 respectively, for k = 1.

and log(ρi)a0j − log(ρj)a0i ≠ 0. Note that a and b do not depend on k. Recalling that p1 = a1, the eigenvalues of (17) are

λ1,2 =
1
2


b ±


a2 + b2


=

a
6


1 ±

√
10


.

It is clear that λ1 is a positive real number and λ2 is always a negative real number. Consequently, the surface given in (17)
is a hyperbolical paraboloid. If the variables are ordered in the following way (µ1,m), then the corresponding eigenvectors
of λ1,2 are

v1,2 =


a

2λ1,2
, 1


=


−

1
3


1 ∓

√
10


, 1


,

respectively. Finally, the vertex of the boundary surface is

m = 0, µ0 = d, µ1 = −
c
a
,

that is a function of k. In Fig. 1 the boundary surface between the computational efficiency of the iterative methods Φ1 and
Φ4 is shown. If we restrict the definition of the variables to real domain, that is, µ0 > 0, µ1 > 0 andm ≥ 2, we get the light
gray portion of the surface in Fig. 1.

In order to compare the computational efficiency index of the iterativemethodΦ4, that’s to CEI4, with the CEI of the other
three methods, in Fig. 2 in the (µ1, µ0)-plain for m = 2, 6, 10 respectively, for k = 1, we present the boundary between
CEI4 and CEI1, R1,4 = 1, in a dotted line (S1), the boundary R2,4 = 1 in a solid line (S2) and the boundary R3,4 = 1 in a dashed
line (S3).
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Table 4
Numerical results for the system F1(x, y, z) = 0.

MAPLE (µ0, µ1) = (1.7, 0.7) MPFR (µ0, µ1) = (1.7, 0.7)
I CEI τ ρ̂I ± 1ρ̂I I CEI τ

Φ1 10 1.02506 0.0922 2 ± 7.961 · 10−5 12 1.01891 0.0269
Φ4 4 1.02395 0.1665 5 ± 2.434 · 10−2 5 1.01794 0.0699

S2 divides the maximum efficiency regions between Φ4 and Φ2, being CEI4 > CEI2 below S2. In the same way S3 divides
the maximum efficiency regions Φ4 and Φ3, being CEI4 > CEI3 above S3. Lastly, we have CEI4 > CEI1 above S1. Note that S1
disappears whenm > 7, leaving only three regions.

We summarize the results concerning these computational efficiency indexes in the following theorem.

Theorem 4.1.
1. For all m ≥ 2 we have:

(a) CEI4 > CEI2 for L2,4(µ1,m) > µ0,
(b) CEI4 > CEI3 for L3,4(µ1,m) < µ0.

2. For all m ≤ 7 we have that CEI4 > CEI1 for L1,4(µ1,m) < µ0.
3. For all m > 7 we have always that CEI4 > CEI1,

where

L1,4(µ1,m) = −mµ1 +
2 ln 2/5m2

+ 3 ln 8/5m + ln 2/5
3 ln 5/4

,

L2,4(µ1,m) =
2 ln 3/5mµ1

ln 5/9
+

2 ln 3/5m2
+ 3 ln 27/25m + ln 3/5

3 ln 5/9
,

L3,4(µ1,m) =
ln 16/5mµ1

ln 125/16
+

ln 16/5m2
+ 9 ln 4/25m + ln 4/3125
3 ln 125/16

.

5. Numerical results

The numerical computations listed in Tables 4–7 were performed on two different multi-precision arithmetics: the
MAPLE computer algebra system where Digits := 1024 and the MPFR library of C++ with 4096 digits of mantissa. As
it is shown in Tables 1–2 the computational cost of the quotient respect to the product is k = 1, 2.5 respectively (see
Table 3).

The classical stopping criterium ‖eI‖ = ‖xI − α‖ < 0.5 · 10−ε , with ε = 800 for MAPLE and ε = 4000 for MPFR, is
replaced by

EI =
‖êI‖

‖êI−1‖
< 10−η, (18)

where êI = xI − xI−1 and η =
ρ−1
ρ2 ε, since from ‖eI+1‖ ≈ C‖eI‖ρ

+ · · ·, we have ‖eI‖ ≈ Eρ2/(ρ−1)
I (see [10]). Notice

that criterium (18) is independent of the knowledge of the root. Furthermore, in all computations we have substituted the
computational order of convergence (COC) [4] by an approximation (ACOC) denoted by ρ̂I [10] and defined as follows

ρ̂I =
ln EI

ln EI−1
.

According to the definition of the computational cost (13), an estimation of the factors µ0 and µ1 is claimed. To do this,
we express the cost of the evaluation of the elementary functions in terms of products [8,9], which depends on themachine,
the software and the arithmetics used. In Tables 1–2 an estimation of the cost of the elementary functions in product units
is shown, where the running time of one product is measured in milliseconds.

We present four numerical examples corresponding to different situations for the regions shown in Fig. 2. Tables 4–7
show the results obtained comparing the efficiency of the pairs (Φ1, Φ4), (Φ2, Φ4), (Φ3, Φ4) and Φ4 with all remainder
methods. In each table the number of necessary iterations I , the computational efficiency index CEI, the necessary
computational time to get one correct decimal of the solution τ , in MAPLE and MPFR are presented. Finally, ACOC and a
higher bound of ACOC is also shown.

Case 1. We begin with the function defined by

F1(x, y, z) =

x2 + y2 + z2 − 9,
xyz − 1,
x + y − z2.
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Table 5
Numerical results for F2(x, y) = 0.

MAPLE (µ0, µ1) = (11.5, 1.0) MPFR (µ0, µ1) = (67.5, 1.8)
I CEI τ ρ̂I ± 1ρ̂I I CEI τ

Φ2 6 1.02471 0.3024 3 ± 2.625 · 10−4 7 1.00641 0.2888
Φ4 4 1.02260 0.5504 5 ± 6.370 · 10−2 5 1.00514 0.3131

Table 6
Numerical results for the system defined by Hammerstein’s integral equation.

MAPLE (µ0, µ1) = (11, 1.3) MPFR (µ0, µ1) = (12.5, 4.6)
I CEI τ ρ̂I ± 1ρ̂I I CEI τ

Φ3 4 1.001927 0.7919 4 ± 1.376 · 10−4 5 1.001321 0.1935
Φ4 3 1.001847 1.1574 5 ± 4.046 · 10−3 4 1.001112 0.2952

Table 7
Numerical results for the trigonometrical system (19).

MAPLE (µ0, µ1) = (90.0, 22.5) MPFR (µ0, µ1) = (113.0, 29.0)
I CEI τ ρ̂I ± 1ρ̂I I CEI τ

Φ1 9 1.000917 0.6222 2 ± 1.300 · 10−71 11 1.000459 1.1849
Φ2 6 1.000951 0.8232 3 ± 5.203 · 10−19 7 1.000467 2.3516
Φ3 4 1.000915 1.1920 4 ± 5.753 · 10−6 5 1.000467 1.3811
Φ4 4 1.001052 0.5984 5 ± 3.9175 · 10−6 5 1.000524 0.8539

We test the convergence of the methods Φ1 and Φ4 towards the root α ≈ (2.4914, 0.2427, 1.6535)t , where the initial
approximation is x0 = (3.0, 1.0, 2.0)t . Note that in Table 4, scheme Φ1 spends the minimum time in getting one correct
decimal in the computation of the numerical solution. This result is in correspondence with the theoretical definition of CEI
and confirms the relating regions of Fig. 2.

Case 2. Here we solve the system of nonlinear equations F2(x, y) = 0, where

F2(x, y) =


ln(y) − x2 + xy,
ln(x) − y2 + xy.

We test the convergence of the methods towards the root α = (1.01.0)t , where the initial approximation is x0 =

(0.5, 1.5)t . The results are shown in Table 5 and confirm the behavior of related regions of Fig. 2. Moreover, the iterative
method Φ2 presents the maximum value of CEI and minimum value of τ for the two arithmetics used.

Case 3. The example that we consider is the following mixed Hammerstein’s integral equation [11]:

x(s) = 1 +
1
5

∫ 1

0
G(s, t)x(t)3dt, s ∈ [0, 1],

where x ∈ C[0, 1], t ∈ [0, 1], and the kernel G is G(s, t) =


(1 − s)t, t ≤ s,
s(1 − t), s ≤ t.

Firstly, we write this integral equation as F(x) = 0, where F : C[0, 1] → C[0, 1] and

F(x)(s) = x(s) − 1 −
1
5

∫ 1

0
G(s, t)x(t)3dt, s ∈ [0, 1].

Secondly, it is discretized to transform it into a finite dimensional problem. To do this, we use the Gauss–Legendre formula
to approximate an integral∫ 1

0
f (t)dt ≈

m−
j=1

ϖjf (tj),

where the abscissas tj and the weights ϖj are determined for m = 8. Denoting the approximation of x(ti) by xi (i = 1,
2, . . . , 8) we obtain the system of nonlinear equations

xi = 1 +
1
5

8−
j=1

aijx3j , where aij =


ϖjtj(1 − ti) if j ≤ i,
ϖjti(1 − tj) if j < i, i = 1, 2, . . . , 8.

Now, the previous nonlinear system is written in the matrix form by

F(x) = x − 1 −
1
5
Ax̂,
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where F : R8
−→ R8, x = (x1, x2, . . . , x8)t , 1 = (1, 1, . . . , 1)t , A = (aij) and x̂ = (x31, x

3
2, . . . , x

3
8)

t . We test the convergence
of the methods towards the root α = (x∗

1, x
∗

2, . . . , x
∗

8)
t , where

x∗

1 = x∗

8 = 1.002096 . . . , x∗

2 = x∗

7 = 1.009900 . . . , x∗

3 = x∗

6 = 1.019727 . . . , x∗

4 = x∗

5 = 1.026436 . . . .

The results are shown in Table 6 with the initial point x0 = 1. The chosen example gives a set of values of m, µ0 and µ1
corresponding to a better value of CEI3 than CEI4 and consequently a better value of time τ .

Case 4. In this examplewe present a system of nonlinear equations where the parameters of the efficiency are introduced
in this paper, say CEI and τ , are better for the iterativemethodΦ4, and the corresponding region in Fig. 2 lies between straight
lines S2 and S3. Setting the following trigonometric equations

xi − cos


2xi −

4−
j=1

xj


= 0, 1 ≤ i ≤ 4, (19)

we test the convergence of the methods Φ1, Φ2, Φ3 and Φ4 respectively, towards the root α ≈ (0.514933, 0.514933,
0.514933, 0.514933)t . Taking x0 = (1.0, 1.0, 1.0, 1.0)t , we get the results shown in Table 7 that confirm the theoretical
results presented above.

6. Concluding remarks

A generalization to several variables of a technique used to compute analytically the error equation of iterative methods
for one variable is presented. The key idea is to use formal power series. Two modified methods for solving systems
of nonlinear equations whose order of convergence are higher than that of other well-known competitive methods are
analyzed.

Themain result of this paper is the presentation of a generalization of the efficiency index used in the scalar case to several
variables. We have analyzed and compared the computational efficiency index of two well known methods, Newton’s
method and the harmonic mean method, with two new methods called Traub’s method and the modified harmonic mean
method. In order to analyze this parameter for the two methods we have studied the problem from two points of view:
numerical and geometrical.

Numerical examples that illustrate the theoretical results presented in this paper are also given. An approximation of
the root with high precision is obtained if we use multi-precision arithmetics. In this paper we have used two different
softwares: MAPLE 13 and MPFR library in C++. To illustrate the technique presented four examples have been studied and
completely solved. In each one, the fourth iterative method has been carried out and compared with the other three.

An approximation of the computational order of convergence has been computed independently of the knowledge of
the root. Moreover, a new way to compare execution time is presented. Namely, we have computed the necessary time to
get one correct decimal of the solution which is the ratio between the necessary execution time to accomplish the stopping
criterium and the total number of correct decimals obtained.
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