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renormalization group (RG) trajectory. We also prove, to second order in the loop expansion, in D = 4−ε,
that scale implies conformal invariance for models of any number of real scalars. For models with one
real scalar and any number of Weyl spinors we show that scale implies conformal invariance to all orders
in perturbation theory.
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1. Introduction

Can a theory display a symmetry under dilatations but not be invariant under conformal transformations? The answer to the converse,
whether a theory can be invariant under conformal transformations but not under scaling, has long been known. The algebra of the
conformal group gives the generator of dilatations in terms of conserved generators of conformal transformations and translations. Hence,
conformal plus Poincaré invariance implies dilatation invariance. But whether scale implies conformal has remained an elusive open
question.

Using an argument of Zamolodchikov, Polchinski has proved, in D = 2 space–time dimensions, that a unitary model cannot be scale-
invariant without also being conformal [1]. The assumption of unitarity seems to play an essential role. Indeed, Riva and Cardy have
exhibited a model with D = 2 Euclidean dimensions with scale but not conformal symmetry [2]. But the model is not reflection-positive,
the Euclidean version of unitarity. An earlier model by Hull and Townsend [3] seems to contradict Polchinski’s result, but this may be
attributed to the violation of a technical assumption in Polchinski’s argument, namely the existence of finite correlators of the stress–
energy tensor. More recently other counterexamples have been given, however every case violates one of the assumptions of the theorem
(unitarity, existence and finiteness of correlators) [4,5].

Polchinski went on to show that, at one-loop order, a scalar field theory in D = 4−ε is necessarily conformal if it is scale invariant. We
will review his argument below and show that it can be extended to one higher order in the loop expansion. A recent one-loop analysis
by Dorigoni and Rychkov [6] extended Polchinski’s argument to the case of theories with both scalars and fermions. We show that their
result can be extended to all orders in perturbation theory for models with an arbitrary number of spin- 1

2 fields and no more than one
real scalar.

Polchinski also reviewed the literature on the subject to that date. Let us briefly survey salient, mostly recent work on the relation
between dilatation and conformal invariance since his review. Antoniadis and Buican studied N = 1 supersymmetric theories with an
R-symmetry [7]. They proved that any unitary fixed point is either superconformal or corresponds to a model that has at least two real
non-conserved dimension-two scalar singlet operators. They also demonstrated that any IR fixed point reached from a flow from a UV
superconformal fixed point is itself superconformal, provided some technical assumptions are met. Nakayama has taken a fresh approach to
the question. He considers the AdS/CFT correspondence to claim that the null energy condition in the bulk gravitational theory guarantees
the equivalence in the boundary theory between scale and conformal invariance [8–10].

El-Showk, Nakayama and Rychkov have pointed out that Maxwell theory in D �= 4 is scale but not conformally invariant [11]. Jackiw
and Pi have shown that Maxwell’s action integral in any D is invariant under conformal transformations if the field strength tensor Fμν is
taken as a primary field of scaling dimension D/2, but then Maxwell’s equations are not covariant under conformal transformations [12].
We note in passing that if the scaling dimension is taken to be D − 2, then Maxwell’s equations are conformally covariant, but the action
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integral is not invariant, unless D = 4. We hasten to indicate that Maxwell theory is a free field theory, and hence of limited interest.
Furthermore, in the presence of sources the model is no longer invariant under dilatations in D �= 4.

To summarize the situation until this work, for D > 2 there appears to be neither an interacting counterexample nor a proof that scale
implies conformal invariance. We have found that, in D = 4 − ε , a model of two Weyl spinors and two real scalars is invariant under
scaling but not under conformal transformations. More specifically, we will show that there exist points in the parameter space of the
model for which a combined transformation by scaling and by an internal rotation among the scalars is a symmetry. We will argue that
these points must not be isolated, but lie on RG trajectories that are scale but not conformally invariant and, most remarkably, discover
that these RG trajectories form closed loops or display ergodic behavior. To the best of our knowledge neither limit cycles nor ergodic RG
trajectories have ever before been reported for a relativistic field theory.

In preparation for our analysis, we review the arguments of [1,6] in Section 2. We will argue in Section 3 that, in theories with scale
but not conformal invariance, RG flows must have either limit cycles or ergodic behavior. We also make some general comments about the
possibility of uncovering fixed points with enhanced internal symmetries. We show (at least to second order in the loop expansion) that
scale implies conformal invariance in two classes of models in Section 4. This is interesting in its own right, but also sets the stage for
discovering models with scale but not conformal invariance. An example of the latter we present in Section 5. For conciseness we present
explicitly the analysis and results for the simplest model only, consisting of one Weyl spinor and two real scalars which also displays a
limit cycle with scaling symmetry. However, on this cycle this model’s scalar potential is unbounded from below. We close with a short
summary and a brief discussion of some interesting new open questions.

2. Preliminaries

In order to establish notation and for completeness, we begin by reviewing the conditions for scale and conformal invariance [13,14,1].
The dilatation current is of the form

Dμ(x) = xν Tν
μ(x) − V μ(x). (1)

Here T μν(x) is any symmetric stress–energy tensor and V μ(x) is any current that does not depend explicitly on xμ . The freedom to
choose among different symmetric stress tensors is compensated through changes in the current V μ . The improved stress–energy tensor
can be particularly useful since it does not get renormalized [13]. Given a choice of stress–energy tensor, scaling will be a symmetry if it
is possible to find a current V μ such that

Tμ
μ = ∂μV μ. (2)

Conformal invariance is equivalent to the existence of a traceless stress–energy tensor. However, the stress–energy tensor in Eq. (2) need
not be traceless. For D > 2 it is sufficient that

Tμ
μ = ∂μ∂ν Lμν (3)

for some local tensor operator Lμν , for then one can explicitly construct a traceless stress–energy tensor out of T μν and Lμν . It follows
that the condition that a model has scale but not conformal invariance is to satisfy Eq. (2), with the additional condition that the current
V μ cannot be written as a conserved current Jμ plus the divergence of a two index symmetric tensor Lνμ ,

Tμ
μ = ∂μV μ, where V μ �= Jμ + ∂ν Lνμ with ∂μ Jμ = 0. (4)

Finding candidates for a current that one can use in the test Eq. (4) is not difficult. In D space–time dimensions the scaling dimension
of the current must be D − 1. In a perturbative setting with a collection of real scalars,1 φa , and Weyl spinors, ψi , the most general
candidate is [6]

Vμ = Q abφa∂μφb − Pijψ̄i iσ̄μψ j. (5)

Without loss of generality one may take Q ab to be antisymmetric, Q ab = −Q ba . Furthermore, in order for V μ to be Hermitian, Pij has to
be anti-Hermitian, P∗

i j = −P ji . The unknown coefficients Q ab and Pij are to be determined by satisfying Eq. (4). One may well expect that

they depend on the coupling constants of the model: the dimension of the operators φa∂μφb and ψ̄iσ̄μψ j that go into Vμ is not generally
D − 1 in an interacting model, so the coefficients may have to make up for the difference. But in a perturbative model this difference is
small. Hence, operators with naive dimensions that differ from D − 1 are not included in the candidate current.

To proceed further we need to specify the model some more. In order to have both UV and IR fixed points, so we may study the
relation between scale-invariant and conformal theories, we consider only D = 4 − ε at small ε . The action integral defines the coupling
constants as follows:

S =
∫

dD x

(
1

2
∂μφa∂

μφa + iψ̄iσ̄
μ∂μψi − λabcd

4! φaφbφcφd − ya|i j

2
φaψiψ j − y∗

a|i j

2
φaψ̄iψ̄ j

)
. (6)

We can now test these models for scale and conformal invariance. The trace of the energy–momentum tensor is

Tμ
μ = −βabcd

4! φaφbφcφd − βa|i j

2
φaψiψ j − β∗

a|i j

2
φaψ̄iψ̄ j,

1 Indices from the beginning of the roman alphabet are in scalar-flavor space, while indices from the middle are in fermion-flavor space. In this work we don’t consider
gauge fields [15].
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up to terms that vanish by the equations of motion.2 The divergence of the candidate current, after using the equations of motion, is

∂μV μ = − 1

4! Qabcdφaφbφcφd − 1

2
(Pa|i jφaψiψ j + h.c.),

where

Qabcd = Q aeλebcd + 3 permutations, (7a)

Pa|i j = Q ab yb|i j + (Pki ya| jk + i ↔ j). (7b)

With these results, condition (4) becomes

βabcd − Qabcd = 0, (8a)

βa|i j − Pa|i j = 0. (8b)

The problem has been reduced to solving these algebraic equations. Here, by solving the equations we mean finding Q ab and Pij that
satisfy these equations for some values of the coupling constants. To reiterate, the equations need not be satisfied identically, that is, for
every value of the couplings. Still the equations are not trivial because there are more equations than free variables in Q ab and Pij , so
generally we expect no solutions or, if the theory has fixed points, a trivial solution in which both Q ab and Pij vanish. If these are the
only solutions, then we have that scale implies conformal invariance.

3. Trajectories and enhanced-symmetry fixed points

If a solution with β �= 0 is found, then there exist a point in parameter space with scale but not conformal invariance. Perhaps it is
because such a point has never been found that it is universally referred to in the literature as a fixed point. But clearly the point cannot
be fixed because the beta functions do not all vanish there. The point must lie on an RG trajectory. Physical properties are common to the
complete trajectory. It follows that the whole trajectory displays scale but not conformal invariance.

RG trajectories are defined by

dλ̄abcd(t)

dt
= βabcd

(
λ̄abcd(t), ȳa|i j(t)

)
and

dȳa|i j(t)

dt
= βa|i j

(
λ̄abcd(t), ȳa|i j(t)

)
, (9)

but now Eqs. (8) hold along the whole trajectory. So, it must also be true that

dλ̄abcd(t)

dt
= Qabcd

(
λ̄abcd(t), ȳa|i j(t)

)
and

dȳa|i j(t)

dt
= Pa|i j

(
λ̄abcd(t), ȳa|i j(t)

)
. (10)

Therefore, the running couplings solve both sets of Eqs. (9) and (10) simultaneously. This is a remarkable condition.
If the dependence of Q ab and Pij on coupling constants is simple, one may integrate the equations readily. In fact, in the explicit

examples we give below, Q ab are constants (independent of coupling constants) and Pij vanish. Hence, Q and P are linear in the
couplings. Moreover, since Q ab is real and antisymmetric, it has purely imaginary eigenvalues, and thus the trajectories must be periodic
or quasi-periodic. These correspond to the existence of limit cycles and ergodicity, respectively, in the classification of possible behaviors
of RG trajectories [17–20]. There do not seem to be any reported examples in relativistic field theory displaying either of these. There
appears to be a tight connection between these behaviors and scale but not conformal symmetry, and no examples of such models were
known before this work [15].

There is a simple reason to expect periodic or quasi-periodic RG trajectories. The conserved dilatation current, Eq. (1), is a combination
of a scaling and a rotation in field space. The latter is a transformation in a compact group. A curve in a compact space must be periodic
or quasi-periodic. Now, a scale transformation gives a translation along the RG trajectory.3 So as the RG trajectory is traversed, the field
rotation eventually goes back to the identity, or arbitrarily close to the identity. Hence, the scale transformation itself must go back to, or
arbitrarily close to, the identity and therefore, by continuity in parameter space, the RG trajectory must return to, or arbitrarily close to,
the starting point.

There may also be solutions to (8) that have β = 0 but for which Q �= 0 or P �= 0. The trace of the stress–energy tensor vanishes
and from Eq. (2) we see that V μ is a conserved current. This is the case of a fixed point with an enhanced internal symmetry. On the
trajectories that flow towards the fixed point there is no symmetry associated with the current V μ , since away from the fixed point
Tμ

μ �= 0.

4. Scale implies conformal: Two classes of models in 4 − ε

We now prove, to second order in perturbation theory, that scale implies conformal invariance for models of an arbitrary number of
scalars in D = 4 − ε . We also prove the same result to all orders in perturbation theory for models of an arbitrary number of Weyl spinors
and exactly one real scalar.

2 Equations of motion can be used and are not renormalized, see Ref. [16].
3 Except at a fixed point. We are considering the behavior of a model with scale but not conformal symmetry.



J.-F. Fortin et al. / Physics Letters B 704 (2011) 74–80 77
4.1. Models of scalars

Polchinski showed that, in a model of any number of scalar fields with arbitrary quartic couplings, scale implies conformal invariance
at one loop. We review his argument and then extend it to second order in perturbation theory.

The model is given by the Lagrangian in Eq. (6) with all of the fermion fields set to zero and D = 4−ε . Recall that we are trying to find
a solution to Eq. (8a) at a point in parameter space for which the beta function does not vanish. Polchinski’s argument is the following.
Using the explicit form of the β function to one-loop order,

β
(1-loop)

abcd = −ελabcd + 1

16π2
(λabef λef cd + 2 permutations)

and the explicit form of Q given in Eq. (7a), one can verify by explicit computation that

Qabcdβ
(1-loop)

abcd = 0.

From Eq. (8a) it follows that Qabcd Qabcd = 0 which implies that Q ab = 0, and thus leaves us only with fixed-point solutions to Eq. (8a).
We extend this argument to two loops by brute force. We have used the two-loop expression for the beta function in dimensional

regularization [21] to verify that Qabcdβ
(2-loop)

abcd = 0. We do not give the details of the computation, there is little to be learned from the
explicit and lengthy expressions. One can verify, however, that with all possible contractions of three λ’s with four free indices, the only
way to get Qabcd(λλλ)abcd �= 0 is to contract two indices in the same λ. But the diagrams that correspond to such a contraction are zero
in dimensional regularization, and so we find Qabcdβ

(2-loop)

abcd = 0. It follows that scale implies conformal invariance at two loops too.

4.2. Models of Weyl spinors and one real scalar

Dorigoni and Rychkov have extended Polchinski’s analysis to the case of models with spinors and scalars described by the Lagrangian
density in Eq. (6), with D = 4 − ε [6]. They showed that, at one loop, for the conditions in Eqs. (8) to be satisfied one must set both P
and Q to zero. Hence, at any scale-invariant point one must have vanishing beta functions. They argue as follows. First contract Eq. (8b)
with P ∗

a|i j to obtain

P ∗
a|i jβa|i j = P ∗

a|i j Pa|i j. (11)

The right-hand side of Eq. (11) is a real number. However, using the explicit form of the beta function at one-loop order one finds that
the real part of the left-hand side of Eq. (11) is identically zero, and so Pa|i j vanishes. Furthermore, contracting Eq. (8a) with Qabcd and
using Pa|i j = 0 one finds that Qabcd vanishes as well. Consequently, Eqs. (8) are satisfied only at conformal fixed points.

If we now attempt to extend this result by using the explicit form of the beta function to two-loop order [21], we find that Re(P ∗β)

does not vanish in the general case and, therefore, condition (11) does not generally require the vanishing of P . In the absence of a
general argument we inspect specific cases.

Consider a model with an arbitrary number of spinors and only one real scalar field. In this case the Lagrangian in Eq. (6) has only a
single scalar self-coupling λ, and the Yukawa couplings form a single matrix yij . The 1 × 1 antisymmetric matrix Q ab vanishes and so do
Q and, by Eq. (8a), βλ . Hence, the condition for scale invariance is solved only if λ is at a fixed point. The beta function βi j for the Yukawa
couplings is also a single matrix and is given by the matrix product of y times a real polynomial in y† y, with coefficients that are real
functions of λ. Therefore, to all orders in perturbation theory, β is of the form H y where H is a Hermitian matrix, H† = H , which satisfies
H y = yH . It follows that P ∗

i jβi j = Tr(P †β) = Tr[(P † y† − y† P T )H y] = −Tr[P (y† H y + (yH y†)T )], that is, the product of the anti-Hermitian

matrix P with the Hermitian matrix y† H y + (yH y†)T . Therefore, the trace is purely imaginary and we can now complete the argument:
the right-hand side of Eq. (11), being a real number, must vanish. Hence βy must vanish if the condition for scale invariance, Eq. (8b), is
satisfied. We have shown that, to all orders, if there are scale-invariant points, they are also fixed points.

5. The simplest example

If we attempt to continue our analysis of explicit cases we find a snag: we cannot complete the argument that Q and P vanish. In a
model with two (or more) real scalars and one (or more) Weyl spinors the matrix Q ab does not automatically vanish, as was the case in
models with a single real scalar. Then, using the explicit form of the two-loop beta function [21] for the model (6) with at least two real
scalars and at least one Weyl spinor, one finds that Re(P ∗

a|i jβ
(2-loop)

a|i j ) �= 0. This does not mean that non-trivial solutions to Eq. (8) must
exist. But it indicates a direction to investigate.

The simplest theory of this type has one Weyl spinor ψ and two real scalars φ1 and φ2. The Lagrangian is

L = kin. terms − λ1

24
φ4

1 − λ2

24
φ4

2 − λ3

4
φ2

1φ2
2 − λ4

6
φ3

1φ2 − λ5

6
φ1φ

3
2 −

(
y1

2
φ1ψ

2 + y2

2
φ2ψ

2 + h.c.

)
, (12)

and the candidate for V μ can be written as

Vμ = q(φ1∂μφ2 − φ2∂μφ1) − pψ̄σ̄μψ, (13)

where q and p are real numbers. The connection with the notation for the general model of Eq. (6) is that λ1111 ≡ λ1, λ1112 ≡ λ4,
λ1122 ≡ λ3, λ1222 ≡ λ5, λ2222 ≡ λ2 and ya|11 ≡ ya . Using the beta functions in Ref. [21] we find

Re
(

P ∗
a|i jβ

(2-loop)

a|i j

) = 1
2 2

[
ya yb y∗

c y∗
d(Q aeλbcde + Q ceλabde) − 1

ya y∗
b(Q acλbdef + Q bcλadef )λcdef

]
, (14)
(16π ) 24
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which does not necessarily vanish. We proceed to search for non-trivial solutions to (8).
In order to explain the strategy that we follow in solving (8) it is useful to sketch the form of these equations. Retaining up to two-loop

contributions to the beta functions, we have, schematically,

βabcd − Qabcd ∼ −ελ + λ2 + λ(y∗ y) + (y∗ y)2

16π2
+ λ3 + λ2(y∗ y) + λ(y∗ y)2 + (y∗ y)3

(16π2)2
− Q λ = 0,

βa|i j − Pa|i j ∼ −ε

2
y + yy∗ y

16π2
+ y(y∗ y)2 + yy∗ yλ + yλ2

(16π2)2
− Q y − P y = 0. (15)

The form of these equations suggests that we search for solutions as an expansion in ε . To lowest order the solutions should correspond
to the fixed points obtained from balancing the “classical” term, ∼ ελ, against the first quantum corrections, i.e. the one-loop terms. The
Polchinski–Dorigoni–Rychkov argument tells us that we should ignore Q and P at this order. So we take

λabcd =
∞∑

n=1

λ
(n)

abcdε
n, ya|i j =

∞∑
n=1

y(n)
a|i jε

n− 1
2 , (16)

Q ab =
∞∑

n=2

Q (n)

ab εn, Pij =
∞∑

n=2

P (n)
i j εn. (17)

Notice that the nature of the expansions for the coupling constants is dictated by the two lowest-order terms, that is, by the location of a
would-be fixed point. Meanwhile, the expansions for Q and P start at order ε2 or higher, since they must vanish if only up to one-loop
terms are retained in the beta functions.

For this particular model there are nine equations to solve, corresponding to the beta functions for two complex y’s and five real λ’s
in Eqs. (15). Adding p and q to the list of coupling constants, there are eleven variables. Thus, the system is under-constrained. This is as
it should be if we are to have solutions along trajectories, but it is not computationally convenient. Instead it is best to fix some variables.
We can set Im(y2) = 0 by redefining the fields by a phase rotation of the Weyl spinor.

There are many fixed-point solutions, and one must be careful to check that a solution to (8) is not also a fixed point, even for nonzero
q and/or p. One must also check that the solution does not give a scalar potential that is unbounded from below. Unfortunately, in the
simplest example with one Weyl spinor and two real scalars, we have not found a scale-invariant point with a bounded-from-below scalar
potential that is not conformally invariant. We have verified that such scale-invariant points exist in more general models, e.g., with two
Weyl spinors and two real scalars [15], but, to keep the presentation simple, we only display here the scale-invariant point (and the
trajectory it lies on) in the model with one Weyl spinor and two real scalars. In an ε-expansion we find the scale-invariant solution

λ1 = 821326 − 5427
√

419802

607836
π2ε + 518735723529516 − 118790842537

√
419802

195971150186496
π2ε2 + · · · ,

λ2 = 7(373922 − 141
√

419802 )

607836
π2ε − 23(6387330973

√
419802 − 5101825968812)

65323716728832
π2ε2 + · · · ,

λ3 = 469(222 + √
419802 )

607836
π2ε + 74835485902788 + 225616637735

√
419802

195971150186496
π2ε2 + · · · ,

λ4 =
7
√

469
74 (3601 + 6

√
419802 )

8214
π2ε +

√
7(2595761325955388328540064229507+4050673053526086225418178112

√
419802 )

543700157374

17272267776
π2ε2 + · · · ,

λ5 =
67

√
469
74 (3601 + 6

√
419802 )

8214
π2ε +

√
67(668989476956566997057214743017+1051445250906514790976552640

√
419802 )

170413482162

17272267776
π2ε2 + · · · ,

y1 = √
2π

√
ε + 1737927

√
2 − 3350

√
209901

12616704
πε3/2

+
√

258756594352544587227002131−322169380386272743890676
√

419802
3782

1434065043456
πε5/2 + · · · ,

y2 = 0,

q =
511

√
469
74 (3601 + 6

√
419802 )

33644544
ε3 + · · · ,

p = 0. (18)

The reader will notice that the expansion for q begins at third order in epsilon—this corresponds to the third order in the loop
expansion of the beta function in Eqs. (8), which we have not included. It would seem that the solution is inconsistent and may disappear
when the next order in beta is included. However, we have verified that the expansion for q begins at second order in other schemes.
Since physics is scheme-independent, we conclude that the scale-invariant solution (18) can be trusted. That q here begins at third order
is a peculiarity of dimensional regularization with any modified minimal subtraction scheme.
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Fig. 1. The couplings of the model with one Weyl spinor and two real scalars on an RG cycle, as a function of RG time. Here ε = 0.01 and the starting conditions are the
solutions to (8) given in the text, Eqs. (18).

Now that we have discovered a solution that is not a fixed point we can uncover the scale-invariant trajectory from Eqs. (10). For the
scalar couplings, for example, organized as a five-dimensional vector, we have a system of coupled linear differential equations,

d	λ
dt

= Q	λ,

where the matrix Q is

Q = q

⎛
⎜⎜⎜⎝

0 0 0 4 0
0 0 0 0 −4
0 0 0 −2 2

−1 0 3 0 0
0 1 −3 0 0

⎞
⎟⎟⎟⎠ .

Once the matrix Q is diagonalized the system decouples and is easy to solve. The solution, including the Yukawa couplings, is

λ̄1(t) = λ1 cos4 qt + λ2 sin4 qt + 3

2
λ3 sin2 2qt + 4λ4 sin qt cos3 qt + 4λ5 sin3 qt cos qt,

λ̄2(t) = λ1 sin4 qt + λ2 cos4 qt + 3

2
λ3 sin2 2qt − 4λ4 sin3 qt cos qt − 4λ5 sin qt cos3 qt,

λ̄3(t) = 1

4
λ1 sin2 2qt + 1

4
λ2 sin2 2qt + 1

4
λ3(3 cos 4qt + 1) − 1

2
λ4 sin 4qt + 1

2
λ5 sin 4qt,

λ̄4(t) = −λ1 sin qt cos3 qt + λ2 sin3 qt cos qt + 3

4
λ3 sin 4qt + 1

2
λ4(cos 2qt + cos 4qt) + λ5 sin2 qt(2 cos 2qt + 1),

λ̄5(t) = −λ1 sin3 qt cos qt + λ2 sin qt cos3 qt − 3

4
λ3 sin 4qt + λ4 sin2 qt(2 cos 2qt + 1) + 1

2
λ5(cos 2qt + cos 4qt),

ȳ1(t) = y1 cos qt + y2 sin qt,

ȳ2(t) = −y1 sin qt + y2 cos qt. (19)

Here the initial values for the scalar and Yukawa couplings on the right-hand side, as well as the frequency q are the solutions given
in Eqs. (18) above. As discussed above, the scalar potential is unbounded from below for these values. Note that the imaginary parts of
the Yukawas vanish, hence the theory does not violate CP. Note, furthermore, that these statements remain true throughout the cycle, as
indeed they should. The couplings are plotted in Fig. 1.

How do these solutions depend on ε? From Eqs. (18) it follows that the scale-invariant trajectory disappears in D = 4. A sketch of the
shrinking trajectories in parameter space is shown in Fig. 2.

The t-dependent solutions (19) can be obtained by replacing(
φ1
φ2

)
→

(
cos qt sin qt

− sin qt cos qt

)(
φ1
φ2

)

in the Lagrangian (12) and then reading off the new coupling constants as coefficients of the separate monomials of the potential in L .
This is not surprising since the transformation corresponds to the action of the charge

∫
d3x V 0, and the current in (13) generates rotations

among the two real scalars.
We have also studied two additional cases. For a model of one Weyl spinor and three real scalars we find closed trajectories, but this

model also has an unbounded scalar potential. For a model of two Weyl spinors and two real scalars we find scale-invariant trajectories
with non-vanishing Q and undetermined P . The potential is bounded from below and the model displays a limit cycle. The same limit
cycle is found for a model consisting of two real scalars and one Dirac spinor (which dispels any concerns that may arise from the use of
Weyl spinors in non-integral dimensions). We will give the details of this model in a forthcoming publication [15].
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Fig. 2. Artistic rendition of scale-invariant trajectories as a function of ε .

6. Discussion and conclusion

The dearth of examples of scale but not conformally invariant theories has led to the general belief that scale implies conformal
invariance. As a result, a vast amount of knowledge has been amassed on the behavior of both conformal theories and scale non-invariant
ones. We know virtually nothing about scale but not conformally invariant theories. The examples we have found open the door for the
exploration of this radically new class of relativistic quantum field theories.

Are the trajectories we have found attractors, much like infrared fixed points? What is the scalars’ effective potential? Are there models
in physical space–time dimensions, i.e., integral D , which exhibit limit cycles? What about supersymmetric models? Can one systematize
the search for models in D = 4 − ε? What restrictions are imposed by scale invariance on Green’s functions? Are there phenomenological,
model-building applications? We plan to address some of these questions in a forthcoming publication [15].

The question of models in integral dimensions is particularly exciting. At the moment the best hopes are to either convincingly extend
our results here to D = 3, much like in the theory of critical phenomena, or to study D = 4 models with a Yang–Mills fixed-point coupling
playing the role of ε in the 4 − ε examples. In light of our present results, we are happy to abandon the gloomy pessimism of the past
and plan to search for one such example in earnest.
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