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Abstract

Let An ⊆ Sn denote the alternating and the symmetric groups on 1, . . . , n. MacMahon’s theo-
rem [P.A. MacMahon, Combinatory Analysis I–II, Cambridge Univ. Press, 1916], about the
distribution of the length and the major indices inSn, has received far reaching refinements a
generalizations, by Foata [Proc. Amer. Math. Soc. 19 (1968) 236], Carlitz [Trans. Amer. Math. So
76 (1954) 332; Amer. Math. Monthly 82 (1975) 51], Foata-Schützenberger [Math. Nachr. 83 (
143], Garsia–Gessel [Adv. Math. 31 (1979) 288] and followers. Our main goal is to find anal
statistics and identities for the alternating groupAn. A new statistics forSn, the delent number, is
introduced. This new statistics is involved with newSn identities, refining some of the results
[D. Foata, M.P. Schützenberger, Math. Nachr. 83 (1978) 143; A.M. Garsia, I. Gessel, Adv.
31 (1979) 288]. By a certain covering mapf :An+1 → Sn, suchSn identities are ‘lifted’ toAn+1,
yielding the correspondingAn+1 equi-distribution identities.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. General outline

One of the most active branches in enumerative combinatorics is the study ofpermuta-
tion statistics. Let Sn be the symmetric group on 1, . . . , n. One is interested in the refine
count of permutations according to (non-negative, integer valued) combinatorial param
ters. For example, the number of inversions in a permutation—namely itslength—is such
a parameter. Another parameter is MacMahon’smajor index, which is defined via thede-
scentset of a permutation—see below.

Two parameters that have the same generating function are said to beequi-distributed.
Indeed, MacMahon [12] proved the remarkable fact that the inversions and the m
index statistics are equi-distributed onSn. MacMahon’s classical theorem [12] has receiv
far reaching refinements and generalizations, including: multivariate refinements which
imply equi-distribution on certain subsets of permutations (done by Carlitz [3,4], Foata
Schützenberger [6] and Garsia–Gessel [7]); analogues for other combinatorial o
cf. [5,10,18]; generalizations to other classical Weyl groups, cf. [1,2,15].

Let An ⊆ Sn denote the alternating group on 1, . . . , n. Easy examples show that th
above statistics fail to be equi-distributed when restricted toAn. Our main goal is to
find statistics onAn which are natural analogues of the aboveSn statistics and are equ
distributed onAn, yielding analogous identities for their generating functions. This goal
achieved by proving further refinements of the aboveSn-identities.

It is well known that the above statistics onSn may be defined via the Coxeter generat
{(i, i+1) | 1 � i � n−1} of Sn. Mitsuhashi [13] pointed out at a certain set of generator
the alternating groupAn, which play a role similar to that of the above Coxeter genera
of Sn, see Section 1.3. We use these generators to define statistics which are analo
the above length and descent statistics.

TheSn-Coxeter generators allow one to introduce the classical canonical presenta
the elements ofSn, see Section 3.1. Similarly, the above Mitsuhashi’s ‘Coxeter’ gener
allow us to introduce the corresponding canonical presentation of the elements ofAn+1,
see Section 3.3. We remark that usually,Sn is viewed as a double cover ofAn. However, the
above canonical presentations enable us to introduce a covering mapf from the alternating
groupAn+1 ontoSn, and thusAn+1 can be viewed as a covering ofSn.

A new statistic, thedelent number, plays a crucial role in the paper, and allows us to ‘l
Sn identities toAn+1. The delent number onSn may be defined as follows: if the transpo
tion (1,2) appearsr times in the canonical presentation ofσ ∈ Sn then the delent numbe
of σ , delS(σ ), is r. An analogous statistic is defined forAn+1, see Definition 4.3. We giv
direct combinatorial characterizations of this statistic (see Propositions 1.7 and 1.8)
show that this statistic is involved in newSn equi-distribution identities, refining some
the results of Foata–Schützenberger [6] and of Garsia–Gessel [7]. Identities involvi
delent number are then ‘lifted’ by the covering mapf , yielding An+1 equi-distribution
identities, see Theorems 6.1, 9.1 and Corollary 9.2.

In Appendix A we present different statistics onAn, and a consequent different analog
of MacMahon’s equi-distribution theorem. These statistics are compatible with the
point of view ofSn as a double cover ofAn.
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The above setting and results are connected with enumeration of other combinatoria
objects, such as permutations avoiding patterns, leading toq-analogues of the classicalSn

statistics and of the Bell and Stirling numbers. A detailed study of theseq-analogues is
given in [14] (a few of these results appear in Section 5.3).

The paper is organized as follows: The rest of this section surveys briefly the cla
background and lists our main results. Background and notations are given in de
Section 2, while theA-canonical presentation is analyzed in Section 3. In Section 4
study the length statistics, and in Section 5 we discuss the relations between variousS- and
A-statistics, relations given by the mapf :An+1 → Sn. In Section 6 we study the ordina
and the reverse major indices, together with the delent statistics. Additional prop
of the delent numbers are given in Section 7. In Section 8 we prove some lemmas
shuffles—lemmas that are needed for the proof of the main theorem. The main th
(Theorem 9.1) and its proof are given in Section 9. Finally, Appendix A presents
statistics.

1.2. ClassicalSn-statistics

Recall that the Coxeter generatorsS := {(i, i + 1) | 1 � i � n − 1} of Sn give rise to
various combinatorial statistics, like thelengthstatistic, etc. As we show later, most
theseSn statistics haveAn analogues, therefore we add “S-” and “A-” to the titles of the
corresponding statistics.

• TheS-length: For π ∈ Sn let �S(π) be the standard length ofπ with respect to thes
Coxeter generators, see [9].

• TheS-descent: Given a permutationπ in the symmetric groupSn, theS-descent se
of π is defined by

DesS(π) := {
i | �S(π) > �S(πsi)

} = {
i | π(i) > π(i + 1)

}
.

• Thedescent numberof π , desS(π), is defined by desS(π) := |DesS(π)|.
• Themajor index, majS(π) is

majS(π) :=
∑

i∈DesS(π)

i.

The correspondingreverse major indexdoes depend onn, and is denoted

rmajSn
(π) :=

∑
i∈DesS(π)

(n − i).

• The reverse major index rmajS (π) is implicit in [6].

n
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These statistics are involved in many combinatorial identities. First, MacMahon p
the following equi-distribution of the length and the major indices [12]:∑

σ∈Sn

q�S(σ ) =
∑
σ∈Sn

qmajS(σ ).

Foata [5] gave a bijective proof of MacMahon’s theorem, then Foata and Schü
berger [6] applied this bijection to refine MacMahon’s identity by analyzing bivaria
distributions. Garsia and Gessel [7] extended the analysis to multivariate distribution
tensions of MacMahon’s identity to hyperoctahedral groups appear in [1].

Combining Theorems 1 and 2 of [6] one deduces the following identity:

Theorem 1.1. For any subsetD1 ⊆ {1, . . . , n − 1},∑
{π∈Sn |DesS(π−1)⊆D1}

qmajSn
(π) =

∑
{π∈Sn |DesS(π−1)⊆D1}

q rmajSn
(π)

=
∑

{π∈Sn |DesS(π−1)⊆D1}
q�S(π).

A bivariate equi-distribution follows.

Corollary 1.2.∑
π∈Sn

q
majSn

(π)

1 q
desS(π−1)
2 =

∑
π∈Sn

q
rmajSn

(π)

1 q
desS(π−1)
2 =

∑
π∈Sn

q
�S(π)
1 q

desS(π−1)
2 .

As already mentioned, one of the main goals in this paper is to find analogous sta
and identities for the alternating groupAn. In the process, we first prove some furth
refinements of some of the above identities forSn, refinements involving the newdelent
statistic, see Theorems 6.1.1 and 9.1.1.

1.3. Main results

Here is a summary of the main results of this paper.

1.3.1. An-statistics
Following Mitsuhashi [13], we let

ai := s1si+1 = (1,2)(i + 1, i + 2) (1 � i � n − 1).

Thusai = a−1
i if i �= 1, while a2

1 = a−1
1 . The setA := {ai | 1 � i � n − 1} generates

the alternating group onn + 1 lettersAn+1 (see, e.g., [13]). It is the above exception
property ofa1 among the elements ofA—which naturally leads to the ‘delent’ statist
(Definition 1.5 below), both forSn and forAn+1. This new statistic enables us to dedu
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new refinements of the MacMahon-type identities forSn, and for each such an identity
derive the analogous identity forAn+1.

The canonical presentation inSn by the Coxeter generators is well known, and is d
cussed in Section 3, see Theorem 3.1. With the above generating setA of An+1 we also
have canonical presentations for the elements ofAn+1, as follows. For each 1� j � n− 1,
define

RA
j = {

1, aj , ajaj−1, . . . , aj · · ·a2, aj · · ·a2a1, aj · · ·a2a
−1
1

}
, (1)

whereRA
1 = {1}.

Theorem 1.3 (see Theorem 3.4).Let v ∈ An+1, then there exist unique elementsvj ∈ RA
j ,

1 � j � n − 1, such thatv = v1 · · ·vn−1, and this presentation is unique. Call that prese
tationv = v1 · · ·vn−1 theA-canonical presentation ofv.

The A-canonical presentation allows us to introduce theA-length of an element in
An+1.

Definition 1.4. Let v ∈ An+1 with v = a
ε1
i1

· · ·aεr

ir
(εi = ±1) its A-canonical presentation

then itsA-length is�A(v) = r.

A combinatorial interpretation of theA-length in terms of inversions is given below, s
Proposition 4.5.

TheA-descent statistic is defined using the above generating setA.

Definition 1.5. (1) Thealternating-descent(i.e. theA-descent) set ofσ ∈ An+1 is defined
by

DesA(σ) := {
1 � i � n − 1 | �A(σ) � �A(σai)

}
,

and theA-descent numberof σ ∈ An+1 is defined by

desA(σ) := ∣∣DesA(σ)
∣∣

(note that the strict relation> in the definition of anS-descent in Section 1.2 is replaced
theA-analogue by�).

(2) Define thealternating reverse major indexof σ ∈ An+1 as

rmajAn+1
(σ ) :=

∑
i∈DesA(σ)

(n − i).

1.3.2. The delent number
New statistics, for the alternating group, as well as for the symmetric group, are

duced.
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(1) Let w ∈ Sn. TheS-delent number ofw is the number of times thats1 = (1,2) occurs
in theS-canonical presentation ofw, and is denoted by delS(w).

(2) Let v ∈ An+1. TheA-delent number ofv is the number of times thata±1
1 occur in the

A-canonical presentation ofv, and is denoted by delA(v).

A combinatorial interpretation of the delent numbers, delS and delA, is given in Sec-
tion 7. Letw ∈ Sn, thenj is a l.t.r.min (left-to-right minimum) ofw if w(i) > w(j) for all
1 � i < j .

Proposition 1.7 (see Proposition 7.7). For every permutationw ∈ Sn, let

DelS(w) = {1 < i � n | i is a l.t.r.min};

then

delS(w) = ∣∣DelS(w)
∣∣.

Notice that in the above definition of DelS(w), the first l.t.r.min (i.e.i = 1) does not
count.

Similar to l.t.r.min, we define analmost left to right minimum(a.l.t.r.min) ofw ∈ An+1

as follows:

• j is an a.l.t.r.min ofw if w(i) < w(j) for at most onej less thani. Define DelA(w) as
the set of thealmost left-to-right minimaof w. Then delA(v) = |DelA(w)|, i.e. is the
number of a.l.t.r.min ofw, see Proposition 7.7.

We also have

Proposition 1.8 (see Proposition 4.4). Letw ∈ An+1, then

delS(w) = �S(w) − �A(w).

1.3.3. Equi-distribution identities
The covering mapf :An+1 → Sn, presented in Definition 5.1, allows us to transl

Sn-identities, which involve the delent statistic, into correspondingAn+1-identities. This
strategy is used in the proofs of part (2) of the following theorems.

Part (1) of the following theorem is a new generalization of MacMahon’s classical
tity, and part (2) is itsA-analogue.
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Theorem 1.9 (see Theorem 6.1).

(1)
∑
σ∈Sn

q�S(σ )tdelS(σ ) =
∑
σ∈Sn

q rmajSn
(σ )tdelS(σ )

= (1+ qt)
(
1+ q + q2t

) · · · (1+ q + · · · + qn−1t
)
.

(2)
∑

w∈An+1

q�A(w)tdelA(w) =
∑

w∈An+1

q
rmajAn+1

(w)
tdelA(w)

= (1+ 2qt)
(
1+ q + 2q2t

) · · · (1+ q + · · · + qn−2 + 2qn−1t
)
.

Recall the standard notation[m] = {1, . . . ,m}. The main theorem in this paper streng
ens Theorem 1.1, and also gives itsA-analogue. This is

Theorem 1.10 (see Theorem 9.1). For every subsetsD1 ⊆ [n − 1] andD2 ⊆ [n],

(1)
∑

{
π∈Sn

∣∣∣∣ DesS(π−1)⊆D1
DelS(π−1)⊆D2

} q rmajSn
(π) =

∑
{
π∈Sn

∣∣∣∣ DS(π−1)⊆D1
DelS(π−1)⊆D2

} q�S(π),

(2)
∑

{
σ∈An+1

∣∣∣∣ DesA(σ−1)⊆D1
DelA(σ−1)⊆D2

} q
rmajAn+1

(σ ) =
∑

{
σ∈An+1

∣∣∣∣ DesA(σ−1)⊆D1
DelA(σ−1)⊆D2

}q�A(σ ).

This shows that the delent set and the descent set play a similar role in these ide
TheA-analogue of Corollary 1.2 follows. It is obtained as a special case of Coro

9.2(2) (by substitutingq3 = 1).

Corollary 1.11 (see Corollary 9.2).

∑
σ∈An+1

q
rmajAn+1

(σ )

1 q
desA(σ−1)
2 =

∑
σ∈An+1

q
�A(σ )
1 q

desA(σ−1)
2 .

Note that, while theS-identity holds for majSn
as well as for rmajSn

, it is not possible
to replace rmajAn+1

by majAn+1
in theA-analogue.

2. Preliminaries

2.1. Notation

For an integera, we let [a] := {1,2, . . . , a} (where [0] := ∅). Let n1, . . . , nr be
non-negative integers such that

∑r
i=1 ni = n. Recall that theq-multinomial coefficien
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[
n

n1,...,nr

]
q

is defined by

[0]!q := 1, [n]!q := [n − 1]!q
(
1+ q + · · · + qn−1) (n � 1),[

n

n1 . . .nr

]
q

:= [n]!q
[n1]!q · · · [nr ]!q .

Representσ ∈ Sn by ‘its second row’σ = [σ(1), . . . , σ (n)]. We also use the cycle
notation; in particular, we definesi := (i, i + 1), the transposition ofi andi + 1. Thus[

. . . , σ (r), σ (r + 1), . . .
]
sr = [

. . . , σ (r + 1), σ (r), . . .
]

(2)

(i.e. onlyσ(r), σ (r + 1) switch places).

2.2. The Coxeter system of the symmetric group

The symmetric group onn letters, denoted bySn, is generated by the set of adjace
transpositionsS := {(i, i + 1) | 1 � i < n}. The defining relations ofS are the Moore–
Coxeter relations:

(sisi+1)
3 = 1 (1� i < n); (sisj )

2 = 1 (|i − j | > 1); s2
i = 1 (∀i).

This set of generators is called theCoxeter systemof Sn.
Forπ ∈ Sn let �S(π) be the standard length ofπ with respect toS (i.e. the length of the

canonical presentation ofπ , see Section 3). Letw be a word on the lettersS. A commuting
moveonw switches the positions of successive letterssisj where|i −j | > 1. A braid move
replacessisi+1si by si+1sisi+1 or vice versa. The following is a well-known fact, but w
shall not use it in this paper.

Fact 2.1. All irreducible expressions ofπ ∈ Sn are of length�S(π). For every pair of
irreducible words ofπ ∈ Sn, it is possible to move from one to another along commu
and braid moves.

2.3. Permutation statistics

There are various statistics on the symmetric groupsSn, like thedescentnumber and
themajor index. We introduce and study analogue statistics on the alternating groupAn.
To distinguish, we add ‘sub-S’ and ‘sub-A’ accordingly.

Given a permutationπ = [π(1), . . . , π(n)] in the symmetric groupSn, we say that a
pair (i, j), 1� i < j � n, is aninversionof π if π(i) > π(j). The set of inversions ofπ is
denoted by InvS(π) and its cardinality is denoted by invS(π). Also 1� i < n is adescent
of π if π(i) > π(i + 1). For the definitions of the descent set DesS(π), the descent numbe
desS(π), the major index majS(π) and the reverse major index rmajS (π), see Section 1.2
n
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Note thati is a descent ofπ if and only if �S(πsi) < �S(π). Thus (as already mentione
in Section 1.2), the descent set, and consequently the other statistics, have an a
interpretation in terms of the Coxeter system. In particular, for everyπ ∈ Sn,

invS(π) = �S(π). (3)

The following well-known identity is due to MacMahon [12]. See, e.g., [5] and
Corollaries 1.3.10 and 4.5.9].

Theorem 2.2.∑
π∈Sn

q invS(π) =
∑
π∈Sn

qmajS(π) = [n]!q

= (1+ q)
(
1+ q + q2) · · ·(1+ q + · · · + qn−2 + qn−1).

The following theorem is a reformulation of [6, Theorem 1].

Theorem 2.3. For everyB ⊆ [n − 1],∑
{π∈Sn |DesS(π−1)=B}

q invS(π) =
∑

{π∈Sn |DesS(π−1)=B}
qmajS(π).

2.3.1. Shuffles
Let 1 � i � n − 1, thenw ∈ Sn is an {i}-shuffle if it shuffles{1, . . . , i} with {i +

1, . . . , n}; in other words, if 1� a < b � i then w−1(a) < w−1(b), and similarly, if
i + 1� k < � � n, thenw−1(k) < w−1(�).

Example. Let n = 4 andB = {2}, then{1,2} and{3,4} are being shuffled, hence

[1,2,3,4], [1,3,2,4], [1,3,4,2], [3,1,2,4], [3,1,4,2], [3,4,1,2]

are all the{2}-shuffles.

More generally, letB = {i1, . . . , ik} ⊆ [n − 1], wherei1 < · · · < ik. Set i0 := 0 and
ik+1 := n. A B-shuffleis a permutation which shuffles{1, . . . , i1}, {i1+1, . . . , i2}, . . . Thus
π ∈ Sn is a B-shuffle if it satisfies: ifij � a < b � ij+1 for some 0� j � k, thenπ =
[. . . , a, . . . , b, . . .] (i.e.a is left of b in π ). Notice that in particular there can be no desc
for π−1 at anya, ij < a < ij+1, hence DesS(π−1) ⊆ B. The opposite is also clear, henc

Fact 2.4. For everyB ⊆ [n − 1],{
π ∈ Sn | DesS

(
π−1) ⊆ B

} = {π ∈ Sn | π is aB-shuffle}.
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For a permutationπ ∈ Sn, let

supp(π) := {
1 � i � n | π(i) �= i

}
be thesupportof π .

Let k ∈ [n − 1], and letπ1,π2 be permutations inSn, such that supp(π1) ⊆ [k] and
supp(π2) ⊆ [k + 1, n]. A permutationσ ∈ Sn is called a shuffle ofπ1 andπ2 if σ = π1π2r

for some{k}-shuffler. Equivalently,σ is a shuffle ofπ1 andπ2 if and only if the letters of
[k] appear inσ in the same order as they appear inπ1 and the letters of[k + 1, n] appear in
σ in the same order as they appear inπ2. The following is a special case of [17, Propositi
1.3.17].

Fact 2.5. Let k ∈ [n], and letπ1,π2 be permutations inSn such thatsupp(π1) ⊆ [k] and
supp(π2) ⊆ [k + 1, n]. Then

∑
Des(r−1)⊆{k}

q invS(π1π2r)−invS(π1)−invS(π2) =
[
n

k

]
q

.

The following analogue is a special case of a well-known theorem of Garsia and G
It should be noted that, while Garsia–Gessel’s Theorem is stated in terms of sequen
reformulation is in terms of permutations.

Theorem 2.6 [7, Theorem 3.1]. Letk ∈ [n− 1], and letπ1,π2 be permutations inSn, such
thatsupp(π1) ⊆ [k] andsupp(π2) ⊆ [k+1, n]. Letνk := (1, k+1)(2, k+2) · · ·(n−k,n) ∈
Sn. Then ∑

DesS(r−1)⊆{k}
qmajS(π1π2r)−majS(π1)−majS(ν−1

k π2νk) =
[
n

k

]
q

.

In order to translate Theorem 2.6 into Garsia–Gessel’s terminology, note thatπ1π2r

are shuffles ofπ1 andπ2 (as mentioned above); thus the sum runs over all shuffles oπ1
andπ2. Also, majS(ν−1

k π2νk) is the major index ofπ2, when it is considered as a sequen
on the letters[k + 1, n].

Remark 2.7. In general, it is possible to replace a statement involving maj by a corresp
ing statement involving rmaj, using the automorphismσ → σ̂ which reverses the order o
the letters and replace each letteri by n + 1− i:

σ̂ := ρnσρn whereρn := (1, n)(2, n − 1) · · ·(�n/2	, �(n + 3)/2	).
Then

rmajSn
(σ ) = majS(σ̂ ), invS(σ ) = invS(σ̂ ), (4)

andσ is an{i}-shuffle if and only ifσ̂ is an{n − i}-shuffle, i.e.
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(
σ−1) ⊆ {i} ⇐⇒ DesS

(
σ̂−1) ⊆ {n − i}. (5)

Note that by (4) and [16, Claim 0.4], for everyπ ∈ Sn,

rmajSn
(π) = charge

(
π−1),

where the charge is defined as in [11, p. 242].

3. The S- and A-canonical presentations

In this section we consider canonical presentations of elements inSn and in An by
the corresponding Coxeter generators. This presentation forSn is well known, see, for
example, [8, pp. 61–62]. The analogous presentation forAn follows from the properties o
the Mitsuhashi’s Coxeter generators.

3.1. TheSn case

The Sn-canonical presentation is proved below, using theS-procedure, which is als
applied later.

Recall thatsi = (i, i +1), 1� i < n, are the Coxeter generators ofSn. For each 1� j �
n − 1, define

RS
j = {1, sj , sj sj−1, . . . , sj sj−1 · · · s1} (6)

and note thatRS
1 , . . . ,RS

n−1 ⊆ Sn.

Theorem 3.1. Let w ∈ Sn, then there exist unique elementswj ∈ RS
j , 1 � j � n − 1, such

thatw = w1 · · ·wn−1. Thus, the presentationw = w1 · · ·wn−1 is unique.

Definition 3.2. Call the abovew = w1 · · ·wn−1 in Theorem 3.1 theS-canonical presenta
tion of w ∈ Sn.

Proof of Theorem 3.1. If follows from the followingS-procedure.

TheS-procedure. The following is a simple procedure for calculating theS-canonical
presentation of a givenw ∈ Sn. It can also be used to prove Theorem 3.1, as well as va
other facts. Letσ ∈ Sn, σ(r) = n, σ = [. . . , n, . . .], then apply Eq. (2) to ‘pulln to its place
on the right’:σsrsr+1 · · · sn−1 = [. . . , n]. This giveswn−1 = sn−1 · · · sr+1sr . Next, in

σw−1
n−1 = σsrsr+1 · · · sn−1 = [. . . , n − 1, . . . , n],

pull n − 1 to its right place (second from right) by a similar productst st+1 · · · sn−2. This
yieldswn−2 = sn−2 · · · st . Continue! Finally,σ = w1 · · ·wn−1.
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For example, letσ = [2,5,4,1,3], thenwn−1 = w4 = s4s3s2; σw−1
4 = [2,4,1,3,5],

thereforew−1
3 = s2s3. Check thatw2 = 1 and, finally,w1 = s1. Thusσ = w1 · · ·w4 =

(s1)(1)(s3s2)(s4s3s2).
The uniqueness in Theorem 3.1 follows bycardinality, since the number of canonic

words inSn is at most

n−1∏
j=1

card
(
RS

j

) = |Sn|.

This proves Theorem 3.1.�
3.2. A generating set forAn

We turn now toAn. As was already mentioned in Section 1.3.1, we let

ai := s1si+1 (1 � i � n − 1).

The set

A := {ai | 1� i � n − 1}

generates the alternating group onn lettersAn+1. This generating set and its followin
properties appear in [13].

Proposition 3.3 [13, Proposition 2.5]. The defining relations ofA are

(aiaj )
2 = 1 (|i − j | > 1); (aiai+1)

3 = 1 (1� i < n − 1);
a3

1 = 1 and a2
i = 1 (1 < i � n − 1).

The general braid-relation(aiai+1)
3 = 1 implies the following braid-relations:

(1) a2a1a2 = a−1
1 a2a

−1
1 ,

(2) a2a
−1
1 a2 = a1a2a1,

(3) ai+1aiai+1 = aiai+1ai if i � 2 (sincea−1
i = ai).

Let

A := A ∪ {
a−1

1

}
,

whereA is defined as above. Clearly,A is a generating set forAn+1.
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3.3. The canonical presentation

For each 1� j � n − 1, define

RA
j = {

1, aj , ajaj−1, . . . , aj · · ·a2, aj · · ·a2a1, aj · · ·a2a
−1
1

}
(7)

and note thatRA
1 , . . . ,RA

n−1 ⊆ An+1.

Theorem 3.4. Letv ∈ An+1, then there exist unique elementsvj ∈ RA
j , 1 � j � n−1, such

thatv = v1 · · ·vn−1.

Definition 3.5. Call the abovev = v1 · · ·vn−1 in Theorem 3.4 theA-canonical presentatio
of v.

Proof of Theorem 3.4. Let v = w1 · · ·wn, wj ∈ RS
j , be theS-canonical presentation ofv.

Rewrite that presentation explicitly as

v = (si1si2) · · · (si2r−1si2r
). (8)

Note thatsisj = (sis1)(s1sj ) = a−1
i−1aj−1 (denotea0 = 1). Thus eachsi in (8) is replaced

by a correspondinga±1
i−1. It follows that for each 2� j � n, wj is replaced byvj−1 ∈ RA

j−1
andv = v1 · · ·vn−1. This proves the existence of such a presentation.

A second proof of the existence follows from the followingA-procedure.

TheA-procedure. It is similar to theS-procedure. We describe its first step, which is a
its inductive step.

Let σ ∈ An+1, σ = [. . . , n + 1, . . .]. As in theS-procedure, pulln + 1 to the right:
σsrsr+1 · · · sn = [b1, b2, . . . , n + 1]. The (S-) length ofsr sr+1 · · · sn is n − r + 1; if it is
odd, useσsrsr+1 · · · sns1 = [b2, b1, . . . , n + 1]. Thus

vn−1 =
{

snsn−1 · · · sr , if n − r + 1 is even;
s1snsn−1 · · · sr , if n − r + 1 is odd.

Case r � 2. Thens1sj = sj s1 for all j � r + 1, hence

vn−1 =
{

(s1sn)(s1sn−1) · · · (s1sr ) = an−1 · · ·ar−1, if n − r + 1 is even;
(s1s1)(s1sn) · · · (s1sr ) = an−1 · · ·ar−1, if n − r + 1 is odd.

Case r = 1. If n − r + 1 = n is even,

vn−1 = sn · · · s2s1 = (s1sn) · · · (s1s3)(s2s1) = an−1 · · ·a2a
−1
1 ,

and similarly ifn − r + 1 is odd.
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This completes the first step. In the next step, pulln to thenth position (i.e., secon
from the right), etc. This proves the existence of such a presentationv = v1 · · ·vn−1.

Example. Let σ = [3,5,4,2,1], so n + 1 = 5. Now σs2s3s4 = [3,4,2,1,5] and since
s2s3s4 is of odd length (= 3), permute 3 and 4:σs2s3s4s1 = [4,3,2,1,5]. Thusv3 =
s1s4s3s2 = (s1s1)(s1s4)(s1s3)(s1s2) = a3a2a1. Similarly, v2 = a2a

−1
1 andv1 = a1, hence

[3,5,4,2,1] = (a1)(a2a
−1
1 )(a3a2a1).

Uniquenessfollows by cardinality: note that for all 1� j � n − 1, |RA
j | = j + 2, hence

the number of such wordsv1 · · ·vn−1 in An+1 is at most

n−1∏
j=1

(j + 2) = |An+1|.

Since each element inAn+1 does have such a presentation, this implies the uniquene
and the proof of Theorem 3.4 is complete.�

Givenw ∈ Sn, we say thatsi occurs� times inw if it occurs� times in the canonica
presentation ofw. Similarly, for the number of occurrences ofai , or of a−1

1 , in v ∈ An+1.
The number of occurrences ofs1, as well as those ofa±1

1 , are of particular importance i
this paper.

Lemma 3.6. Let w ∈ Sn, then the number of occurrences ofsi in w equals the number o
occurrences ofsi in w−1. Similarly forAn+1 anda±1

1 .

This is an obvious corollary of the following lemma.

Lemma 3.7. Let w = si1 · · · sip be the canonical presentation ofw ∈ Sn. Then the canoni
cal presentation ofw−1 is obtained from the presentationw−1 = sip · · · si1 by commuting
moves only—without any braid moves.

Similarly forv, v−1 ∈ An+1.

Proof. We prove forSn. The proof is by induction onn. Writew = w1 · · ·wn−1 , wj ∈ RS
j .

If wn−1 = 1 thenw ∈ Sn−1 and the proof follows by induction.
Let wn−1 = sn−1sn−2 · · · sk where 1� k � n − 1. Now eitherwn−2 = 1 or wn−2 =

sn−2sn−3 · · · s� for some 1� � � n−2, and similarly forwn−3, wn−4, etc. The casewn−2 =
1 is similar to the casewn−2 �= 1 and is left to the reader, so letwn−2 �= 1 and

w−1 = w−1
n−1w

−1
n−2 · · · = (sk · · · sn−1)(s� · · · sn−2)w

−1
n−3w

−1
n−4 · · · .

Notice thatsn−1(s� · · · sn−3) = (s� · · · sn−3)sn−1, hence

w−1 = (sk · · · sn−2)(s� · · · sn−3)(sn−1sn−2)w
−1 w−1 · · · .
n−3 n−4
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Next, movesn−1sn−2 to the right, similarly, by commuting moves. Continue by simila
pulling sn−3—in w−1

n−3—to the right, etc. It follows that by such commuting moves
obtain

w−1 = w −1(sn−1sn−2 · · · sd )

for somed , wherew = sjr · · · sj1 ∈ Sn−1, and is in canonical form. By induction, transfor
w −1 to its canonical form by commuting moves—and the proof is complete.�

4. The length statistics

The canonical presentations of the previous sections allow us to introduce theS- and
A-lengths.

Definition 4.1 (The length statistics).

(1) Let w ∈ Sn with w = si1 · · · sir its S-canonical presentation, then itsS-length is
�S(w) = r.

(2) Let v ∈ An+1 with v = a
ε1
i1

· · ·aεr

ir
(εi = ±1) its A-canonical presentation, then itsA-

length is�A(v) = r.

For example,�A(a1) = 1 and�S(a1) = �S(s1s2) = 2.

Remark 4.2. An analogue of Fact 2.1 holds: All irreducible expressions ofv ∈ An−1 are
of length�A(v). This fact will not be used in the paper.

Definition 4.3. (1) Let w ∈ Sn. The number of times thats1 occurs in theS-canonical
presentation ofw is denoted by delS(w).

(2) Letv ∈ An−1. The number of times thata±1
1 occurs in theA-canonical presentatio

of v is denoted by delA(v).

For example, delS(s1s2s1s3) = 2 and delA(a−1
1 a2a1a3a2a

−1
1 )) = 3.

A combinatorial characterization of delS (delA) is given in Section 7.
Relations between delS and theS- andA-lengths ofv ∈ An+1 are given by the following

proposition.

Proposition 4.4. Letw ∈ An+1; then

�A(w) = �S(w) − delS(w).

Moreover, let

w = si1 · · · si2r
= w1 · · ·wn, wi ∈ RS, (9)
i
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be itsS-canonical presentation and

w = a
ε1
j1

· · ·aεt

jt
= v1 · · ·vn−1, vi ∈ RA

i , (10)

its A-canonical presentation. Then

�A(vi) =
{

�S(wi+1) if s1 does not occur inwi+1,

�S(wi+1) − 1 if s1 occurs inwi+1.
(11)

Proof. As in the proof of Theorem 3.4, the proof easily follows from (8) by replacingsisj
by (sis1)(s1sj ). �

The S-lengths�S(wi+1) and theA-lengths�A(vi) in (11) can be calculated direct
from w = [b1, . . . , bn+1] as follows.

Proposition 4.5. Let w ∈ Sn+1 as above. For each2 � j � n, let Tj (w) denote the se
of indicesi such thati < j and w = [. . . , j, . . . , i, . . .] (i.e. w−1(i) > w−1(j)); denote
tj (w) = |Tj (w)|. Keeping the notations of Proposition4.4, we have:

(1) �S(wj ) = tj+1(w). Moreover,Tj+1(w) is the full set{1, . . . , j } (i.e. tj+1(w) = j ) if
and only ifs1 occurs inwj .

(2) �A(vk) equals|Tk(w)|, provided thatTk(w) is not the full set{1, . . . , k − 1}, and it
equals|Tk(w)| − 1 otherwise.

Proof. By an easy induction onn, prove that(
�S(w1), . . . , �S(wn)

) = (
t2(w), . . . , tn+1(w)

)
.

This follows since

[b1, . . . , bn, n + 1]snsn−1 · · · sr = [b1, . . . , br−1, n + 1, br, . . . , bn].

Here are the details: Writew = w1 · · ·wn, let σ = w1 · · ·wn−1, soσ = [d1, . . . , dn, n + 1].
If wn = 1, the claim follows by induction. Letwn = snsn−1 · · · sr for somer � 1. Then
w = σwn = [d1, . . . , dr−1, n + 1, dr, . . . dn]. Thustn+1(w) = n − r + 1 = �S(wn). Also,
for 2 � j � n, tj (w) = tj (σ ), and the proof of part (1) follows by induction. Part (2) no
follows from (11). �

5. f -pairs of statistics

5.1. The covering map

Theorems 3.1 and 3.4 allow us to introduce the following definition.
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Definition 5.1. Definef :An+1 → Sn as follows:

f (a1) = f
(
a−1

1

) = s1 and f (ai) = si , 2 � i � n − 1.

Now extendf :RA
j → RS

j via

f (ajaj−1 · · ·a�) = sj sj−1 · · · s�, f (aj · · ·a1) = f
(
aj · · ·a−1

1

) = sj · · · s1.

Finally, letv ∈ An+1, v = v1 · · ·vn−1 its uniqueA-canonical presentation, then

f (v) = f (v1) · · ·f (vn−1),

which is clearly theS-canonical presentation off (v).

Notice that forv ∈ An+1, �A(v) = �S(f (v)). We therefore say that the pair of the leng
statistics(�S, �A) is anf -pair. More generally, we have

Definition 5.2. Let mS be a statistics on the symmetric groups andmA a statistics on
the alternating groups. We say that(mS,mA) is anf -pair (of statistics) if for anyn and
v ∈ An+1, mA(v) = mS(f (v)).

Examples off -pairs are given in Proposition 5.4.

Proposition 5.3. For everyπ ∈ An+1

DesA(π) = DS

(
f (π)

)
.

Proof. It is left to the reader. �
It follows that the descent statistics aref -pairs. By Definition 4.3,(delS,delA) is an

f -pair. We summarize:

Proposition 5.4. The following pairs (�S, �A), (desS,desA), (majS,majA), (rmajSn
,

rmajAn+1
) and(delS,delA) are f -pairs.

5.2. The ‘del’ statistics

The following basic properties of delS play an important role in this paper.

Proposition 5.5. (1) For eachw ∈ Sn , |f −1(w)| = 2delS(w).
(2) For eachw ∈ Sn andv ∈ An+1,

delS(w) = delS
(
w−1) and delA(v) = delA

(
v−1). (12)



A. Regev, Y. Roichman / Advances in Applied Mathematics 33 (2004) 676–709 693

of

et
Proof. Part (1) follows since each occurrence ofs1 can be replaced by an occurrence
eithera1 or a−1

1 . Part (2) follows from Lemma 3.6.�
We have the following general proposition.

Proposition 5.6. Let (mS,mA) be anf -pair of statistics, then for alln∑
v∈An+1

qmA(v)tdelA(v) =
∑
w∈Sn

qmS(w)(2t)delS(w).

Proof. SinceAn+1 = ⋃
w∈Sn

f −1(w), a disjoint union, we have:∑
v∈An+1

qmA(v)tdelA(v) =
∑
w∈Sn

∑
v∈f −1(w)

qmA(v)tdelA(v)

=
∑
w∈Sn

∑
v∈f −1(w)

qmS(f (v))tdelS(f (v)) =
∑
w∈Sn

∑
v∈f−1(w)

qmS(w)tdelS(w)

=
∑
w∈Sn

2delS(w)qmS(w)tdelS(w). �

A refinement of Proposition 5.6 is given in Proposition 5.10.

Proposition 5.7. With the above notations, we have:

(1)
∑
σ∈Sn

q�S(σ )tdelS(σ ) = (1+ qt)
(
1+ q + q2t

) · · · (1+ q + · · · + qn−1t
)
.

(2)
∑

w∈An+1

q�A(w)tdelA(w) = (1+ 2qt)
(
1+ q + 2q2t

) · · · (1+ q + · · · + qn−2 + 2qn−1t
)
.

Proof. (1) The proof of part (1) is similar to the proof of Corollary 1.3.10 in [17]. L
wj ∈ RS

j , then delS(wj ) = 1 if wj = sj . . . s1 and= 0 otherwise. Letw ∈ Sn and letw =
w1 · · ·wn−1 be itsS-canonical presentation, then delS(w) = delS(w1) + · · · + delS(wn−1)

and�S(w) = �S(w1) + · · · + �S(wn−1). Thus

∑
w∈Sn

q�S(w)tdelS(w) =
n−1∏
j=1

( ∑
wj ∈RS

j

q�S(wj )tdelS(wj )

)
.

The proof now follows since∑
wj ∈RS

j

q�S(wj )tdelS(wj ) = 1+ q + q2 + · · · + qj−2 + qj−1t .

(2) By Proposition 5.6, part (2) follows from part (1).�
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5.3. Connection with the Stirling numbers

Recall thatc(n, k) is the number of permutations inSn with exactlyk cycles, 1� k � n:
c(n, k) arethe sign-less Stirling numbers of the first kind. Let wS(n, �) denote the numbe
of S-canonical words inSn with � appearances ofs1. Similarly, letwA(n+1, �) denote the
number ofA-canonical words inAn+1 with � appearances ofa±1

1 .
We prove

Proposition 5.8. Let 0 � � � n − 1, then

(1)
∑
��0

wS(n, �)t� = (t + 1)(t + 2) · · · (t + n − 1),

hencewS(n, �) = c(n, � + 1);

(2)
∑
��0

wA(n, �)t� = (2t + 1)(2t + 2) · · · (2t + n − 1),

hencewA(n + 1, �) = 2� · c(n, � + 1).

Proof. Substituteq = 1 in Proposition 5.7 and, in part (1), apply Proposition 1.3.4 of [1
which states that

n∑
k=0

c(n, k)xk = x(x + 1)(x + 2) · · · (x + n − 1). �

Further connections with the Stirling numbers are given below (Propositions 5.11, 5.1
and 7.10) and in [14].

5.4. A multivariate refinement

Definition 5.9. Let w ∈ Sn, w = w1 · · ·wn−1 its S-canonical presentation and let 1� j �
n − 1. DenoteεS,j (w) = 1 if s1 occurs inwj , and = 0 otherwise; also denote

ε̄S(w) = (
εS,1(w), . . . , εS,n−1(w)

)
and t ε̄S (w) = t

εS,1(w)

1 · · · tεS,n−1(w)

n−1 .

Similarly for v = v1 · · ·vn−1 ∈ An+1: εA,j (v) = 1 if a±1
1 occurs invj , and= 0 otherwise,

and definēεA(w) similarly. Clearly, delS(w) = ∑
j εS,j (w) and delA(v) = ∑

j εA,j (v).

Proposition 5.6 admits the following generalization.

Proposition 5.10. Let (mS,mA) be anf -pair of statistics; then for alln,

∑
qmA(v)

n−1∏
t
ε
A,j

(v)

j =
∑

qmS(w)
n−1∏

(2tj )
ε
S,j

(w)
.

v∈An+1 j=1 w∈Sn j=1
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Proof. It is a slight generalization of the proof of Proposition 5.6—and is left to
reader. �

We end this section with another two multivariate generalizations, which will no
used in the rest of the paper. Proposition 5.7 generalizes as follows.

Proposition 5.11. Let�S , �A be the length statistics; then

(1)
∑
w∈Sn

q�S(w)

n−1∏
j=1

(tj )
ε
S,j

(w) = (1+ qt1)
(
1+ q + q2t2

) · · · (1+ q + · · · + qn−1tn−1
)
.

(2)
∑

v∈An+1

q�A(v)

n−1∏
j=1

t
ε
A,j

(v)

j = (1+ 2qt1) · · ·(1+ q + · · · + qn−2 + 2qn−1tn−1
)
.

One can generalize Proposition 5.8 as follows. Letw = w1 · · ·wn−1 ∈ Sn, a canonica
presentation, withε

S,j
(w) andε

S
(w) as in Definition 5.9. Givenε = (ε1, . . . , εn−1) with

all εi ∈ {0,1}, denotewS(n, ε) = card{w ∈ Sn | εS(w) = ε}. Also denote|ε| = ∑
j εj and

tε = ∏
j t

εj

j . Note that ∑
|ε|=�

wS(n, ε) = w�(n, �) = c(n, � + 1).

Similarly, introduce the analogous notations forAn+1.
Proposition 5.8 now generalizes as follows.

Proposition 5.12. With the above notations:

(1)
∑

ε

wS(n, ε)tε = (t1 + 1) · · · (tn−1 + n − 1)′,

(2)
∑

ε

wA(n, ε)tε = (2t1 + 1) · · · (2tn−1 + n − 1).

6. The major index and the delent number

Recall the definitions of rmajSn
and rmajAn+1

from Sections 1.2 and 1.3. In this sectio
we prove

Theorem 6.1.

(1)
∑
σ∈Sn

q�S(σ )tdelS(σ ) =
∑
σ∈Sn

q rmajSn
(σ )tdelS(σ )

= (1+ qt)
(
1+ q + q2t

) · · · (1+ q + · · · + qn−1t
)
.
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(2)
∑

w∈An+1

q�A(w)tdelA(w) =
∑

w∈An+1

q
rmajAn+1

(w)
tdelA(w)

= (1+ 2qt)
(
1+ q + 2q2t

) · · · (1+ q + · · · + qn−2 + 2qn−1t
)
.

Note that Theorem 6.1 follows from our Main Theorem 9.1. However, the proo
Theorem 9.1 applies the machinery required for the proof of Theorem 6.1 combined wi
additional, more elaborate arguments—therefore we prove the latter here.

The proof of Theorem 6.1 follows from the lemmas below. Recall that the descent se
hence also the major indices majS and rmajSn

—are defined for any sequence of intege
not necessarily distinct. Heren denotes the number of letters in the sequence.

Lemma 6.2. Letx1, . . . , xn andy be integers, not necessarily distinct, such thatxi < y for
1 � i � n. Letu be then-tupleu = [x1, . . . , xn], and let

vi = [x1, . . . , xi−1, y, xi, . . . , xn], 1 � i � n + 1

(thusv1 = [y, x1, . . . , xn] andvn+1 = [x1, . . . , xn, y]). Then

(1)

n+1∑
i=1

qmajS(vi) = qmajS(u)
(
1+ q + · · · + qn

)
and (13)

n∑
i=1

qmajS(vi) = qmajS(u)
(
q + q2 + · · · + qn

); (14)

(2)

n+1∑
i=1

q
rmajSn+1

(vi) = q rmajSn
(u)

(
1+ q + · · · + qn

)
and (15)

n+1∑
i=2

q
rmajSn+1

(vi) = q rmajSn
(u)

(
1+ q + · · · + qn−1). (16)

The proofof Lemma 6.2 is by a rather straight-forward induction, hence is omitted.

Lemma 6.3. Recall that RS
n = {1, sn, . . . , snsn−1 · · · s1} ⊆ Sn+1 and let w ∈ Sn (so

w ∈ Sn+1, wherew(n + 1) = n + 1). Then∑
τ∈RS

n

qmajS(wτ) = qmajS(w)
(
1+ q + · · · + qn

)
,

and ∑
τ∈RS

n

q
rmajSn+1

(wτ) = q rmajSn
(w)

(
1+ q + · · · + qn

)
.
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Proof. Write w ∈ Sn asw = [w(1), . . . ,w(n)] (= u in Lemma 6.2). Similarly writew ∈
Sn ⊆ Sn+1 asw = [w(1), . . . ,w(n),n+1] (= vn+1, in Lemma 6.2, wherey = n+1). Thus

wsn = [
w(1), . . . , n + 1,w(n)

]
(= vn),

wsnsn−1 = [
w(1), . . . , n + 1,w(n − 1),w(n)

]
(= vn−1),

etc., and the proof follows by the previous lemma.�
Remark 6.4. Let R̃S

n = RS
n − {snsn−1 · · · s1} ⊆ Sn+1, and letσ ∈ Sn. It follows from

Eq. (16) that ∑
τ∈R̃S

n

q
rmajSn+1

(στ) = q rmajSn
(σ )

(
1+ q + · · · + qn−1).

Lemma 6.5. For everyσ ∈ Sn,∑
τ∈RS

n

q
rmajSn+1

(στ)
tdelS(στ) = q rmajSn

(σ )tdelS(σ )
(
1+ q + · · · + qn−1 + tqn

)
.

Proof. By Lemma 6.3{
rmajSn+1

(στ) | τ ∈ RS
n

} = {
rmajSn

(σ ) + i | 0� i � n
}
.

Let η = snsn−1 · · · s1 and note that rmajSn
(σ ) + n = rmajSn+1

(ση) (this is the statemen
“rmajSn+1

(v1) = rmajSn
(u) + n” in the proof of Lemma 6.2).

Let τ ∈ RS
n . If τ �= η then delS(στ) = delS(σ ) since bothσ and στ have the same

number of occurrences ofs1. By a similar reason, delS(ση) = delS(σ ) + 1. Thus{
rmajSn+1

(στ)delS(στ) | τ ∈ RS
n

}
= {

rmajSn+1
(στ)delS(στ) | τ ∈ RS

n , τ �= η
} ∪ {

rmajSn+1
(ση)delS(ση)

}
= {(

rmajSn
(σ ) + i

)
delS(σ ) | 0 � i � n − 1

} ∪ {(
rmajSn

(σ ) + n
)
(delS(σ ) + 1)

}
(disjoint unions with no repetitions in the sets) which translates to∑

τ∈RS
n

q
rmajSn+1

(στ)
tdelS(στ) = q rmajSn

(σ )tdelS(σ )
(
1+ q + · · · + qn−1 + tqn

)
. �

Proposition 6.6. For all n,∑
σ∈Sn

q rmajSn
(σ )tdelS(σ ) = (1+ tq)

(
1+ q + tq2) · · · (1+ q + · · · + qn−2 + tqn−1).
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Proof. Follows from Lemma 6.5 by induction onn, since

Sn+1 =
⋃

τ∈RS
n

Snτ. �

Proof of Theorem 6.1. Part (1) clearly follows by comparing part (1) of Proposition 5.
with Proposition 6.6.

Part (2) follows from part (1) by Proposition 5.6.�

7. Additional properties of the delent number

We show first that delS(w) is the number of left-to-right minima ofw.

Definition 7.1. Let w ∈ Sn. Call 2� j � n l.t.r.min (left-to-right minima) ofw if w(i) >

w(j) for all 1 � i < j .
Define DelS(w) as the set of l.t.r.min ofw:

DelS(w) := {
2 � j � n | ∀i < j w(i) > w(j)

}
.

For example, letw = [3,2,7,8,4,6,1,5], then{2,7} are the l.t.r.min.

Proposition 7.2. Letw ∈ Sn, thendelS(w) equals the number of l.t.r.min ofw−1. Since by
Lemma3.6 delS(w) = delS(w−1), this also equals the number of l.t.r.min ofw. In particu-
lar, ∣∣DelS(w)

∣∣ = delS(w) = delS
(
w−1).

Proof. By induction onn � 2. First,S2 = {1, s1} and s1 = [2,1] has one l.t.r.min. Pro
ceed now with the inductive step. Letw = w1 · · ·wn−1 be the canonical presentatio
of w, let σ = w1 · · ·wn−2 (soσ ∈ Sn−1 ⊆ Sn) and assume that the assertion is true foσ .
Write σ−1 = [b1, . . . , bn−1, n]. If wn−1 = 1, the proof is given by the induction hypot
esis. Otherwise,w−1

n−1 = sksk+1 · · · sn−1 for some 1� k � n − 1. Denotings[k,n−1] =
sksk+1 · · · sn−1, we see thatw−1 = s[k,n−1]σ−1. Comparingσ−1 with w−1 = s[k,n−1]σ−1,
we see that

(1) the (position containing)n in σ−1 is replaced inw−1 by k;
(2) eachj in σ−1, k � j � n − 1, is replaced byj + 1 in w−1;
(3) eachj , 1� j � k − 1, is unchanged.

Thusσ−1 = [b1, . . . , bn−1, n], w−1 = [c1, . . . , cn−1, k], and the tuples(b1, . . . , bn−1)

and(c1, . . . , cn−1) are order-isomorphic. This implies that ifk > 1 thenσ−1 andw−1 have
the same left-to-right minima. Letk = 1, thenw−1 hasi = n as an additional left-to-righ
minima, and the proof is complete.�
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Remark 7.3. The above proof implies a bit more: Note that the above casek = 1 is
equivalent to bothn ∈ DelS(w−1) and to εS,n−1(w) = 1, whereεS,i(w) are given by
Definition 5.9. By induction onn, the above proof implies that DelS(w−1) = {i + 1 |
εS,i(w) = 1}. Let nowD ⊆ [n − 1] and letπ ∈ Sn. The conditionD = DelS(π−1) im-
plies thatD = {i + 1 | εS,i(π) = 1}; this determines̄εS(π) uniquely, and hence determin
a unique valuetεD := t ε̄S (π): if D �= H thentεD �= tεH . We shall apply this observation
the proof of Theorem 9.1.

The definition of l.t.r.min can be extended as follows.

Definition 7.4. Let w = [b1, . . . , bn] ∈ Sn. Then 3� j � n is an a.l.t.r.min (almost-left-to
right-minima) if there is at most onebi smaller thanbj and left ofbj : card{1 � i � j |
bi < bj } � 1.

Forw ∈ An+1 define DelA(w) to be the set of a.l.t.r.min ofw.

Remark 7.5. (1) Without the restriction 3� j in Definition 7.4,j ∈ {1,2} is an a.l.t.r.min.
(2) If bi = 1 andbj = 2 are interchanged inw = [b1, . . . , bn], this does not change th

set of a.l.t.r.min indices. Also, ifb1 andb2 are interchanged this would not change the
of a.l.t.r.min indices. Thus,s1w andws1 have the same a.l.t.r.min asw itself.

Proposition 7.6. Let w ∈ Sn, then the number of occurrences ofs2 in (the canonical pre-
sentation of) w equals the number of a.l.t.r.min ofw−1. Lemma3.6 implies that this is also
the number of a.l.t.r.min ofw.

Proof. By induction onn. This is easily verified forn = 2, and we proceed with the in
ductive step.

Let w = w1 · · ·wn−1 be the canonical presentation ofw, and denoteσ = w1 · · ·wn−2,
so thatw−1 = w−1

n−1σ
−1. If wn−1 = 1 we are done by induction. Otherwise, by theS-

procedure,wn−1 = sn−1 · · · skx wherek � 2 andx ∈ {1, s1}.
Write w−1 = xsk · · · sn−1σ

−1 = xs[k,n−1]σ−1. By Remark 7.5,s[k,n−1]σ−1 and
xs[k,n−1]σ−1 have the same number of a.l.t.r.min. Therefore it suffices to show:

1. If k � 3 thenσ−1 has equal number of a.l.t.r.min ass[k,n−1]σ−1.
2. If k = 2, s[2,n−1]σ−1 has one more a.l.t.r.min thanσ−1.

Let σ−1 = [b1, . . . , bn−1, n], thens[k,n−1]σ−1 = [c1, . . . , cn−1, k], and as in the proof o
Proposition 7.2,(b1, . . . , bn−1) and(c1, . . . , cn−1) are order isomorphic. Ifk � 3, the last
position (withk) is not an a.l.t.r.min, while ifk = 2, it is an additional a.l.t.r.min, and th
implies the proof. �

By essentially the same argument, we have

Proposition 7.7. Let v ∈ An+1, thendelA(v) equals the number of a.l.t.r.min ofv−1. In
particular, |DelA(v)| = delA(v) = delA(v−1).
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Proof. Again, by induction onn. This is easily verified forn + 1 = 3, so proceed with th
inductive step.

Let v = v1 · · ·vn−1 be theA-canonical presentation ofv, and denoteσ = v1 · · ·vn−2, so
thatv−1 = v−1

n−1σ
−1. If vn−1 = 1 we are done by induction. Otherwise, by theA-procedure,

vn−1 = xsn · · · sky wherek � 2 andx, y ∈ {1, s1}; moreover,k = 2 if and only if eithera1
or a−1

1 occurs invn−1.
Write v−1 = ysk · · · snxσ−1 = ys[k,n]xσ−1 and proceed as in the proof of Propo

tion 7.6, applying Remark7.5(2).�
Remark 7.8. Givenw ∈ Sn, one can define a.a.l.t.r.min, a.a.a.l.t.r.min, etc., then one
prove the corresponding propositions, which are analogues of Proposition 7.6. For exa
ple, we have

Definition 7.9. Let w = [b1, . . . , bn] ∈ Sn. Then 1� i � n is an a.a.l.t.r.min (almost
almost-left-to-right-minima) if card{1 � j � i | bj < bi} � 2 and

(1) i �= 1,2,3 (which is Definition 7.9.1 of a.a.l.t.r.min), or
(2) bi �= 1,2,3 (which is Definition 7.9.2 of a.a.l.t.r.min).

One can then prove that, with either definition of a.a.l.t.r.min, the number of a.a.l.t
of w ∈ Sn equals the number of occurrences ofs3 in w. Similarly for the occurrences o
the othersi ’s.

Similarly to Proposition 5.8, we definewS(n, �, k) to be the number ofS-canonical
words inSn with � occurrences ofsk (definewA(n + 1, �, k) similarly), and we have

Proposition 7.10. Let k � n − 1, then

n−k∑
�=0

wS(n, �, k)t� = k! (kt + 1)(kt + 2) · · · (kt + n − k),

hencewS(n, �, k) = k! k�c(n − k + 1, � + 1), and similarly forwA(n + 1, �, k).

Proof. It is omitted. �

8. Lemmas on shuffles

In this section we prove lemmas which will be used in the next section to prove the
theorem.

8.1. Equi-distribution on shuffles

The following result follows from Theorem 2.6.
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Proposition 8.1. Let i ∈ [n − 1], and letπ ∈ Sn with supp(π) ⊆ [i]. Then

∑
DesS(r−1)⊆{i}

q
rmajSn

(πr)−rmajSi
(π) =

∑
Des(r−1)⊆{i}

q�S(πr)−�S(π) =
[
n

i

]
q

.

Proof. Let ρn := (1, n)(2, n − 1) · · · ∈ Sn andρi := (1, i)(2, i − 1) · · · ∈ Si . By (4),∑
DesS(r−1)⊆{i}

q
rmajSn

(πr)−rmajSi
(π) =

∑
DesS(r−1)⊆{i}

qmajS(ρnπrρn)−majS(ρiπρi )

=
∑

DesS(r−1)⊆{i}
qmajS(ρnπρnρnrρn)−majS(ρiπρi ) =

∑
DesS(r̂−1)⊆{n−i}

qmajS(ρnπρnr̂)−majS(ρiπρi ).

The last equality follows from (5).
Note that supp(ρnπρn) ⊆ [n− i + 1, n] and verify thatν−1

n−iρnπρnνn−i = ρiπρi , where
νn−i := (1, n − i + 1)(2, n − i + 2) · · ·. Indeed, letj � i, thenνn−i (j ) = j + n − i, hence
ρnνn−i (j ) = ρn(j + n − i) = n − (j + n − i) + 1= i − j + 1 = ρi(j). Similarly, if k � i,
alsoν−1

n−iρn(k) = ρi(k). This implies the above equality. Now, obviously supp(1) ⊆ [n− i]
and majS(1) = 0. Thus by Garsia–Gessel’s Theorem (Theorem 2.6) (takingπ1 = 1 and
π2 = ρnπρn) the right-hand side is equal to

∑
DesS(r̂−1)⊆{n−i}

qmajS(1·ρnπρn·r̂)−majS(1)−majS(ν−1
n−iρnπρnνn−i ) =

[
n

i

]
q

.

The equality

∑
Des(r−1)⊆{i}

q�S(πr)−�S(π) =
∑

Des(r−1)⊆{i}
q�S(π ·1·r)−�S(π)−�S(1) =

[
n

i

]
q

is an immediate consequence of Fact 2.5, combined with (3).�
Note 8.2. Let r be an{i}-shuffle and let supp(π) ⊆ [i] as above. Ifr(1) �= 1, necessarily
r(1) = i + 1, hence alsoπr(1) = i + 1. It follows that

πr(1) ∈ {
π(1), i + 1

}
.

The next lemma requires some preparations.
Fix 1 � i � n − 1 and definegi :Sn → Sn−1 as follows: Letσ = [a1, . . . , an] ∈ Sn, then

gi(σ ) = [a′
1, . . . , a

′
n−1] is defined as follows: deleteaj = i + 1, leavea′

k = ak unchanged
if ak � i, and changea′

t = at − 1 if at � i + 2. Denotegi(σ ) = σ ′. For example, le
σ = [5,2,3,6,1,4] and i = 2, theng2(σ ) = σ ′ = [4,2,5,1,3]. Let supp(π) ⊆ [i], then
gi(π) = π : π ′ = π . Moreover, sinceπ only permutes 1, . . . , i, the following basic property
of gi is rather obvious, since supp(π) ⊆ [i].



702 A. Regev, Y. Roichman / Advances in Applied Mathematics 33 (2004) 676–709

er
Fact 8.3. (1) Letσ ∈ Sn, thenπ(giσ ) = gi(πσ), namely,(πσ)′ = π ′σ ′ = πσ ′.
(2) gi is a bijection between the{i}-shufflesr ∈ Sn satisfyingr(1) = i + 1, and all the

{i}-shufflesr ′ ∈ Sn−1:

gi :
{
r ∈ Sn

∣∣ DesS
(
r−1) ⊆ {i}, r(1) = i + 1

} → {
r ′ ∈ Sn−1

∣∣ DesS
(
r−1) ⊆ {i}}

is a bijection.

Lemma 8.4. Let r be an{i}-shuffle, let1 � i � n − 2, supp(π) ⊆ [i] and assumer(1) =
i + 1. Also letgi(π) = π ′ andgi(r) = r ′.

(1) If r(2) = i + 2 thenrmajSn
(πr) = rmajSn−1

(π ′r ′).
(2) If r(2) = 1 thenrmajSn

(πr) = n − 1+ rmajSn−1
(π ′r ′).

Proof. By Note 8.2, πr = [i + 1, a2, . . . , an]; then, applyinggi , we haveπ ′r ′ =
[a′

2, . . . , a
′
n], and it is easy to check that for all 2� k � n − 1, ak > ak+1 if and only

if a′
k > a′

k+1. Thus, for 2� k � n − 1, k ∈ Des(πr) if and only if k − 1 ∈ Des(π ′r ′);
note also that suchk contributesn − k = (n − 1) − (k − 1) to both rmajSn

(πr) and to
rmajSn−1

(π ′r ′).
(1) If r(2) = i + 2 thena2 = πr(2) = i + 2, hence 1/∈ Des(πr), and the descents ofπr

occur only for (some) 2� k � n − 1, and the above argument implies the proof.
(2) If r(2) = 1 thena2 = πr(2) = π(1) < i +1, hence 1 is a descent ofπr, contributing

n − 1 to rmajSn
(πr), and again, the above argument completes the proof.�

Lemma 8.5. With the notations of Proposition8.1,

(1)
∑

DesS(r−1)⊆{i}
πr(1)=i+1

q
rmajSn

(πr)−rmajSi
(π) = qi

[
n − 1

i

]
q

;

(2)
∑

DesS(r−1)⊆{i}
πr(1)=π(1)

q
rmajSn

(πr)−rmajSi
(π) =

[
n − 1

i − 1

]
q

.

Proof. By induction onn − i. For n − i = 1, the {n − 1}-shuffles are[1, . . . , j − 1, n,

j, . . . , n−1] = [1, . . . , n]sn−1sn−2 · · · sj , 1� j � n−1. Thus the summation in (2) is ov
r ∈ RS

n−1 − {sn−1sn−2 · · · s1} and Eq. (2) follows from Remark 6.4 (withn − 1 replacing
n). Now,

sum(1) + sum(2) =
∑

DesS(r−1)⊆{n−1}
q

rmajSn
(πr)−rmajSn−1

(π)
.

Hence, by Proposition 8.1,

sum(1) + sum(2) =
[

n

n − 1

]
,

q
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; then,
so

sum(1) =
[

n

n − 1

]
q

−
[
n − 1

n − 2

]
q

= qn−1,

which verifies (1) in that case.
Let nown − i � 2 and assume the lemma holds forn − 1− i.
(1) Since Des(r−1) ⊆ {i} andr(1) = i + 1, eitherr(2) = i + 2 (thenπr(2) = i + 2), or

r(2) = 1 (thenπr(2) = π(1)). Thus, the sum in (1) equals sum[r(2) = i +2]+sum[r(2) =
1]. Apply gi to the permutations in these sums, and apply Lemma 8.4(1) and Fact 8.3
by induction onn,

sum
[
r(2) = i + 2

] =
∑

DesS(r ′−1)⊆{i}
π ′r ′(1)=i+1

q
rmajSn−1

(π ′r ′)−rmajSi
(π ′) = qi

[
n − 2

i

]
q

.

Similarly, by Lemma 8.4(2) and Fact 8.3,

sum
[
r(2) = 1

] =
∑

DesS(r ′−1)⊆{i}
π ′r ′(1)=π ′(1)

q
n−1+rmajSn−1

(π ′r ′)−rmajSi
(π ′) = qn−1

[
n − 2

i − 1

]
q

.

Adding the last two sums, we conclude:

∑
DesS(r−1)⊆{i}

πr(1)=i+1

q
rmajSn−1

(πr)−rmajSi
(π) = qi

[
n − 2

i

]
q

+ qn−1
[
n − 2

i − 1

]
q

= qi

([
n − 2

i

]
q

+ qn−1−i

[
n − 2

i − 1

]
q

)
= qi

[
n − 1

i

]
q

.

(2) is an immediate consequence of Proposition 8.1 and part (1), since[
n

i

]
q

−
[
n − 1

i − 1

]
q

= qi

[
n − 1

i

]
q

. �

We have an analogous lemma for length.

Lemma 8.6. With the notation of Proposition8.1,

(1)
∑

DesS(r−1)⊆{i}
q�S(πr)−�S(π) = qi

[
n − 1

i

]
q

;

πr(1)=i+1
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(2)
∑

DesS(r−1)⊆{i}
πr(1)=π(1)

q�S(πr)−�S(π) =
[
n − 1

i − 1

]
q

.

Proof. The casen − i = 0 is obvious (the sum in (1) is empty while in (2),r = 1), so
assumei � n − 1. Recall that in general,�S(σ ) equals the number invS(σ ) of inversions
of σ .

We prove (1) first, so letπr(1) = i + 1. As in Lemma 8.4, write

πr = [i + 1, a2, . . . , an] and gi(πr) = π ′r ′ = [
a′

2, . . . , a
′
n

]
,

and compare their inversions. Clearly,i + 1 contributesi inversions to invS(πr). Also, as
in the proof of Lemma 8.4, there is a bijection between the inversions among{a2, . . . , an}
and those among{a′

2, . . . , a
′
n}. Thus invS(πr) = i + invS(π ′r ′). Also, since supp(π) ⊆ [i],

invS(π) = invS(π ′). Induction, Fact 8.3 and Proposition 8.1 imply the proof of (1). N
by Proposition 8.1, (1) implies the proof of (2).�
8.2. Canonical presentation of shuffles

Observation 8.7. Let 1 � i < n. Every{i}-shuffle has a unique canonical presentation
the formwiwi+1 · · ·wn−1, where�(wj ) � �(wj+1) for all j � i.

Proof. Apply theS-procedure that follows Theorem 3.1. Note that after pullingn,n − 1,

. . . , i + 1 to the right, an{i}-shuffle is transformed into the identity permutation.�
Let ε̄ = (ε1, . . . , εn−1), then denotet ε̄ = t

ε1
1 · · · tεn−1

n−1 .

Corollary 8.8. Recall Definition5.9. For an {i}-shufflew,

delS(w) =
{

1, if w(1) = i + 1,

0, otherwise,

and therefore

t ε̄S (w) = t
delS(w)
i =

{
ti , if w(1) = i + 1,

1, otherwise.

Proof. Write w = wiwi+1 · · ·wn−1 (the canonical presentation) with�S(wi) � · · · �
�S(wn−1), thenεS,j (w) = 0 for j > i. Thus delS(w) is either 1 or 0, and is 1 exact
whenwi = si · · · s1, in which casew(1) = i + 1. �
Remark 8.9. Let r,π ∈ Sn, r an {i}-shuffle and supp(π) ⊆ [i]. Then the correspond
ing canonical presentations are:π = w1 · · ·wi , r = wi+1 · · ·wn−1, hence alsoπr =
w1 · · ·wn−1 is canonical presentation. In particular,ε̄S(πr) = ε̄S(π) + ε̄S(r).
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n

We generalize: LetB = {i1, i2} and letw ∈ Sn be aB-shuffle. Thenw shuffles the three

subsets{1, . . . , i1}, {i1+1, . . . , i2}, and{i2+1, . . . , n}. Clearly,w has a unique presentatio
as a productw = τ1τ2 whereτ2 ∈ Sn shuffles{1, . . . , i2} with {i2 + 1, . . . , n}, andτ1 ∈ Si2

shuffles{1, . . . , i1} with {i1 + 1, . . . , i2}. By Observation 8.7,τ1 = wi1wi1+1 · · ·wi2−1 and
τ2 = wi2wi2+1 · · ·wn−1, where eachwj ∈ RS

j . Thus

w = wi1 · · ·wi2−1wi2 · · ·wn−1

is theS-canonical presentation ofw,

delS(w) = delS(τ1) + delS(τ2) and t ε̄S (w) = t
delS(τ1)
i1

t
delS(τ2)
i2

.

This easily generalizes to an arbitraryB = {i1, . . . , ik} ⊆ {1, . . . , n − 1}, which proves the
following proposition.

Proposition 8.10. Let B = {i1, . . . , ik} ⊆ {1, . . . , n − 1} and letik+1 := n. EveryB-shuffle
π ∈ Sn has a unique presentation

π = τ1 · · · τk

whereτj is an{ij }-shuffle inSij+1 (for 1 � j � k). Moreover,

delS(π) =
k∑

j=1

delS(τj ) and t ε̄S (π) = t
delS(τ1)
i1

· · · tdelS(τk)
ik

.

9. The main theorem

Recall the definitions of theA-descent set DesA and theA-descent number desA (Defi-
nition 1.5). LetB ⊆ [n − 1] andπ ∈ Sn. Recall from Fact 2.4 that DesS(π−1) ⊆ B if and
only if π is aB-shuffle.

The following is our main theorem, which we now prove.

Theorem 9.1. For every subsetsD1 ⊆ [n − 1] andD2 ⊆ [n − 1],

(1)
∑

{
π∈Sn

∣∣∣∣ DesS(π−1)⊆D1
DelS(π−1)⊆D2

} q rmajSn
(π) =

∑
{
π∈Sn

∣∣∣∣ DesS(π−1)⊆D1
DelS(π−1)⊆D2

} q�S(π) and

(2)
∑

{
σ∈An+1

∣∣∣∣ DesA(σ−1)⊆D1
DelA(σ−1)⊆D2

} q
rmajAn+1

(σ ) =
∑

{
σ∈An+1

∣∣∣∣ DesA(σ−1)⊆D1
DelA(σ−1)⊆D2

}q�A(σ ).

An immediate consequence of Theorem 9.1 is
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erning
Corollary 9.2.

(1)
∑
π∈Sn

q
rmajSn

(π)

1 q
desS(π−1)
2 q

delS(π−1)
3 =

∑
π∈Sn

q
�S(π)
1 q

desS(π−1)
2 q

delS(π−1)
3 .

(2)
∑
σ∈An

q
rmajAn+1

(σ )

1 q
desA(σ−1)
2 q

delA(σ−1)
3 =

∑
σ∈An

q
�A(σ )
1 q

desA(σ−1)
2 q

delA(σ−1)
3 .

9.1. A lemma

Lemma 9.3. Let i ∈ [n], and letσ be a permutation inSn, such thatsupp(σ ) ⊆ [i]. Then

(1)
∑

Des(r−1)⊆{i}
q�S(σ r)t ε̄S (σ r) = q�S(σ )t ε̄S (σ ) ·

([
n − 1

i − 1

]
q

+ tiq
i

[
n − 1

i

]
q

)
and

(2)
∑

Des(r−1)⊆{i}
q rmajSn

(σ r)t ε̄S (σ r) = q
rmajSi

(σ )
t ε̄S (σ ) ·

([
n − 1

i − 1

]
q

+ tiq
i

[
n − 1

i

]
q

)
.

Proof. By Definition 5.9 and Remark 8.9,

t ε̄S (σ r) = t ε̄S (σ )+ε̄S(r),

and by Corollary 8.8,

t ε̄S (r) =
{

ti , if r(1) = i + 1,

1, otherwise.

Noting thatr(1) = i + 1 if and only if σr(1) = i + 1, and recalling thatσr(1) ∈ {σ(1),

i + 1}, we obtain

t ε̄S (σ r) =
{

t ε̄S (σ )ti , if σr(1) = i + 1,

t ε̄S (σ ), if σr(1) = σ(1).

Combining this with Lemmas 8.5 and 8.6 gives the desired result. For example, conc
length, ∑

Des(r−1)⊆{i}
q�S(σ r)t ε̄S (σ r) =

∑
Des(r−1)⊆{i}
σr(1)=σ(1)

q�S(σ r)t ε̄S(σ r) +
∑

Des(r−1)⊆{i}
σr(1)=i+1

q�S(σ r)t ε̄S (σ r)

= q�S(σ )t ε̄S (σ ) ·
([

n − 1

i − 1

]
q

+ tiq
i

[
n − 1

i

]
q

)
.

This proves part (1). A similar argument proves (2).�
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ce
.3,
9.2. Proof of the main theorem

Proof of Theorem 9.1(1). By the principle of inclusion and exclusion, we may repla
DelS(π−1) ⊆ D2 by DelS(π−1) = D2 in both sides of Theorem 9.1(1). By Remark 7
{π ∈ Sn | DelS(π−1) = D2} (i.e. the setD2) determines the unique valuetεD2 := t ε̄S (π).

Hence, Theorem 9.1(1) is equivalent to the following statement:

For every subsetB ⊆ [n − 1]
∑

{π∈Sn |DesS(π−1)⊆B}
q rmajSn

(π)t ε̄S (π) =
∑

{π∈Sn |DesS(π−1)⊆B}
q�S(π)t ε̄S (π).

This statement is proved by induction on the cardinality ofB. If |B| = 1 thenB = {i}
for somei ∈ [n − 1], and Theorem 9.1(1) is given by Lemma 9.3 (withσ = 1). As-
sume that the theorem holds for everyB ⊆ [n − 1] of cardinality less thank. Let
B = {i1, . . . , ik} ⊆ [n − 1] and denoteB̄ := {i1, . . . , ik−1}. By Proposition 8.10, for every
π ∈ Sn with DesS(π−1) ⊆ B there is a unique presentation

π = π̄τk,

whereπ̄ is a B̄-shuffle inSik andτk is an{ik}-shuffle inSn. Moreover, DesS(π−1) ⊆ B if
and only ifπ has such a presentation. Hence

∑
{π∈Sn |DesS(π−1)⊆B}

q rmajSn
(π)t ε̄S(π)

=
∑

{π̄∈Sik
, τk∈Sn |DesS(π̄−1)⊆B̄,DesS(τ−1

k )⊆{ik}}
q rmajSn

(π̄τk)t ε̄S (π̄τk)

=
∑

{π̄∈Sik
|DesS(π̄)⊆B̄}

∑
{τk∈Sn |DesS(τ−1

k )⊆{ik}}
q rmajSn

(π̄τk)t ε̄S (π̄τk).

By Lemma 9.3(2), this equals

∑
{π̄∈Sik

|DesS(π̄−1)⊆B̄}
q

rmajSik−1
(π̄)

t ε̄S (π̄) ·
([

n − 1

ik − 1

]
q

+ tik q
i

[
n − 1

ik

]
q

)
,

which, by induction, equals

∑
{π̄∈S |Des (π̄−1)⊆B̄}

q�S(π̄)t ε̄S (π̄) ·
([

n − 1

ik − 1

]
q

+ tik q
i

[
n − 1

ik

]
q

)
.

ik S
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.3,

ue of
Now by a similar argument, this time applying Lemma 9.3(1),∑
{π∈Sn |DesS(π−1)⊆B}

q�S(π)t ε̄S (π)

=
∑

{π̄∈Sik
|DesS(π̄−1)⊆B̄}

q�S(π̄)t ε̄S (π̄) ·
([

n − 1

ik − 1

]
q

+ tik q
i

[
n − 1

ik

]
q

)
,

and the proof follows. �
Proof of Theorem 9.1(2). By the principle of inclusion and exclusion and Remark 7
Theorem 9.1(2) is equivalent to the following statement:

For every subsetB ⊆ [n − 1],∑
{σ∈An+1 |DesA(σ−1)⊆B}

q
rmajAn+1

(σ )
t ε̄A(σ ) =

∑
{σ∈An+1 |DesA(σ−1)⊆B}

q�A(σ )t ε̄A(σ ).

By Proposition 5.10, this part isreduced to Theorem 9.1(1).�

Appendix A

In this section we present another pair of statistics, leading to a different analog
MacMahon’s Theorem.

For 1� i < n, define a maphi :Sn �→ Sn as follows:

hi(π) :=
{

siπ, if i ∈ DesS
(
π−1

)
,

π, if i /∈ DesS
(
π−1

)
.

For every permutationπ ∈ Sn, define

�̂i (π) := �S

(
hi(π)

)
, and m̂aji (π) := majS

(
hi(π)

)
.

Then�̂i andm̂aji are equi-distributed over the even permutations inSn (i.e. over the alter-
nating groupAn).

Theorem A.1. Letn � 2, then

∑
π∈An

q�̂i(π) =
∑

π∈An

qm̂aji (π) =
n∏

i=3

(
1+ q + · · · + qi−1).
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et

in:
7

22

78)

oc.

ge

x,

iv.

ed

5–

-

02.
Proof. By definition,

Image(hi) = {
π ∈ Sn

∣∣ i /∈ DesS
(
π−1)} = {

π ∈ Sn

∣∣ π−1 is an
([n] \ {i})-shuffle

}
.

Also, for eachσ ∈ Image(hi), h−1
i (σ ) = {σ, siσ }, and exactly one element in the s

{σ, siσ } is even.
Thus, by Garsia–Gessel’s Theorem (Theorem 2.6),

∑
π∈An

qm̂aji (π) =
∑

{π∈Sn |π−1is an([n]\{i})-shuffle}
qmaj(π) =

[
n

2,1, . . . ,1

]
q

=
n∏

i=3

(
1+ q + · · · + qi−1),

and similarly for�̂i . �
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