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Abstract

Let A, C S, denote the alternating and the symmetric groups an.1n. MacMahon's theo-
rem [P.A. MacMahon, Combinatory Analysis |-, Cambridge Univ. Press, 1916], about the equi-
distribution of the length and the major indicesSp, has received far reaching refinements and
generalizations, by Foata [Proc. Amer. MathcSDO (1968) 236], Carlitz [Trans. Amer. Math. Soc.
76 (1954) 332; Amer. Math. Monthly 82 (1975) 51], Foata-Schitzenberger [Math. Nachr. 83 (1978)
143], Garsia—Gessel [Adv. Math. 31 (1979) 288] and followers. Our main goal is to find analogous
statistics and identities for the alternating grodip. A new statistics fors,, the delent numbeiis
introduced. This new statistics is involved with ney identities, refining some of the results in
[D. Foata, M.P. Schutzenberger, Math. Nachr. 83 (1978) 143; A.M. Garsia, |. Gessel, Adv. Math.
31 (1979) 288]. By a certain covering mgp A, 11 — Su, suchs, identities are ‘lifted’ toA,, 1,
yielding the corresponding, ;1 equi-distribution identities.
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1. Introduction
1.1. General outline

One of the most active branches in enumerative combinatorics is the stpdynofita-
tion statistics Let S, be the symmetric group on 1., n. One is interested in the refined
count of permutations according to (non-negatiméeger valued) combinatorial parame-
ters. For example, the number of inversions in a permutation—naméénigsh—is such
a parameter. Another parameter is MacMahom&or index which is defined via thele-
scentset of a permutation—see below.

Two parameters that have the same generating function are saicktubdistributed
Indeed, MacMahon [12] proved the remarkable fact that the inversions and the major-
index statistics are equi-distributed §fn MacMahon's classical theorem [12] has received
far reaching refinements andrg@alizations, inkeiding: multivariae refinements which
imply equi-distribution on certain subsetsgermutations (done by Carlitz [3,4], Foata—
Schutzenberger [6] and Garsia—Gessel [7]); analogues for other combinatorial objects,
cf. [5,10,18]; generalizations to other classical Weyl groups, cf. [1,2,15].

Let A, C S, denote the alternating group on.1.,n. Easy examples show that the
above statistics fail to be equi-distributed when restrictedijo Our main goal is to
find statistics onA,, which are natural analogues of the abdyestatistics and are equi-
distributed on4,,, yielding analogous identities for thejenerating functions. This goal is
achieved by proving further refinements of the ab8yddentities.

Itis well known that the above statistics Spmay be defined via the Coxeter generators
{(G,i+21)|1<i <n—1}of §,. Mitsuhashi [13] pointed out at a certain set of generators of
the alternating groug,,, which play a role similar to that of the above Coxeter generators
of §,, see Section 1.3. We use these generators to define statistics which are analogous to
the above length and descent statistics.

TheS, -Coxeter generators allow one to introduce the classical canonical presentation of
the elements aof,,, see Section 3.1. Similarly, the above Mitsuhashi’s ‘Coxeter’ generators
allow us to introduce the corresponding canonical presentation of the elemefys of
see Section 3.3. We remark that usualyis viewed as a double cover df,. However, the
above canonical presentations enable us to introduce a covering fnam the alternating
groupA, 1 ontoS,, and thusA, 1 can be viewed as a covering 8§f.

A new statistic, thelelent numberplays a crucial role in the paper, and allows us to ‘lift’

S, identities toA, 1. The delent number of}, may be defined as follows: if the transposi-
tion (1, 2) appears times in the canonical presentationcok S, then the delent number

of o, delg(o), isr. An analogous statistic is defined fay, 1, see Definition 4.3. We give
direct combinatorial charaetizations of this statistic (see Propositions 1.7 and 1.8) and
show that this statistic is involved in ne§y equi-distribution identities, refining some of

the results of Foata—Schutzenberger [6] and of Garsia—Gessel [7]. Identities involving the
delent number are then ‘lifted’ by the covering m@pyielding A, 41 equi-distribution
identities, see Theorems 6.1, 9.1 and Corollary 9.2.

In Appendix A we present different statistics ap, and a consequent different analogue
of MacMahon's equi-distribution theorem. These statistics are compatible with the usual
point of view of S, as a double cover of,,.
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The above setting and results are connectéld enumeration of otbr combinatorial
objects, such as permutations avoiding patterns, leadipegimalogues of the classicsi}
statistics and of the Bell and Stirling numbers. A detailed study of thearalogues is
given in [14] (a few of these results appear in Section 5.3).

The paper is organized as follows: The rest of this section surveys briefly the classical
background and lists our main results. Background and notations are given in detail in
Section 2, while thed-canonical presentation is analyzed in Section 3. In Section 4 we
study the length statistics, and in Section 5 we discuss the relations between Sadods
A-statistics, relations given by the mgp A,,+1 — S,.. In Section 6 we study the ordinary
and the reverse major indices, together with the delent statistics. Additional properties
of the delent numbers are given in Seati@. In Section 8 we prove some lemmas on
shuffles—lemmas that are needed for the proof of the main theorem. The main theorem
(Theorem 9.1) and its proof are given in Section 9. Finally, Appendix A presents other
statistics.

1.2. ClassicalS,-statistics

Recall that the Coxeter generatdis= {(i,i + 1) | 1 <i < n — 1} of S, give rise to
various combinatorial statistics, like thength statistic, etc. As we show later, most of
theses,, statistics haved,, analogues, therefore we adé-" and “A-" to the titles of the
corresponding statistics.

e The S-length Form € S, let £5(r) be the standard length af with respect to these
Coxeter generators, see [9].

e The S-descentGiven a permutatiorr in the symmetric grouys,,, the S-descent set
of  is defined by

Dess(m) := {i [ Ls(m) > Ls(msi)} = {i | () > w(i + D}

e Thedescent numbef v, des (), is defined by degw) := |Des (7).
e Themajor index majs () is

majs () := Z i.

ieDes ()

The correspondingeverse major indedoes depend om, and is denoted

rmajs, (1) = Y (n—1i).

ieDes ()

e The reverse major index rmajr) is implicit in [6].
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These statistics are involved in many combinatorial identities. First, MacMahon proved
the following equi-distribution of the length and the major indices [12]:

Z qég(o) — Z qmaig(o)_

ogesS, oeS,

Foata [5] gave a bijective proof of MacMahon’s theorem, then Foata and Schitzen-
berger [6] applied this bijection to refine &dMahon’s identity by analyzing bivariate
distributions. Garsia and Gessel [7] extended the analysis to multivariate distributions. Ex-
tensions of MacMahon'’s identity to hypectahedral groups appear in [1].

Combining Theorems 1 and 2 of [6] one deduces the following identity:

Theorem 1.1. For any subseD; C {1, ...,n — 1},

Z qmajsn (M) — Z qrmajsn ()

{reS, |Des(x~1)C Dy} {reS, |Des(r~1)C D1}

— Z qes(ﬂ).

{reS, |Des(r~1)C D1}

A bivariate equi-distribution follows.

Corollary 1.2.
majs, (1) deg(z~1) _ rmajs, (7) deg(n~1) _ l5(m) deg(r™Y)
>0 92 =2 a 92 =2 a""e :
TES, TES, TESy

As already mentioned, one of the main goals in this paper is to find analogous statistics
and identities for the alternating grouf,. In the process, we first prove some further
refinements of some of the above identities $gr refinements involving the nedelent
statistic, see Theorems 6.1.1 and 9.1.1.

1.3. Main results
Here is a summary of the main results of this paper.

1.3.1. A, -statistics
Following Mitsuhashi [13], we let

ai =s15i41=(1,2)(+1i+2) (A<i<n-—-1D.

Thusa; = a; 1 if i #1, whilea? = a;*. The setA = {a; | 1 <i <n — 1} generates
the alternating group on + 1 lettersA, ;1 (see, e.g., [13]). It is the above exceptional
property ofa; among the elements of—which naturally leads to the ‘delent’ statistic
(Definition 1.5 below), both fof5, and for A,,.1. This new statistic enables us to deduce
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new refinements of the &&Mahon-type identities fa$,,, and for each such an identity to
derive the analogous identity fai, ;1.

The canonical presentation 8 by the Coxeter generators is well known, and is dis-
cussed in Section 3, see Theorem 3.1. With the above generatidgadet,, 11 we also
have canonical presentations for the element$,qf;, as follows. Foreach & j <n-—1,
define

R;x = {1, aj,ajaj_i,...,a;---az,aj---aai, da; - -azal_l}, Q)
whereR{ = {1}.
Theorem 1.3 (see Theorem 3.4).etv € A1, then there exist unique elemenise R;‘,

1< j<n-1, suchthat =v;---v,_1, and this presentation is unique. Call that presen-
tationv = vy - - - v,—1 the A-canonical presentation af.

The A-canonical presentation allows us to introduce thdéength of an element in
An—i—l-

Definition 1.4. Letv € A,+1 With v = afll .- af (e; = £1) its A-canonical presentation,
then itsA-lengthist (v) =r.

A combinatorial interpretation of th&-length in terms of inversions is given below, see
Proposition 4.5.
The A-descent statistic is defineding the above generating sét

Definition 1.5. (1) Thealternating-descer(i.e. the A-descent) set of € A,11 is defined
by

Desy(0) :={1<i<n—1]¢a(0) > La(oa)},
and theA-descent numbesf o € A, 11 is defined by
desy (o) := |Desy (o)
(note that the strict relation in the definition of anS-descent in Section 1.2 is replaced in

the A-analogue by>).
(2) Define thealternating reverse major indedf o € A, 11 as

rmaj, (o) := Z (n—1i).

ieDesy (o)

1.3.2. The delent number
New statistics, for the alternating group, as well as for the symmetric group, are intro-
duced.
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Definition 1.6 (seeDefinition4.3).

(1) Letw € S,. The S-delent number ofv is the number of times thag = (1, 2) occurs
in the S-canonical presentation af, and is denoted by defw).

(2) Letv € A,4+1. The A-delent number of is the number of times th:aztitl occur in the
A-canonical presentation of and is denoted by dg{(v).

A combinatorial interpretation of the delent numberssdmtd de}, is given in Sec-
tion 7. Letw € S, thenj is a l.t.r.min (left-to-right minimum) otv if w(i) > w(j) for all
1<i<j.

Proposition 1.7 (see Proposition 7.7Jor every permutatiomw € S, let
Dels(w)={1<i<n]iisaltrmin;
then

dels(w) = |Delg(w)|.

Notice that in the above definition of Dgh), the first I.t.r.min (i.ei = 1) does not
count.

Similar to I.t.r.min, we define aalmost left to right minimunfa.l.t.r.min) ofw € A, 41
as follows:

e jisana.l.trminofw if w(i) < w(j) for at most ong less than. Define Dej (w) as
the set of thalmost left-to-right minimaf w. Then dek (v) = |Dels(w)], i.e. is the
number of a.l.t.r.min ofv, see Proposition 7.7.

We also have

Proposition 1.8 (see Proposition 4.4)etw € A, 41, then

dels(w) = £s(w) — La(w).

1.3.3. Equi-distribution identities

The covering mapf: A,+1 — S,, presented in Definition 5.1, allows us to translate
S, -identities, which involve the delent statistic, into correspondingi-identities. This
strategy is used in the proofs of part (2) of the following theorems.

Part (1) of the following theorem is a new generalization of MacMahon'’s classical iden-
tity, and part (2) is itsA-analogue.
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Theorem 1.9 (see Theorem 6.1)

(1) Z qég(cr)tdels(o) — Z qrmalgn(o)tdels(o)

oeS, oeS,

) Z glaw) deliw) _ Z qrmaiAM(w)tdelA(w)

WEA,+1 WEAy11

:(1+2qt)(1_|_q+2q2t)...(1_|_q+,,,+qn72+2qn71t)'

Recall the standard notati¢m] = {1, ..., m}. The main theorem in this paper strength-
ens Theorem 1.1, and also givesAtsanalogue. This is

Theorem 1.10 (see Theorem 9.1For every subset®1 C [n — 1] and D2 C [n],

(1) Z qrmajsn () _ Z qfs(ﬂ)’

ces. | Dess(rHeD, res. | PsrTHeEDs
"| Dels(xH <D, "| Dels(r~H Dy

) Z qrmajAHl(U) _ Z qu(o)_

s De&(ﬂil)ng DeSq((Til)ng
OE€Ap4+1 DelA (071)§D2 DelA ((Til)gDZ

{UEAn+1

This shows that the delent set and the descent set play a similar role in these identities.
The A-analogue of Corollary 1.2 follows. It is obtained as a special case of Corollary
9.2(2) (by substitutingz = 1).

Corollary 1.11 (see Corollary 9.2)

rmajAn (0) e -1 ¢ de -1
Z q +1 q5 S0 _ Z qlA(O')q2 S (o )_

0€A 11 0€A 11

Note that, while the§-identity holds for maj as well as for rmgj , it is not possible
to replace rme;t,in+1 by majAn+1 in the A-analogue.

2. Preliminaries
2.1. Notation

For an integera, we let [a] :={1,2,...,a} (where[0] := ). Let n1,...,n, be
non-negative integers such that;_, n; = n. Recall that thez-multinomial coefficient
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yenes

01y :=1  [nlly:=—-1(1+g+-+¢" 1 @=1D,

[ n } Iy,
ni...n ], T (n1llg - [n1ly

Represent € S, by ‘its second row's = [0(1),...,0(n)]. We also use the cycle-
notation; in particular, we defing := (i, i + 1), the transposition afandi + 1. Thus

[. ,o@),o(r+1),.. .]sr = [ .o +1),0(r), ] (2)
(i.e. onlyo (r), o (r + 1) switch places).
2.2. The Coxeter system of the symmetric group

The symmetric group on letters, denoted by, is generated by the set of adjacent
transpositionsS := {(i,i + 1) | 1 <i < n}. The defining relations of are the Moore—
Coxeter relations:

(isivn)®=1 A<i<n)y  (ssp?=1 (i—jl>1; sZ=1 (V).

This set of generators is called tBexeter systeraf S,,.

Forr € S, let£5(r) be the standard length afwith respect taS (i.e. the length of the
canonical presentation af, see Section 3). Let be a word on the letter$. A commuting
moveonw switches the positions of successive lettess whereli — j| > 1. A braid move
replaces;s;+1s; by s;+1sis;+1 or vice versa. The following is a well-known fact, but we
shall not use it in this paper.

Fact 2.1. All irreducible expressions of € S,, are of lengthé¢s(). For every pair of
irreducible words ofr € S,,, it is possible to move from one to another along commuting
and braid moves.

2.3. Permutation statistics

There are various statistics on the symmetric gragjpdike the descennumber and
themajorindex. We introduce and study analogue statistics on the alternating giqups
To distinguish, we add ‘sul§: and ‘sub-A’ accordingly.

Given a permutatiomr = [7(1),...,7(n)] in the symmetric grou,,, we say that a
pair (i, j), 1 <i < j < n, is aninversionof r if 7 (i) > 7 (j). The set of inversions of is
denoted by Iny(r) and its cardinality is denoted by iggr). Also 1< i < n is adescent
of r if (i) > w(i +1). For the definitions of the descent set Pes), the descent number
des (), the major index maj(r) and the reverse major index rmyajr ), see Section 1.2.
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Note thati is a descent of if and only if £5(7rs;) < £s(r). Thus (as already mentioned
in Section 1.2), the descent set, and consequently the other statistics, have an algebraic
interpretation in terms of the Coxeter system. In particular, for exetys,,,

invs () = £s(). ©))

The following well-known identity is due to MacMahon [12]. See, e.g., [5] and [17,
Corollaries 1.3.10 and 4.5.9].

Theorem 2.2.
Z qinVS(T[) — Z qmajs(rr) — [n]yq
TeS, TeS,

n—2

:(1+q)(1+q+q2)(1+q++q +qn—1).

The following theorem is a reformulation of [6, Theorem 1].

Theorem 2.3. For everyB C [n — 1],

Z qinvs(n) — Z qmajs(n).

{meS, | Des(r~1)=B} {reSy | Deg(r—1)=B}
2.3.1. Shuffles
Let 1<i <n-—1, thenw € §, is an {i}-shuffle if it shuffles{d,...,i} with {i +

1,....n}; in other words, if 1< a < b <i thenw™(a) < w™'(b), and similarly, if
i +1<k<t<n, thenw (k) <w1().

Example. Letn =4 andB = {2}, then{1, 2} and{3, 4} are being shuffled, hence
[11 27 31 4]7 [17 31 27 4]1 [17 31 47 2]1 [37 11 27 4]1 [31 17 41 2]7 [31 47 11 2]

are all the{2}-shuffles.

More generally, letB = {i1,...,ix} C [»n — 1], wherei; < --- < i;. Setip:= 0 and
ix+1:=n. A B-shuffleis a permutation which shufflés, ..., i1}, {i1+1,...,i2},... Thus
7 € S, is a B-shuffle if it satisfies: ifi; <a < b <ij;1 for some 0< j <k, thenn =
[....,a,...,b,...](i.e.ais left of b in 7). Notice that in particular there can be no descent
for 7—1 at anya, ij <a<ij+1, hence Des(z 1) C B. The opposite is also clear, hence

Fact 2.4. For everyB C [n — 1],

{7 €S, |Dess(n~t) € B} = {n €5, | is a B-shufflg.
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For a permutatior € S,,, let
supp) ;= {1<i <n|n()#i}

be thesupportof .

Let k € [n — 1], and letry, 72 be permutations ir$,,, such that supfr1) C [k] and
supf2) C [k + 1, n]. A permutatiorns € S, is called a shuffle ofry andrny if 0 = mymor
for some{k}-shuffler. Equivalentlyo is a shuffle ofr1 andzx; if and only if the letters of
[k] appear i in the same order as they appearrinand the letters ofk + 1, n] appear in
o inthe same order as they appeattin The following is a special case of [17, Proposition
1.3.17].

Fact 2.5. Letk € [n], and letrr1, 72 be permutations i, such thatsuppri) C [k] and
supfme) C [k + 1,n]. Then

invg (mymor)—invg (1) —invs (r2) __ |:ni|

E q = .
k

Degr—h<(k) 4

The following analogue is a special case of a well-known theorem of Garsia and Gessel.
It should be noted that, while Garsia—Gessel’'s Theorem is stated in terms of sequences, our
reformulation is in terms of permutations.

Theorem 2.6 [7, Theorem 3.1]Letk € [n — 1], and letrr1, 2 be permutations ii$,,, such
thatsuppm1) C [k] andsupf2) C [k+1,n].Letvy .= (L k+1D)(2,k+2)---(n—k,n) €
S,. Then

Z qmajs(T[]_J'[zr)7majs(7'[1)7majs(vk_l7'[2vk) — |:ni| )
k
Dess(r—1)c{k} 4

In order to translate Theorem 2.6 into Garsia—Gessel's terminology, noter thait
are shuffles ofr; andn2 (as mentioned above); thus the sum runs over all shuffleg of
andmy. Also, majg(v,:lnzvk) is the major index ofrz, when it is considered as a sequence
on the lettergk + 1, n].

Remark 2.7.1n general, it is possible to replace a statement involving maj by a correspond-
ing statement involving rmaj, using the automorphism> 6 which reverses the order of
the letters and replace each lettdry n + 1 —i:
& :=paops Wherep, :=(1,n)(2,n—1)---(ln/2], L(n +3)/2]).
Then

rmajs, (o) = majs (), invg(o) =invg(o), 4)

ando is an{i}-shuffle if and only if5 is an{n — i}-shuffle, i.e.
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Dess(c 7Y cli} <= Des(671)C{n—i}. (5)
Note that by (4) and [16, Claim 0.4], for everye S,,,
rmajg, () = chargér ),

where the charge is defined as in [11, p. 242].

3. The S- and A-canonical presentations

In this section we consider canonical presentations of elemenfs and in A,, by
the corresponding Coxeter generators. This presentatiof§,fés well known, see, for
example, [8, pp. 61-62]. The analogous presentatiod fdiollows from the properties of
the Mitsuhashi’s Coxeter generators.

3.1. ThesS, case
The S,,-canonical presentation is proved below, using $hprocedure, which is also
applied later.
Recall thats; = (i,i + 1), 1< i < n, are the Coxeter generators$f. For each K j <
n —1, define
Rf:{l, $j,8jSj—1y..., 88151} (6)

S N
and note thaRy, ..., R, _; € S,.

Theorem 3.1. Letw € S,,, then there exist unique elemenig € RJS., 1<j<n-—1,such
thatw = wy - - - w,—1. Thus, the presentation = ws - - - w,—1 IS unique.

Definition 3.2. Call the abovew = w1 - - - w,—1 in Theorem 3.1 theS-canonical presenta-
tion of w € §,,.

Proof of Theorem 3.1. If follows from the following S-procedure.

The S-procedure. The following is a simple procedure for calculating tliecanonical
presentation of a givem € S,,. It can also be used to prove Theorem 3.1, as well as various
other facts. Letr € S,,,0(r) =n,0 =[...,n,...], then apply Eq. (2) to ‘pulk to its place
ontherightos,sy41---sp—1=1[...,n]. This givesw,—1 = s,—1- - - s,+15-. Next, in

-1
oW, 1 =08Sy4+1"Sp—1=[...,n— 1,...,n],

pull » — 1 to its right place (second from right) by a similar prodsiaty1 - - - s,—2. This
yieldsw;,—2 = s,_2---s;. Continue! Finallyo = w1 - - - w;,—1.
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For example, leb = [2,5, 4, 1, 3], thenw,,—1 = w4 = s453s2; aw;l =[2,4,1,3,5],
thereforengl = s253. Check thatw; = 1 and, finally,w1 = s1. Thuse = w1---wgq =

(51) (1) (5352) (s45352).
The uniqueness in Theorem 3.1 follows &grdinality, since the number of canonical
words inS,, is at most

n—1
[ [cardRY) =1S.l.
j=1

This proves Theorem 3.1.0
3.2. A generating set fof,
We turn now toA,,. As was already mentioned in Section 1.3.1, we let
a:=s1541 (A<i<n-1).
The set
A={a; |1<i<n—-1}

generates the alternating group onetters A,,.1. This generating set and its following
properties appear in [13].

Proposition 3.3 [13, Proposition 2.5]The defining relations of are

@a;j)>=1 (li—jl>1; (qai1)®=1 (1<i<n-1);

ad=1 and a?=1 (1<i<n-1).
The general braid—relatio(mz,-ai+1)3 =1 implies the following braid-relations:

-1 -1

(D) azaraz =aj ~aza; -,
-1

(2) azay ~az = aiazas,

B) ajt1aiai+1 = ajaiv1aif i =2 (sinceai_l =aqa;).
Let
A= AU {arl),

whereA is defined as above. Clearly,is a generating set fot,, ;1.
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3.3. The canonical presentation
Foreach K j <n —1, define
Rf‘ = {l,aj,ajajfl, ...,ajuoaz,ajuoazal,ajo'oazail} @)
and note thaR#',..., R4 | C A,41.

Theorem 3.4. Letv € A,11, then there exist unique elemenise R;‘, 1<j<n-1,such
thatv =vy---v,_1.

Definition 3.5. Call the above) = v; - - - v,—1 in Theorem 3.4 thet-canonical presentation
of v.

Proof of Theorem 3.4. Letv =w1---w,, w; € Rf, be theS-canonical presentation of
Rewrite that presentation explicitly as

V= (Silsiz) T (sizr_lsizr)- (8)
Note thats;s; = (sis1)(s15;) = Cll-:llaj_]_ (denoteag = 1). Thus eachy; in (8) is replaced

by a correspondingl.{ll. It follows that for each X j <n, w; isreplaced by;_1 € R;.tl
andv = v1 - - - v,—1. This proves the existence of such a presentation.

A second proof of the existence follows from the followiAgprocedure.
TheA-procedure. lItis similar to theS-procedure. We describe its first step, which is also
its inductive step.

Leto € Ayy1, 0 =[...,n+1,...]. As in the S-procedure, pulk + 1 to the right:
OSpSpq1- Sy = [b1, b2, ...,n + 1]. The (§-) length ofs,s,41---s, isn —r + 1; ifitis
odd, usess;, sy 41+ -sps1 = [b2,b1,...,n+ 1]. Thus

g | Snsn=1e s if n —r +1iseven
n—1 $1SpSp—1---S-, ifn—r4+1isodd

Case r > 2. Thensys; = sjsy forall j > r 4+ 1, hence
V1= { (s150)(s180-1) - -+ (s18,) = ap—1---ar-1, ifn—r+1iseven
(5150 (5180) - - - (s18,) = ap—1---ar_1, ifn—r+1isodd
Case r=1.1fn—r+1=niseven,
Up—1=1p 5251 = (518n) - - - (5153) (5251) = An—1-- -aza{l,

and similarly ifn — r + 1 is odd.
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This completes the first step. In the next step, pulb thenth position (i.e., second
from the right), etc. This proves the existence of such a presentation - - - v,,—1.

Example. Let 0 =[3,5,4,2,1], son + 1 =5. Now os2s354 = [3,4, 2,1, 5] and since
525384 is of odd length £ 3), permute 3 and 4652535451 = [4,3,2,1,5]. Thusvz =
51545352 = (5151) (5154) (s153) (s182) = azazai. Similarly, vo = azail andv; = a1, hence
[3.5.4, 2, 1] = (a1)(azaj *)(azazaz).

Uniqueness$ollows by cardinality: note that forall ¥ j <n —1, |R;.‘| =j+2, hence
the number of such words - - -v,_1 in A,11 is at most

n—1

[1G+2 =140l

j=1

Since each element iA,, 1 does have such a presentation, this implies the uniqueness—
and the proof of Theorem 3.4 is completax

Givenw € §,, we say thak; occurs? times inw if it occurs ¢ times in the canonical
presentation ofv. Similarly, for the number of occurrencesaf or Ofal_l, inveA .
The number of occurrences of, as well as those af:2, are of particular importance in
this paper.

Lemma 3.6. Letw € §,,, then the number of occurrencesspin w equals the number of
occurrences of; in w1, Similarly forA,4+1 andalﬂ.

This is an obvious corollary of the following lemma.

Lemma3.7. Letw =s;; -~ -5, be the canonical presentation afe S,,. Then the canoni-
cal presentation ofv—1 is obtained from the presentation ! = si, -+ siy by commuting
moves only—without any braid moves.

Similarly forv, v € A,41.

Proof. We prove fors,,. The proof is by induction on. Writew = w1 ---wp—1, w; € st_
If w,—1=1thenw € S,_1 and the proof follows by induction.

Let w,—1 = sp_15n—2---sr Where 1< k <n — 1. Now eitherw,_» =1 orw,_» =
Sn—28p—3- -+ 8¢ forsome 1< £ < n—2, and similarly forw,,—3, w,—4, etc. The case,_» =
1is similar to the case,_» # 1 and is left to the reader, so let,_> # 1 and

-1 -1 -1 -1 -1
w = wn_lwn_z cee = (sk . .snil)(SK .. .sniz)u}n_sujn_4 e,

Notice thats,_1(s¢ - - - 5,-3) = (s¢ - - - 5,—3)s,—1, hence

1 -1 -1
W= (g Sn—2)(S¢ - - Sn—3) (511—15/1—2)wn_3wn_4 T
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Next, moves,_1s,—2 to the right, similarly, by commuting moves. Continue by similarly
pulling s,_3—in w;_ls—to the right, etc. It follows that by such commuting moves we
obtain

wil =w 71(511—1511—2 - 84)

for somed, wherew = s, - - -5, € §,_1, and is in canonical form. By induction, transform
w ~* to its canonical form by commuting moves—and the proof is complete.
4. Thelength statistics

The canonical presentations of the previous sections allow us to introdude #rel
A-lengths.

Definition 4.1 (The length statistigs

(1) Let w € S, with w =, ---s;, its S-canonical presentation, then ifslength is
Ls(w)=r.

(2) Letv e A1 With v = afll .- af (e; = £1) its A-canonical presentation, then its
lengthisé s (v) =r.

For examplef(a1) = 1 andég(a1) = €s(s152) = 2.

Remark 4.2. An analogue of Fact 2.1 holds: All irreducible expressions afA,_1 are
of length? 4 (v). This fact will not be used in the paper.

Definition 4.3. (1) Let w € S,. The number of times thaty occurs in theS-canonical
presentation ofv is denoted by dglw).

(2) Letv € A,,_1. The number of times thactitl occurs in theA-canonical presentation
of v is denoted by dal(v).

For example, del(s1s2s153) = 2 and del (a5 taza1azaza;t)) = 3.

A combinatorial characterization of de{dels) is given in Section 7.

Relations between deblnd theS- andA-lengths ofv € A,,41 are given by the following
proposition.
Proposition 4.4. Letw € A, 11; then

La(w) = Ls(w) — dels(w).

Moreover, let

S
W=Sjy - Sip, =W Wy, W €RY, ()]
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be itsS-canonical presentation and

w=at--a =vi-v,_1, vieRlA, (10)

a5 Jt
its A-canonical presentation. Then

4 = {Es(w,-H) if s1 does not occur inv; 41, (11)

ls(wir1) —1 if s1 occurs inw;41.

Proof. As in the proof of Theorem 3.4, the proof easily follows from (8) by replasjng
by (sis1)(s1s;). O

The S-lengths¢s(w;+1) and theA-lengthsé 4 (v;) in (11) can be calculated directly
fromw = [b1, ..., b,+1] as follows.

Proposition 4.5. Let w € S,41 as above. For eacR < j < n, let T;(w) denote the set
of indicesi such thati < j andw =1[..., j,...,i,...] (i.e. w™(@i) > w1(})); denote
tj(w) = |T;(w)|. Keeping the notations of Propositidi, we have
(1) s(w;) =tj+1(w). Moreover,T;11(w) is the full set{1,..., j} (i.e. tj41(w) = j) if

and only ifsy occurs inw;.
(2) €4(vr) equals|Tx(w)|, provided thatTy (w) is not the full sef1, ...,k — 1}, and it

equals| T (w)| — 1 otherwise.
Proof. By an easy induction on, prove that

(ts(w), ..., Es(wn)) = (r2w), ..., thr1(w)).
This follows since
[b1,....bnsn+ Lspsp—1-- sy =[b1,....br—1,n+1,by, ..., byl

Here are the details: Writeé = w1 ---w,, letc =w1---w,—1, S00 =[d1, ..., d,, n +1].
If w, =1, the claim follows by induction. Let, = s,s,—1---s, for somer > 1. Then
w=ow, =[d1,...,dr—1,n+1,d,,...dy]. Thust,;1(w) =n —r + 1= Ls(w,). Also,
for2< j <n,t;j(w)=t;(c0), and the proof of part (1) follows by induction. Part (2) now
follows from (11). O
5. f-pairsof statistics

5.1. The covering map

Theorems 3.1 and 3.4 allow us to introduce the following definition.
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Definition 5.1. Define f : A, +1 — S, as follows:
f(a1) =f(aIl) =s1 and f(a)=s;, 2<i<n—1

Now extendf : R;‘ — RJS via

flajaj_1---ag) =sjsj—1---st, flaj---a1) = f(a.,' .. 'afl) =5 s1.
Finally, letv € A, 41, v =v1---v,_1 itS UniqueA-canonical presentation, then
f) = f)--- fvp-1),
which is clearly theS-canonical presentation gf(v).

Notice that forv € A,,11, £4(v) = €s(f (v)). We therefore say that the pair of the length
statistics(¢s, £4) is an f-pair. More generally, we have

Definition 5.2. Let mg be a statistics on the symmetric groups amg a statistics on
the alternating groups. We say th@is, m,4) is an f-pair (of statistics) if for any: and
VE Apt1, ma(v) =ms(f(v)).
Examples off -pairs are given in Proposition 5.4.
Proposition 5.3. For everyr € A, 11
Desy () = Ds(f (x)).

Proof. Itis left to the reader. O

It follows that the descent statistics afepairs. By Definition 4.3(dels, dely) is an
f-pair. We summarize:

Proposition 5.4. The following pairs (€s,£4), (des,desy), (majs, maj,), (rmaj, ,
rmajAM) and (dels, dely) are f-pairs.

5.2. The ‘del statistics
The following basic properties of deplay an important role in this paper.

Proposition 5.5. (1) For eachw € S, , | f ~(w)| = 2dels ),
(2) For eachw € S,, andv € A, 41,

dels(w) =dels(w™) and dels(v) =dels(v™1). (12)
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Proof. Part (1) follows since each occurrencesgfcan be replaced by an occurrence of
eithera; or al‘l. Part (2) follows from Lemma 3.6.0

We have the following general proposition.

Proposition 5.6. Let (mg, m 4) be an f-pair of statistics, then for alt

Z qu(v)tdeIA(v) — Z qu(w)(Zt)deIS(w).

veEA, 41 weS,

Proof. SinceA, ;1= Uwes,, f~(w), a disjoint union, we have:

Z qu(v)tdeIA(v) — Z Z qu(v)tdeIA(v)

vEA, 41 weSy ve f~1(w)
— Z Z qms(f(v))tdek(f(v)) — Z Z q'ns(U))tdek(W)
weSn ve f~1(w) weSh ve f~(w)
— Z 2de|s(w)qms(w)tdels(w)' O
weSy,

A refinement of Proposition 5.6 is given in Proposition 5.10.

Proposition 5.7. With the above notations, we have

(1) Z q@s(c)tdek(a) = (1+qt)(1+q +q2t) - (1+C] 4. —i—qn_lt).

oeSy,

@ ) g™ = (14 2g0) (14 g +29%) - (L+ g+ +q" 2+ 29" ).

WEA11+1

Proof. (1) The proof of part (1) is similar to the proof of Corollary 1.3.10 in [17]. Let
w; € Rf, then def(w;) =1if w; =s;...s1 and= 0 otherwise. Lew € S, and letw =
w1 - - - w,_1 be itsS-canonical presentation, then gdeb) = delg(w1) + - - - + dels(w,_1)
andls(w) =Ls(w1) + - - + £s(wy—1). Thus

n—1
Z qfs(w)tdelg(w) — 1_[< Z qes(wj)tdelg(wj)).
weSs, Jj=1 ijR}S
The proof now follows since

D gt 14 g4 g? g2 g

RS
w_,eRJ.

(2) By Proposition 5.6, part (2) follows from part (1)
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5.3. Connection with the Stirling numbers

Recall that(n, k) is the number of permutations K} with exactlyk cycles, 1< k < n:
c(n, k) arethe sign-less Stirling numbers of the first kihet wg(n, £) denote the number
of S-canonical words it$, with £ appearances af. Similarly, letw 4 (n + 1, £) denote the
number ofA-canonical words im,, 1 with ¢ appearances (aﬁtl.

We prove

Proposition 5.8. Let0 < ¢ <n — 1, then

D Y wsm O =@ +DE+2) -t +n—1),
£>0

hencews(n, £) =c(n, £+ 1);
2) ZwA(n, O =2+ +2) - (2t +n—1),
€0
hencews(n +1,0) =2% . c(n, £+ 1).
Proof. Substitute; = 1 in Proposition 5.7 and, in part (1), apply Proposition 1.3.4 of [17],

which states that

n

Zc(n,k)xk =x(x+DEx+2)--(x+n—-1. O
k=0

Further connections with the Stirling numbeare given below (Propositions 5.11, 5.12,
and 7.10) and in [14].

5.4. A multivariate refinement

Definition 5.9. Letw € S, w = w1 - - - w,,—1 its S-canonical presentation and lelj <
n — 1. Denotee ; (w) = 1if s1 occurs inw;, and = 0 otherwise also denote

esa(w)

Es(w) = (es1(w), ..., €5, 1(w)) and 5 = fESa-100),

n—1

Similarly forv=v1---v,_1 € Ap41: €,;,(v)=1 if afl occurs inv;, and= 0 otherwise,

and defing 4 (w) similarly. Clearly, de§(w) =3, €, ;(w) and dehk(v) =3 €, ; (v).
Proposition 5.6 admits the following generalization.
Proposition 5.10. Let (mg, m4) be an f-pair of statistics then for alln,

n—1 n—1
(v)
Z qu(v) l_lt;Av./ v — Z qms(w) H(Zt.j)és’f(w).
j=1

VEA, 11 weS, j=1
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Proof. It is a slight generalization of the proof of Proposition 5.6—and is left to the
reader. O

We end this section with another two multivariate generalizations, which will not be
used in the rest of the paper. Proposition 5.7 generalizes as follows.

Proposition 5.11. Let¢g, £4 be the length statisticshen

n—1
@O > gSOTep ™ =A+am)(A+q+4q%2) - (A+qg+-+q" ).
wesS, j=1

n—1
e, . (v)
(2) 2 qﬁA(U) l_[ tjA,] =1+ 2qt1) . (1 +q+--+ qn—z + 2qniltnfl)'
j=1

UEA;H—J.

One can generalize Proposition 5.8 as follows. ket w1 ---w,_1 € S,, @ canonical
presentation, Withr&j (w) andég(w) as in Definition 5.9. Giveg = (e, ..., €,—1) with
all ¢; € {0, 1}, denotews(n, €) =cardw € S, | €s(w) = &}. Also denotde| = Zj €; and

t¥ =T1; ;. Note that

Z ws(n, &) = we(n, £) =cn, L+ 1).
lel=¢t

Similarly, introduce the analogous notations fof; 1.
Proposition 5.8 now generalizes as follows.

Proposition 5.12. With the above notations

D D wsm =+ trtn—1),

2) ZwA(n, Ot =21 +1) - (2ty_1+n—1).

6. Themajor index and the delent number

Recall the definitions of rmgj and rmaj, _, from Sections 1.2 and 1.3. In this section,
we prove

Theorem 6.1.
) Z qes(a)tdels(a) — Z qrmajsn(cr)tdels(o)
oeS, oeS,

:(1+qt)(1+q+q2t)-"(1+q+---+q”_1t)_
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2) Z qu(w)tde|A(w): Z qrmajAM(w)tdemw)

WEAp1+1 weA,+1

:(l+2qt)(1_|_q+2q2t)...(1+q+,,,+qn72+2qn71t)‘

Note that Theorem 6.1 follows from our Main Theorem 9.1. However, the proof of
Theorem 9.1 applies the machinery reqdifer the proof of Theorem 6.1 combined with
additional, more elaborate arguments—therefore we prove the latter here.

The proof of Theorem 6.1 follows from therfanas below. Recall that the descent set—
hence also the major indices and rmaj —are defined for any sequence of integers,
not necessarily distinct. Heredenotes the number of letters in the sequence.

Lemma6.2. Letxy, ..., x, andy be integers, not necessarily distinct, such that y for
1<i < n.Letu bethen-tupleu = [x1, ..., x,], and let

vi =[x1, ..., %1, Y, Xi, ..., Xul, 1<ig<n+1

(thusvy =1[y, x1, ..., x,] andv,4+1 = [x1, ..., x,, ¥]). Then

n+1

1) quals(vi) = gMals@) (1_|_ g+ +q”) and (13)
i=1

n . .

quajs(v,) — gMals () (q +g%+--- +4"); (14)
i=1
n+1 ) .

@ > g™ =M (14 44 +4") and (15)
i=1
n+1 .
qumalsn+1(”i) _ qrmajsn (u) (1+ qg+--+ qnfl). (16)
i=2

The proofof Lemma 6.2 is by a rather straigfdgrward induction, hence is omitted.

Lemma 6.3. Recall that RS = {1,s,,...,8p8y—1---51} € Sy+1 and letw € S, (so
w € S;41, wherew(n + 1) =n + 1). Then

Z qmajs(wr) — qmalg(w) (1+q 4. +q”),

IER§
and

Z qrmajswl(wr) _ qrmajsn (w)(1+ g+--+ q”),

TERS
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Proof. Write w € S,, asw = [w(1), ..., w(n)] (=u in Lemma 6.2). Similarly writew €
Sy C Spt1asw =[w(d),...,wn),n+1] (=v,41,iINnLemma 6.2, where =n+1). Thus

ws, = [w(l), ooon+1, w(n)] (=vp),
wspsy—1=[w(@),....n+Lwr -1, wn)] (=v,-1),
etc., and the proof follows by the previous lemman

Remark 6.4. Let RS = RS — {s,5,_1---51) C Sy41, and leto € S,. It follows from
Eq. (16) that

Z qrmajsn+1(or) _ qrmajgn (o) (1 +qg+---+ qnfl).

TeRS
Lemma 6.5. For everyo € S,

Z qrmajsn+1(<7f)tde|s(af) zqrmalgn (a)tdels(o)(1+q 4. +qn—l+ tqn).

TERS
Proof. By Lemma 6.3
{rmajs, ., (o7) | T € Ry } = {rmajs, (o) +i | 0<i <n}.

Let n = s;5,-1---s1 and note that rm@j (o)+n= rmajsm(on) (this is the statement
“rmajSM(vl) =rmajs (u) + n” in the proof of Lemma 6.2).

Lett € R,f. If T # n then del(o1) = dels(o) since botho andot have the same
number of occurrences of. By a similar reason, delon) = dels(o) + 1. Thus

{rmajs, ,(oT)dels(o7) | T € Ry}
= {rmaj;, ,(o7)dels(o7) |t € Ry, T #n} U {rmaj; _, (on)dels(on)}

= {(rmajs, (o) +i)dels(0) |0<i <n —1} U {(rmajs, (o) +n)(dels(c) + 1)}
(disjoint unions with no repetitions in the sets) which translates to

Z qrmajswl(ar)tdels(or) zqrmajsn (o)tdels(cr)(l_'_q NI +qn71+ tqn). O

TERY

Proposition 6.6. For all n,

3 g SO _ (1t 1q) (1 g+ 107) - (L g+ " P 1",

o€eS,
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Proof. Follows from Lemma 6.5 by induction on since

Sii=J St O

TERY

Proof of Theorem 6.1. Part (1) clearly follows by comgring part (1) of Proposition 5.7
with Proposition 6.6.
Part (2) follows from part (1) by Proposition 5.60

7. Additional propertiesof the delent number
We show first that dgkw) is the number of left-to-right minima ab.

Definition 7.1. Let w € S,,. Call 2< j < n L.t.r.min (left-to-right minima) ofw if w(i) >
w(j) forall 1<i < .
Define Dek(w) as the set of |.t.r.min oif:

Delg(w) :={2<j<n|Vi<j w(i)>w()}.
For example, letw =[3,2,7, 8, 4, 6, 1, 5], then{2, 7} are the |.t.r.min.

Proposition 7.2. Letw € S, thendels(w) equals the number of |.t..min af . Since by
Lemma3.6 dek(w) = dels(w™1), this also equals the number of |.t..mimwf In particu-
lar,

|Dels(w)| = dels(w) = dels (w™?).

Proof. By induction onn > 2. First, So = {1, s1} ands; = [2, 1] has one l.t.r.min. Pro-
ceed now with the inductive step. Let = w1 ---w,—1 be the canonical presentation
ofw,letoc =wy---w,—2 (SO0 € S,,_1 C §,;) and assume that the assertion is truesfor
Write 0~1 = [b1, ..., by_1,1]. If wy_1 =1, the proof is given by the induction hypoth-
esis. Otherwisewn‘_l1 = SkSk+1- - Sp—1 for some 1< k < n — 1. Denotingspg ,—11 =
SkSk+1- - -Sn—1, we see that ™t = sy ,—1j0 ~1. Comparings ~ with w™t = sy p—10 71,
we see that

(1) the (position containing) in o 1 is replaced inv =1 by k;
(2) eachjino™1 k< j<n-—1,isreplaced by + 1 inw=1;
(3) eachj, 1< j <k —1,isunchanged.

Thuso 1 =1[b1,...,by_1,n], w Lt =[c1,...,cn_1,k], and the tuplesbs, ..., by_1)
and(cy, ..., c,—1) are order-isomorphic. This implies thakif- 1 theno —! andw—! have
the same left-to-right minima. Lét= 1, thenw ! hasi = n as an additional left-to-right
minima, and the proof is complete O
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Remark 7.3. The above proof implies a bit more: Note that the above dasel is
equivalent to both e Dels(w™!) and toes ,_1(w) = 1, wherees ; (w) are given by
Definition 5.9. By induction om:, the above proof implies that Dghw=1) = {i + 1|
€s.i(w) =1}. Let now D C [n — 1] and letr € §,. The conditionD = Dels(z~1) im-
pliesthatD = {i + 1| €5, (r) = 1}; this determinegs(;r) uniquely, and hence determines
a unique value? := & if D £ H thent<> # ¢4 . We shall apply this observation in
the proof of Theorem 9.1.

The definition of I.t.r.min can be extended as follows.

Definition 7.4. Let w = [b1, ..., b,] € S,. Then 3< j < nis an a.l.t.r.min (almost-left-to-
right-minima) if there is at most onky smaller tharb; and left ofb;: card1 <i < j |
b; <b;} < 1.

Forw € A, 41 define Dej (w) to be the set of a.l.t.r.min ab.

Remark 7.5. (1) Without the restriction X j in Definition 7.4,; € {1, 2} is an a.l.t.r.min.

(2) If b; =1 andb; = 2 are interchanged iw = [by, ..., by,], this does not change the
set of a.l.t.r.min indices. Also, 1 andb; are interchanged this would not change the set
of a.l.t.r.min indices. Thusyw andws1 have the same a.l.t.r.min asitself.

Proposition 7.6. Let w € S,,, then the number of occurrencessgfin (the canonical pre-
sentation oj w equals the number of a.l.t.rmin of 1. Lemma3.6implies that this is also
the number of a.l.t.r.min ab.

Proof. By induction onn. This is easily verified forn = 2, and we proceed with the in-
ductive step.

Letw = wj ---wy,—1 be the canonical presentation®f and denote = w1 - - - w,—2,
so thatw™ = w; % 0~% If w,_1 = 1 we are done by induction. Otherwise, by thie
procedurew,—1 = s,—1---sgx wherek > 2 andx € {1, s1}.

Write w1 = xsk“'snflcffl = XS[k,nfl]Gfl. By Remark 7-515[k,n71]0—71 and
xs[k.n—10 L have the same number of a.l.t.r.min. Therefore it suffices to show:

1. If k > 3 theno—* has equal number of a.l.t.r.min &g ,_1j0 L.
2. Ifk=2,512,,—1j0 " has one more a.l.t.r.min thar .

Leto™ =[b1,...,by_1,n], thensy ,—1j0 "t =[c1, ..., cn—1,k], and as in the proof of
Proposition 7.2(b1, ..., b,—1) and(ca, ..., c,—1) are order isomorphic. It > 3, the last
position (withk) is not an a.l.t.r.min, while ik = 2, it is an additional a.l.t.r.min, and this
implies the proof. O

By essentially the same argument, we have

Proposition 7.7. Let v € A,4+1, thendely (v) equals the number of a.l.t.rmin of L. In
particular, |Dely (v)| = dels (v) = dely (v1).
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Proof. Again, by induction om. This is easily verified for + 1 = 3, so proceed with the
inductive step.

Letv =v1---v,—1 be theA-canonical presentation of and denote = vy - - - v,,—2, SO
thatv =1 = vnjllcrfl. If v,—1 = 1 we are done by induction. Otherwise, by theprocedure,
Up—1 = x5, --- Sy Wherek > 2 andx, y € {1, s1}; moreoverk = 2 if and only if eithera;
orag* oceurs inv,_1.

Write v = ysg - -s,x0 ™1 = yspxo L and proceed as in the proof of Proposi-
tion 7.6, applying Remark7.5(2).0

Remark 7.8. Givenw € S,,, one can define a.a.l.t.r.min, a.a.a.l.t.r.min, etc., then one can

prove the corresponding propositions, whick analogues of Proposition 7.6. For exam-
ple, we have

Definition 7.9. Let w = [b1,...,b,] € S,. Then 1< i < n is an a.a.l.t.r.min (almost-
almost-left-to-right-minima) if cardl < j <i | b; < b;} <2 and

(1) i #1, 2,3 (which is Definition 7.9.1 of a.a.l.t.r.min), or
(2) b; #1, 2,3 (which is Definition 7.9.2 of a.a.l.t.r.min).

One can then prove that, with either definition of a.a.l.t.r.min, the number of a.a.l.t.r.min
of w € S, equals the number of occurrencessgfin w. Similarly for the occurrences of
the others;’s.

Similarly to Proposition 5.8, we defines(n, £, k) to be the number of-canonical
words inS,, with ¢ occurrences of;, (definewa (n + 1, £, k) similarly), and we have

Proposition 7.10. Letk < n — 1, then

n—k
Zws(n,e,k)t‘f =k! (kt + 1) (kt +2)---(kt +n —k),
£=0
hencews(n, £, k) = k'k‘c(n —k + 1, ¢+ 1), and similarly forwa (n + 1, £, k).

Proof. Itis omitted. O

8. Lemmas on shuffles

In this section we prove lemmas which will be used in the next section to prove the main
theorem.

8.1. Equi-distribution on shuffles

The following result follows from Theorem 2.6.
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Proposition 8.1. Leti € [n — 1], and letr € S,, with supg) C [i]. Then

3 gmaermmal () qzs(nm—fzs(n):[’;]
q

Dess(r~Hcii} Desr—hcfi}

Proof. Letp, =1L, n)(2,n—1)---€ S, andp; :=(1,i)(2,i —1)--- € S;. By (4),

Z qrmajsn (rr)—rmajg, (7) _ Z qmalg(p,,nrp,,)—majs(p,-np,-)
Dess (r~1) i} Dess (r—1) i}
— Z qmajS(panpnpnrpn)*majs(piﬂpi) — Z qmais(pnnpnf)*mais(ﬂiﬂpi)'
Dess (r~1) i} Dess (F 1) Cin—i}

The last equality follows from (5).

Note that supfp.p,) C [n — i + 1, n] and verify thaw, ™, 0, puva—i = pimp;, where
v—ii=QA,n—i+1)2,n—i+2)--- Indeed, letj <i, thenv,_;(j)=j+n—1i, hence
onVn—i()=pn(j+n—i)=n—((+n—i)+1=i—j+1=p;(j). Similarly, if k <i,
aISOUn‘fip,, (k) = pi (k). This implies the above equality. Now, obviously suppc [ —i]
and maj (1) = 0. Thus by Garsia—Gessel's Theorem (Theorem 2.6) (taking 1 and
2 = pp7pp) the right-hand side is equal to

S gmAs e )ma el o) ["} '
i
q

Dess(F~1)C{n—i}

The equality
T gt o Y gttt [ﬂ
Desr—1)cii} Des(r—1)c{i} 4

is an immediate consequence of Fact 2.5, combined with (3).

Note 8.2. Let r be an{i}-shuffle and let supgr) < [i] as above. If(1) # 1, necessarily
r(1)=i+1, hence alsar(1) =i + 1. It follows that

mr(D) e{m@),i+1}.

The next lemma requires some preparations.

Fix1<i <n-—1anddefing;:S, - S,—1 as follows: Leto =[ay, ...,a,] € S,, then
gi(0) =laj,...,a),_,]is defined as follows: delet; =i + 1, leavea; = a; unchanged
if ax <i, and changer; =a; — 1 if a; > i + 2. Denoteg; (o) = ¢’. For example, let
0 =1[5236,1,4] andi = 2, thengz(c) =0’ =[4,2,5,1, 3]. Let supggr) C [i], then
gi(m) =m:7n’ = 7. Moreover, sincer only permutes L. ., i, the following basic property
of g; is rather obvious, since su@p) < [i].
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Fact 8.3. (1) Leto € S, thenn(g;o) = gi (7o), namely(ro) =n'c’ =mo’.
(2) gi is a bijection between thg}-shuffles € §,, satisfyingr(1) =i + 1, and all the
{i}-shuffles’ € S,,_1:

gi{reS.|Des(r™) c{i}. r()=i+1} — {r' € Su—1 | Dess(r~ 1) S {i}}
is a bijection.

Lemma 8.4. Letr be an{i}-shuffle, letl <i <n — 2, supfr) < [i] and assume(l) =
i +1. Also letg;(w) =" andg; (r) =r'.

(1) If r(2) =i + 2 thenrmajg, (r) =rmajs , (7'r").
(2) If r(2) = 1thenrmajs (wr) =n —1+rmajg _ (7'r').

Proof. By Note 8.2, 7r = [i + 1,a2,...,a,]; then, applyingg;, we haver'r’ =
[a), ..., a,], and it is easy to check that for allQk < n — 1, ax > ar41 if and only
if @, > ap, 4. Thus, for 2< k <n — 1, k € Degr) if and only if k — 1 € Degn'r’);
note also that such contributesn — k = (n — 1) — (k — 1) to both rmaj (zr) and to
rmajs , ('r’).

QD) Ifr(2)=i+2thenax =nr(2) =i+ 2, hence ¥ Degqxr), and the descents afr
occur only for (some) Z k < n — 1, and the above argument implies the proof.

(2)If r(2) =1thenax =nr(2) =n(1) <i+1, hence 1is adescentef, contributing
n —1to rmaj, (wr), and again, the above argument completes the praof.

Lemma 8.5. With the notations of Propositiad.1,

1) Z qrmajsn (r)—rmajs, () _ g |:n - 1] ;
q

Degs (r~hy<{i}
ar(D)=i+1

) ) 1
2 rmajg, (rr)—rmajs, () _ n .
@ Y g 1,

Degs(r~hci}
ar()=n(1)

Proof. By induction onn —i. Forn — i =1, the{n — 1}-shuffles ard1,...,j — 1, n,
Jreeon=1=[1,... nlsp_18p—2---5;, 1< j <n—1.Thusthe summationin (2) is over
r)E Rf_l — {$y—18,—2---s1} and Eq. (2) follows from Remark 6.4 (with— 1 replacing
n). Now,

sum(l) + sum2) = Z qrmajsn (er)—rmajs, _, (m)
Des(r—1)c{n—1}

Hence, by Proposition 8.1,

suml) + sum?2) = [n " 1} ,
q
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SO

_ n _ n—1 oaa
Suml)_[n—l}q |:n—2:|q_q ’

which verifies (1) in that case.
Let nown —i > 2 and assume the lemma holds for 1 —i.
(1) Since De& 1) C {i} andr(1) =i + 1, eitherr(2) =i + 2 (thennr(2) =i + 2), or
r(2) =1 (thenrr(2) = 7(1)). Thus, the sum in (1) equals sin2) =i + 2] +sunir(2) =
1]. Apply g; to the permutations in these sums, and apply Lemma 8.4(1) and Fact 8.3; then,
by induction o,

H 1IN i / . — 2
sunr@=i+2]= Y = ¢Mar fmals#”):ql[”. } :
q

i
Desg (r'~hc{i}
7' (D)=i+1

Similarly, by Lemma 8.4(2) and Fact 8.3,

_ f 1N : ’ n—2
sunfr@) =1]= Y g TMEE o q"_l[i _ J '
Dess(r'~H<(i) q
7' (D)=r'(1)

Adding the last two sums, we conclude:

i ) —rmai [n—2 _4n—-2
Y gy 1o2] L gefr 2
iy l—lq

Degs (r~hy<{i}
ar(D)=i+1

—o([ 7 e )=

(2) is an immediate consequence of Proposition 8.1 and part (1), since
Gl =]
S I =q . . O
i, i—1 q i1
We have an analogous lemma for length.
Lemma 8.6. With the notation of Propositio8.1,

Tn—1
6 > 4“(’”)65(”)=q’[n. } ;
q

Dess(r~1)c{i}
ar(D)=i+1
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-1
2 esrr—tseo) _ |1 .
) > q -1,

Degs(r~hci}
ar()=n(1)

Proof. The caser —i = 0 is obvious (the sum in (1) is empty while in (2)= 1), so
assume < n — 1. Recall that in general,s (o) equals the number igyo) of inversions
ofo.

We prove (1) first, so letr(1) =i + 1. As in Lemma 8.4, write

ar=[i+1a...,a,] and g;(nr)=n'r' = [a'z, ...,a;l],

and compare their inversions. Clearly- 1 contributes inversions to ing(xr). Also, as
in the proof of Lemma 8.4, there is a bijection between the inversions afagng ., a, }
and those amon@, ..., a,}. Thus ing (rr) =i +invs(z'r’). Also, since supfr) C [i],

invs(r) = invs(xr’). Induction, Fact 8.3 and Proposition 8.1 imply the proof of (1). Now,
by Proposition 8.1, (1) implies the proof of (2) 0

8.2. Canonical presentation of shuffles

Observation 8.7. Let1 < i < n. Every{i}-shuffle has a unique canonical presentation of
the formw; w;11- - w,—1, wheref(w;) > £(w;4+1) forall j >i.

Proof. Apply the S-procedure that follows Theorem 3.1. Note that after pulling — 1,
..., I +1to the right, ar{i }-shuffle is transformed into the identity permutatiom

Leté = (1, ..., €—1), then denotef =771 -1 1.

Coroallary 8.8. Recall Definitions.9. For an {i }-shufflew,

1 ifw@=i+1,
delS(w)_{O, otherwise

and therefore

jés(w) _ delsw) _ ) 1is ifw(l)=i+1,
l 1, otherwise
Proof. Write w = wjw;+1---w,—1 (the canonical presentation) withy(w;) > --- >
ls(wp—1), thenes ;(w) =0 for j > i. Thus de}(w) is either 1 or 0, and is 1 exactly
whenw; =s; ---s1, inwhichcasew(l) =i +1. O

Remark 8.9. Let r,w € S,, r an {i}-shuffle and supfx) C [i]. Then the correspond-
ing canonical presentations are:= wi---w;, r = w;j4+1---w,—1, hence alsorr =
w1 - - - w,—1 IS canonical presentation. In particulag(rr) = €s(w) + €s(r).
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We generalize: LeB = {i1, i2} and letw € S, be aB-shuffle. Therw shuffles the three
subset$l, ...,i1}, {i1+1,...,i2},and{i>+1,..., n}. Clearly,w has a unique presentation
as a producty = t1t2 Wherets € S, shuffles{l, ..., i} with {i>+1,...,n}, andzy € S;,
shuffles{l, ..., i1} with {i1 + 1, ..., i2}. By Observation 8.771 = w;; wj,41--- w;,—1 and
T2 = Wiy Wip+1 - -~ Wy—1, Where eachw; € st_ Thus

w = wil e wig—lwiz ceeWh—1
is the S-canonical presentation af,

dels(w) = dels(ry) + dels(ry) and 5@ = (o6 2ok,

This easily generalizes to an arbitraBy= {i1, ..., it} € {1, ..., n — 1}, which proves the
following proposition.

Proposition 8.10. Let B = {i1, ..., i} € {1,...,n — 1} and leti;41 := n. Every B-shuffle
7 € S, has a unique presentation

T=T11-Tg

wherez; is an{i;}-shuffle inS;,, (for 1< j <k). Moreover,

k
dels(m) = Y dels(r;) and &0 = b0 debm,

j=1

9. Themain theorem

Recall the definitions of thd -descent set Dgsand theA-descent number dggDefi-
nition 1.5). LetB C [n — 1] andx € S,,. Recall from Fact 2.4 that Deér—1) C B if and
only if 7 is a B-shuffle.

The following is our main theorem, which we now prove.

Theorem 9.1. For every subset®; C [n — 1] and D2 C [n — 1],

1) Z qrmajsn (m) — Z g™ and

Dess(r~HCDy Des(r~HCDy
Dels(xr~H< D, ] Dels(xr~H <D, ]

2) Z qrmajA;1+1(U) _ Z qu(o)'

4| DesieHeDy A, |DesieHeDy
{"E nl DeIA<a—1>gDz} 7€+t pely (0 HCD,

[nES,,

[ITES,,

An immediate consequence of Theorem 9.1 is



706 A. Regey, Y. Roichman / Advances in Applied Mathematics 33 (2004) 676—709

Corollary 9.2.
rmaj, (7) deg(r~1) delg(r—! ) des(r~Y) delg(r1
(1) Z a, a3 S (7 )q3 ls(r™) _ Z qls(ﬂ)q2 S (7 )q3 ls (7 ).
TeS, TES,
Majy, .1 (@) des (1) dely(o—2 ¢ desi(c—Y) dely (o1
) Z gy et Si(o )q3 @™ _ Z qlA(‘T)qz St (o >q3 (@™
o€EA, o€A,

9.1. Alemma

Lemma 9.3. Leti € [n], and leto be a permutation ir§,,, such thasupgo) C [i]. Then

_ i -1 Tn—1
1) Z gts @ Es@N) — gls(0) Es(@) ([" i| Y g [” . i| ) and
i—1], i,

Desr—1)c{i}

) Z qrmajsn (or)Es(or) _ qrmajsl_ (0),E5(0) . ([ﬂ - 1i| thig [n — 1i| )
i—1 q 1 q

Desr—1)c{i}
Proof. By Definition 5.9 and Remark 8.9,

(E5(Or) _ E5(0)+Es(r)

and by Corollary 8.8,

tgs(r) _ ti, fr()=i+1,
1, otherwise

Noting thatr(1) =i + 1 if and only if or(1) =i + 1, and recalling thatr (1) € {o (1),
i + 1}, we obtain

son _ 15Dy, ifor()=i+1,
5@ if or(l) =0 ().

Combining this with Lemmas 8.5 and 8.6 gives the desired result. For example, concerning
length,

Z qﬂs(ar)tés(ar) — Z qés(ar)té_s(ar) + Z qés(ar)té_s(ar)
Desr—hc(i} Desr—hci} Desr—h<i}
or(l)=c(1) or(D)=i+1

— gl5(©@)E50) <|:” - } +t,~q"[n - 1i| )
i—1], i1

This proves part (1). A similar argument proves (21
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9.2. Proof of the main theorem

Proof of Theorem 9.1(1). By the principle of inclusion and exclusion, we may replace

Dels(x~1) € D, by Dels(x~1) = D, in both sides of Theorem 9.1(1). By Remark 7.3,

{m €8, | Delg(r~1) = Dy} (i.e. the setD,) determines the unique valu@z := s,
Hence, Theorem 9.1(1) is equivatdo the following statement:

For every subseB C [n — 1]

3 g ™als, () s () 3 gts) et
{reS, |Des(r~HCB) {meS, | Des(r~HCB)

This statement is proved by induction on the cardinalitypoif |B| = 1 thenB = {i}
for somei € [n — 1], and Theorem 9.1(1) is given by Lemma 9.3 (with= 1). As-
sume that the theorem holds for eveByC [n — 1] of cardinality less thark. Let
B ={i1,...,ix} € [n — 1] and denoteB := {i1, ..., ix_1}. By Proposition 810, for every
7 € S, with Dess(7 1) C B thereis a unique presentation

T =Tk,

wheres is a B-shuffle inS;, andt is an{ix}-shuffle inS,. Moreover, Des(z~ 1) C B if
and only ifr has such a presentation. Hence

3 Malls, (1) s ()
{r€S, |Des (-~ B)

= Z qrmajsn (ﬁtk)tgs(ﬁfk)

{7 €S, eS, | Dess (7 1) B, Dess (z; M) Clix}}

— Z Z qrmajsn (ﬁfk)té_s(ﬁ'fk).

(€S, |Dess(1)SBY (rreS, | Des(r, H<(ix})

By Lemma 9.3(2), this equals

Z qrmajsl_kil(ﬁ)tgs(ﬁ) ' n—1 . qi n—1
_ ir—1 A ik ’

{7es;, | Desy(z"HB) ? 1
which, by induction, equals

o _1 Tn—1
2. q‘“’”t““’*([f1 } +tikq’[". D
lk—lq ik 1

(7€S;, |Des(T~1)CB)
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Now by a similar argument, this time applying Lemma 9.3(1),

Z qes(ﬂ)tés(ﬂ)

{7eS, | Dess(x~1)C B}

A -1 fn—-1
- e (P2 )
lk—lq ik 14

{weS;, | Dess(m 1) CB)
and the proof follows. O

Proof of Theorem 9.1(2). By the principle of inclusion and exclusion and Remark 7.3,
Theorem 9.1(2) is equivalent to the following statement:

For every subseB C [n — 1],

Z qrmajAHl(U)téA(a) _ Z qZA((r)IEA((r).
{o€A,11|Desy(c~HCB} {o€A,+1]1Desi(c 1)< B}

By Proposition 5.10, this part ieduced to Theorem 9.1(1).0

Appendix A
In this section we present another pair of statistics, leading to a different analogue of

MacMahon’s Theorem.
For 1< i < n, define a mag; : S, — S, as follows:

P SiTT, if i € Dess(771),
T, ifi ¢ DeSg(n_l).

For every permutation € S, define
() = ts(hi(m)), and maj(r) := majs(hi (1)).

Thenii andﬁaji are equi-distributed over the even permutationS,itfi.e. over the alter-
nating groupA,,).

Theorem A.1. Letn > 2, then

n

Y ghm = 3 g Z[[(+ g+ 44D,

TEA, TEA, i=3
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Proof. By definition,
Imageh;) = {m € S, | i ¢ Dess(r ™)} = {r €5, | 7~ Lis an([n]\ {i})-shufflg].
Also, for eacho € Imageh;), hlfl(o) = {0, s;0}, and exactly one element in the set

{o,sio} is even.
Thus, by Garsia—Gessel's Theorem (Theorem 2.6),

Z qma}(ﬂ) — Z qmaJ(n) = [27 1,..., 1]5,

TEAR (reS, | 7~ tis an([n]\{i})-shuffle
n
=[[@+q+ - +4).
i=3

and similarly foré;. O
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