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In optimal control theory, the verification technique plays an important role in
testing for the optimality of a given control, and in constructing optimal feedback
controls. However, the existing classical verification theorem is restrictive in that it
requires the associated dynamic programming equation to have smooth solutions.
In this paper, some verification theorems are presented within the framework of
viscosity solutions under mild assumptions. These theorems are shown to have
wider applicability than the classical verification theorem. As a relevant problem,
some differences and relationships between the viscosity solution and Clarke’s
generalized gradient are also discussed.  © 1993 Academic Press, Inc.

1. INTRODUCTION

Let us consider the following optimal control problem. Given
(s, )€ [0, 1] x R?, we are to

minimize J(s, y; u(-)) :=J‘ L(t, x(1), u(t)) dt + h(x(1)), (1.1)

x(1)=f(1, x(¢), u(t)), ae te[s 1]

1.2
x(s)=y, ( )

subject to {

over the set of admissible controls U,y[s, 17 := {u(-)|u(-) is a Lebesgue
measurable function from (s, 1] to I'}, where I" is a prescribed arbitrary
set in R™.

We denote the above problem by C, , to recall the dependence on the
initial time s and the initial state y. The value function is defined as

Vis, ) :=inf{J(s, y;u(-)): u(-)e Uyls, 11} (1.3)
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Any pair (x(-), u(-)), where x(-) is the solution of (1.2} corresponding to
u(-)e Uyls, 1], is called an admissible pair for the problem C, ,. An
admissible pair (x*(-), u*(-)) is called optimal for C, , if u*(-) achieves the
minimum of J(s, y; u(-)) over U, [s, 11].

As a part of the dynamic programming approach, the so-called verifica-
tion technique plays an important role in testing for optimality of a given
admissible pair, and in constructing optimal feedback controls. The
classical verification theorem is as follows (see Fleming and Rishel [6,
Thm. IV.4.4 and V14.1]):

THEOREM 1.1. Let We C"!([0, 1] x R?) be a solution of the Hamilton—
Jacobi equation (HJ for short)

—uv,(t, x)+sup,. - H(t, x, u, v, (2, x)) =0, (¢, x)e (0, 1)x R, (1.4)
v(1, x) = h(x), '
where the Hamiltonian is defined as
H(t, x,u, q):= —q- f(t, x, u)— L(t, x, u), (1.5)

Sor (£, x, u, q)€ [0, 1] x R*x I'x R®. Then:

(@) W(s,y)<J(s, y;u(-)), for any (s, ¥)€[0,11xR? and any
u(-)e Uuls, 1]

(b) Suppose a given admissible pair (x*(-), u*(-)) for the problem C; ,
satisfies

W.(t, x*(1))= H(t, x*(1), u*(1), W (1, x*(1))), ae tel[s, 1]. (1.6)

Then (x*(-), u*(-)) is an optimal pair for the problem C, .

Remark 1.1. By the HJ equation, {1.6) is equivalent to a more familiar
form:

max H(t, x*(1), u, W (1, x*(1))) = H(t, x*(2), u*(t), W, (1, x*(1))).  (1.7)

Then, an optimal feedback control #*(z, x) can be constructed by mini-
mizing H(t, x, u, W_(t, x)) over ue I'. For detalils, see [6].

Remark 1.2. Equality (1.6) is also equivalent to

W(s, y)=J(s, y; u*(-)). (1.8)
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Indeed, we can write
h(x*(1))— W(s, y)
= W(1, x*(1)) — W(s, y)

=jl 4 Wie, x*0)) dt

s dt
= [ DWLL X*0) Bt X300, w50, Wt x5 (1)Lt x* (1), w(0)]
which implies
W(s,y)=J(s, y;u*(-))

+ [ THU x40, 0, W6 x40) = Wit 2 (0) ] dt

Thus (1.6) is equivalent to (1.8) by virtue of the HJ (1.4).

When practically applying Theorem 1.1, one usually takes the verifica-
tion function W to be the value function V, since V satisfies the HJ if
Ve C“([0, 1] x RY). Unfortunately, it is very likely that the HJ (1.4) has
no smooth solution at all. Indeed, by considering the equivalent condition
(1.8), Clarke [2] has given an example showing that no such function W
as in Theorem 1.1 exists. This makes the applicability of the classical
verification theorem very restrictive. In recent years, the viscosity solution
theory of general nonlinear PDEs, which was launched by Crandall and
Lions [5], has been significantly developed. In this theory, all the
derivatives involved are replaced by the so-called super- and sub-differen-
tials, and the solutions in the viscosity sense can be merely continuous
functions. The existence and uniqueness of viscosity solutions of the HJ can
be guaranteed under very mild and reasonable assumptions, which are
satisfied in the great majority of cases arising in optimal control problems.
For example, the value function turns out to be the unique viscosity
solution of the HJ. Now a natural question arises: Does the verification
theorem still hold, with the solutions of the HJ in the classical sense
replaced by the ones in the viscosity sense, and the derivatives involved
replaced by the super- and/or sub-differentials?

The purpose of this paper is to answer the above question by deriving
verification theorems within the framework of viscosity solutions. It should
be mentioned that there is another type of nonsmooth analysis, involving
the “generalized gradient” introduced by Clarke [27], within which a
verification theorem has already been established [2, 3]. In that approach,
the verification function W was choosen to be any “generalized solution”
of the HJ, and any admissible pair (x*(-), u*(-)) satisfying (1.8) was
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proved to be an optimal pair. The significance of Clarke’s theory lies in
that it can treat optimal control problems with state constraints. On the
other hand, Frankowska [8], after showing that any Lipschitz viscosity
solution is a generalized solution of the HJ, conjectured that Clarke’s
verification technique applies to Lipschitz viscosity solutions of the HJ for
control problems without state constraints. However, it is the following
reasons that motivate us to derive verification theorems within the
framework of viscosity solutions in spite of the existing Clarke’s verification
theorem: First, “viscosity solution” and “generalized gradient” are two
different frameworks; see the Appendix for some of the differences. In
particular, the notion of viscosity solution enjoys many merits in analysis
as developed extensively in the literature, as well as some numerical advan-
tages. So it should be of interest to have verification theorems completely
within this framework. Second, Clarke’s verification theorem is expressed in
a form analogous to (1.8) rather than to (1.6); see [2, 3]. Hence it is not
clear how to obtain an optimal feedback control, even if formally, from
Clarke’s verification theorem. On the other hand, if one takes the value
function V to be the verification function W, then the criterion (1.8)
becomes trivial. Finally, it is possible to treat optimal controls of stochastic
diffusion processes within the framework of viscosity solutions, since the
extension to the second-order super-/sub-differential is natural and
straightforward (cf. [10]), whereas it is difficult even to define the
corresponding “second-order generalized gradient.”

The paper is organized as follows: In Section 2, some preliminary results
about viscosity solutions and the associated super- and sub-differentials
will be introduced. In Section 3, various verification theorems in terms of
viscosity solutions and the super- and/or sub-differentials are established.
In addition, an example is presented showing that the obtained theorems
can test for the optimality of a given control while the classical verification
cannot. Further, methods of constructing optimal feedback controls are
described. Section 4 gives some concluding remarks. Finally, some differen-
ces and relationships between viscosity solutions and generalized gradients
are discussed in the Appendix.

2. SUPER-, SUB-DIFFERENTIALS, AND VISCOSITY SOLUTIONS

Let Q be an open subset of R”, and v: @ — R be a continuous function.

DEFINITION 2.1.  The super-(resp. sub-) differential of v at X € Q, denoted
by D (%) (resp. D_v(%)), is a set defined by

Dtu(x):= {peR"I lim sup

xeQ,x » %

u(x)—u(x)—p-<x—f)<0}‘

|x — X|
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(resp.
D v(%):={peR"|liminf{---} >0}.)

For xe Q and £e R", we denote by v'(X; &) the (one-sided) directional
gradient (along &) of v at £, namely,

(556 lim o(% + hi) — o)

whenever the right hand side limit exists.

LeEmMMaA 2.1, Suppose v'(X; &) exists for given X € Q and &€ R". Then,

sup p-ESV(XE) inf  p-¢, (2.1)
DTv(%)

pe D v(£) pe D v(
where sup{J} ;= —oo, inf{J} := +c0.
Proof. For any pe D v(x),

lim sup v(X +h) —v(X) — h¢ P

h—>0+ h

0,
hence v'(%; £) < p- £ This implies the right-hand side of (2.1). Similarly for
the left-hand side. §

Given a continuous function G: @ x R!'x R"— R!. We consider the
following fully nonlinear partial differential equation:

G(x, v(x), Vo(x))=0. (2.2)

DEerFINITION 2.2. A function ve C(Q) is called a viscosity solution of
(2.2), if at each x€ Q,

G(x, v(x), p)<0, forall peDfu(x);
G(x, v(x), p)=0, forall peD_ v(x).

Now let us turn to the control problem formulated in Section 1. We
impose the following assumptions throughout this paper:

(A1) f and L are continuous mappings from [0, 1]x R“x I to R?
and R', respectively; moreover, f and L are continuous with respect to
(t, x), uniformly in ue I
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(A2) There exists a constant K>0, which is independent of (z, u),
such that
If(t, X, u)_f(ta Y, u)l + |L(t, X, u)—L(t9 Vs u)l + |h(x)“h(J’)l
<Kl|x—y|, forall x,yeR?
[ f(2t, x, u)| + | L(¢, x, u)| + |A(x)| < K(1 + |x]), forall xeR°
(A3) I'c R™ is compact.

The following result is well-known. One may see, e.g., Lions [9] and
Crandall er al. [4].

LEMMA 2.2. The value function V is globally Lipschitz continuous in
(t, x), and is the unique viscosity solution of the HJ (1.4).

LEmMMA 2.3. Let W be a locally Lipschitz viscosity solution of the HJ
(1.4). Then, at each (1, x)€(0, 1) x RY,

—p+sup H(t, x,u,q)<0,  forall (p,q)eD/ W, x),

uel

—p+sup H(t, x,u,q)=0,  forall (p,q)eD, Wit x).

uel

Proof. 1t suffices to prove the equality in terms of the sub-differential.
But this follows from [8, Thm.2.3] (see also Theorem 5.2 in the
Appendix), since A(t, x, g) :=sup, ., H(t, x, u, q) is convex in ¢. |

An immediate consequence of Lemma 2.3 is the following corollary.
COROLLARY 2.1. At each (¢, x)e (0, 1) x R,

p=H(, x, u, q), Sforall (p,q)eD] W(t, x)uD, W, x).

3. VERIFICATION THEOREMS

THEOREM 3.1. Let We C([0, 1] x R? be a locally Lipschitz viscosity
solution of the HJ (1.4). Then:
(a) Wi(s, y)<J(s, y;u(-)), for any (s,y)e[0,1]1x R? and any u(-)e
U,ls, 1]
(b) Let (x*(-), u*(-)) be a given admissible pair for the problem C, .
Suppose that for ae. t€[s, 1], there exists (p*(t), g*(¢))e D}, W(t, x*(1))
such that

pr(1)=H(1, x*(1), u*(1), g*(1)), (3.1

then (x*(-), u*(-)) is an optimal pair for the problem C, .
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Remark 3.1. Part (a) of Theorem 3.1 is trivial since W=V in view of
Lemma 2.2. However, we state our results in the present form purposely in
order to compare with the classical verification theorem.

Proof of Theorem 3.1. We only prove part (b) of the theorem. We set
() = f(¢r, x*(1), u*(t)), etc.,, to simplify the notation. Since both W and
x* are Lipschitz, t+— W(t, x*(¢)) is differentiable almost everywhere. Fix
re (s, 1] such that (d/dr) W(1, x*(¢)),_, exists, that lim,, o, [** f*(z) dt =
f*(r), and that (3.1) holds. Then,

W(r+h, x*(r + h))— W(r, x*(r))

d
. W(t, X*(t))|1=r = lim
h

dt -0+ h
Wk x*)+ [T f*(r) dr)— W(r, x*(r))
= lim
h— 0+ h
. W(r+h, x*(r)+ hf *(r) + o(h)) — W(r, x*(r))
= lim
h—0+ h
=h“r}} W(r+ h, x*(r)+hj;l*(r))— W(r, x*(r))

(by Lipschitz property of W)
=W ((r, x*(r)); (1, f*(r)))
<p*r)+q*(r)-f*(r)  (by Lemma 2.1)
=—L*r)  (by(3.1)).

Hence we conclude that
1 d 1
WL x*(1) = W(s, y) = [ = Wt x* @), dr< = L) db,
which implies
1
J(s, y; u*(-))={ L*(r) dr+h(x*(1)) < W(s, y).

Therefore, it follows from (a) that #*(-) is an optimal control. |

Remark 3.2. The condition (3.1) implies that

max H(t, x*(1), u, g*(1)) = H(t, x*(1), u*(1), g*(1)). (3.2)

uel”
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This is easily seen by recalling the fact that W is the viscosity solution
of (1.4);

—p*(t) +sup H(z, x*(1), u, g*(1)) <0,

uel
which yields (3.2) under (3.1).

Remark 3.3. Theorem 3.1 is a generalization of the classical verification
theorem (Theorem 1.1). On the other hand, we do have examples showing
that the classical verification theorem may not be able to verify the
optimality of a given control, whereas Theorem 3.1 can.

ExaMpLE 3.1. Consider the following optimal control problem

minimize —x(1),

X(1)=x(1) u(?), ae. tels 1],
x(s)=y,

control u(-):[0,1]— {reR'|0<r<1}.

subject to {

The value function can be calculated as

—xe!l if x>0,

- X, if x<O0.

Vit, x)= {

Let us consider an admissible pair (x*(-), u*(-))=(0, 0) for the problem
Cy.o- Theorem 1.1 cannot tell if the pair is optimal, since V (1, x*(¢)) does
not exist on the whole trajectory x*(-). On the other hand, we have
D V(t,x*(1))=D} V(1,0)={0} x [—e' ', —1]. Now if we take (p*(s),
g*(1))=(0, —1)e D V(t, x*(t)) for each ¢, then (3.1) is satisfied. This
implies that the pair (x*(-), u*(-)) is indeed optimal by virtue of
Theorem 3.1.

Remark 3.4. A result similar to Part (b) of Theorem 3.1 has been
proved in [1, Thm. 4.1]. It should be noted, however, that the maximum
condition—the first equality of (25) in [1]—imposed there can be
removed. Indeed, the condition is a consequence of Theorem 3.1 above and
[12, Prop.3.11].

Theorem 3.1 gives a sufficient condition for a control to be optimal. But

under some extra assumptions, the condition is also necessary.

THEOREM 3.2. Assume that f, L, h are continuously differentiable in x.
Then a given admissible pair (x*(-), u*(-)) for the problem C, , is optimal
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if and only if for ae. te[s, 1], there exists (p*(1), g*(1))e D V(t, x*(1))
such that (3.1) holds.

Proof. 1t suffices to show the “only if” part. Let y be the adjoint
function corresponding to the optimal pair (x*(-), u*(-)), namely, ¥
satisfies

{¢(z)= H (1, x*(1), u*(1), ¥(1)),  ae te[s 1], (33)
W(1)=h(x*(1)). '

Then by Zhou [12, Thm. 3.2}, for ae. te[s, 1],

(H(z, x*(1), u*(1), Y (1), Y(1)) € D7 V (1, x*(1)).
This yields the desired resuit. |}

Remark3.5. A result analogous to Theorem 3.2 has been proved in [1,
Thm. 4.27]. However, in the “if” part of our Theorem 3.2 above, ¢*(-) is not
required to satisfy the adjoint equation (3.3) and the maximum principle,
as imposed in [1] (cf. Eq. (27) and (28) in [1]). In fact, the optimality can
be assured as long as there is any (p*(1), ¢*(1))e D, V(1, x*(¢)) such that
(3.1) holds, even if g*(-) is not the adjoint function. For instance, we
consider the admissible pair (x*(-), u*(-))= (0, 0) for the problem C,, in
Example 3.1. If we take (p*(r), g*(2))=(0, —e'~")e D! V(t, x*(1)) for
each 7, then (3.1) is satisfied. The pair (x*(-), u*(-)) is therefore optimal by
Theorem 3.2, but ¢*(-) does not satisfy the adjoint equation (3.3).

It should be noted that Theorem 3.1 is not adequate, since in some cases
D*W may be empty! (E.g.,, when W is convex.) Therefore we need a
similar result in terms of D~ W.

THEOREM 3.3. Let We C([0,1]x R%) be a locally Lipschitz viscosity
solution of the HJ (1.4), and (x*(-), u*(-)) be a given admissible pair for the
problem C, . Suppose that for ae. t€[s, 1], there exists (p*(t), g*(t)) e
D W1, x*(t)) such that

p*(t)=H(s, x*(1), u*(1), q*(1)), (3.4)

then (x*(.), u*(-)) is an optimal pair.

Proof. Fix re[s,1] such that (d/dr) W(t, x*(t))l,_, exists, that
lim, .o, {7, f*(1)dt=f*(r), and that (3.4) holds. Then,
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W(r—h, x*(r—h))— W(r, x*(r))

d
S Wi, x*(1))|,_. = — li
7 WX (0)],2, = — lim

h—o 0+ h
- — lim W(r—h, x*(r) —f:,hf*(r) dr)— Wi(r, x*(r))
h— 0+ h
—  lim W(r—h, x*(r)y—hf*(r))— W(r, x*(r))
h—0+ h
= —W'((r, x*(r)); (=1, ~f*(r)))
< - max [—p—q-f*(r)]
(p.q)e D, W(r,x*(r}))
= min [p+q-f*(r)]

(p.q)e D, W(r,x*(r))

Sprr)+q*(r) - S*(r)

= —L*(r).
Hence the desired result follows similarly as in the proof of
Theorem 3.1. |

Remark 3.6. Due to Lemma 2.3, the condition (3.4) is equivalent to

max H(z, x*(1), u, g*(1)) = H(1, x*(2), u*(1), ¢*(?)).

uel
Set

DEou(t, x): =D} v(t,x)u D vt x),

for any ve C([0, 1] x RY).

THEOREM 3.4. Let (x*(-),u*(-)) be a given admissible pair for the
problem C, ,. We have the following conclusions:

(a) If for ae. te[s, 1], there exists (p*(t), g*(¢))e D} V(1, x*(1))
such that p*(t)= H(t, x*(t), u*(t), q(1)), then (x*(-), u*(-)) is optimal.

(b) If there exists a non-zero Lebesgue measurable set Ty< [s,1]
such that for any t€ T, there is (p*(t), g*(t)) e DX V(t, x*(1)) and p*(1) >
H(t, x*(1), u*(), g*(¢)), then (x*(-), u*(-)) is not optimal.

Proof. (a) follows by combining the proofs of Theorems 3.1 and 3.3;
(b) follows from [12, Prop.3.1]. |}

Let us conclude this section by describing how to construct optimal
feedback controls by the verification theorems obtained. First, we recall the
definition of admissible feedback controls, following [6].
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DEFINITION 3.1. A measurable function u from [0, 1] x R to I"is called
an admissible feedback control if for any (s, y)e [0, 1] x R? there is a
unique solution x(-; s, y) of the following equation
{*(t)=f(t, x(1), u(t, x(1))), ae re[s 1], (3.5)

x(s)=y. ’

An admissible feedback control u* is called optimal if (x*(-;s,y),
u*(-, x*(-;s,»))) is optimal for the problem C, , for each (s, y), where
x*(-; s, y) i1s the solution of (3.5) corresponding to u*.

THEOREM 3.5. Let u* be an admissible feedback control, and p* and q*
be two measurable functions satisfying (p*(t, x), q*(t, x))e D _V(¢, x) for
all (¢, x). If

p*(t, x)_ H(t’ X, u*(ts x)’ q*(l, X))
= inf {p—H(t, x,u,q)]

(pgu)e DEV(Lx)x T

=0 (3.6)

Jor all (1, x)e [0, 1] x R%. Then u* is optimal.
Proof. The result follows readily from (a) of Theorem 34. §

Remark 3.7. By Theorem 3.5, we can formally obtain an optimal feed-
back control by minimizing p — H(t, x, u, q) over DX V(t, x)x I for each
(¢, x). We said “formally” because there are some points which are not
clear. First, although the infimum in (3.6) can be achieved (note that each
DE V(1,x) is compact due to the Lipschitz property of V), we do not
know in general if the infimum is zero and if there is a measurable selector
of (p*(¢, x), q*(¢, x), u*(7, x)) (The answers are positive if V is convex or
semiconcave). Second, even if there exists a measurable selector such that
(3.6) holds, it is difficult to verify whether the equation (3.5) under u* has
a unique solution. This is not clear even when V is smooth (cf. [6, p. 99
and p. 170]). All these remain challenging open problems.

ExampLE 3.2. Consider a deterministic manufacturing system. Let U(¢)
be the control variable (rates of production, advertising expenditures, etc.)
at time ¢, X(¢) the state (inventories, sales, etc.), and Z(7) some given input
to the system (demands, etc.). The dynamics is

X()y=b(X(1), Z(1))+ BU(1), X(0)=X,, Z(0)=2Z,.
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The cost functional is
HXo Zo; UG = e "' G(X(0), U(r)) .
0

The corresponding HJ equation is as follows

pv(x, z)= inl}[(b(x, z)+ Bu) v, (x, z) + G(x, u)]. (3.7)

Sethi and Zhang [11] considered a slightly different version of the above
model, and obtained an optimal feedback control by minimizing the right
hand side of (3.7) with the value function v. However, this is not quite
rigorous since v,(x, z) may not exist. (For a very simple case, v (x, z) does
exist, and an optimal feedback control can be obtained explicitly; see
Fleming et al. [7].) By Remark 3.7, we can formally obtain an optimal
feedback by minimizing (b(x, z) + Bu)q + G(x, u) over (g, u)e D fv(x, z)x I
for all (x,z) (Note that all the results in this paper adapt readily to the
problems with discounted cost functions over infinite horizons).

4. CONCLUDING REMARKS

In this paper we have given some verification theorems in the language
of viscosity solutions and the associated super- and sub-differentials. The
conditions under which these theorems valid are quite mild and reasonable,
compared with the restrictive classical verification theorem. We have also
conjectured that optimal feedback controls may be constructed by virtue of
the verification theorems obtained in this paper.

It should be noted that the results of this paper were derived when there
is no state constraint in the optimal control problem. We do not know how
to treat the state constraint problems. Indeed, the presence of state
constraints causes great difficulty to the analysis: they bring some
particular boundary conditions (depending on the particular features of the
state constraints imposed) to the associated HJ equations, while the
existing viscosity solutions theory on nonlinear PDEs with boundary
conditions is far from satisfactory and complete.

5. APPENDIX
In this Appendix, we discuss some differences and relationships between

the two frameworks of nonsmooth analysis: viscosity solution and
generalized gradient.
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Let O be an open subset of R, and v: J — R be a locally Lipschitz
function. We recall the following definition [2].

DeFmNITION 5.1. The generalized gradient of v at e Q, denoted by
du(x), is a set defined by

dv(%):={pe R"| p-E<v%(%;€), forany EeR"),

where vO(%; &) :=lim sup, _, ¢ 4 . o4 (v(x + hE) —v(x))/h.

Remark 5.1. 0v(%) is a nonempty convex set satisfying d(—v)(X)=
—0v(X) and

v2(%; &) =max, . P& (5.1)

See [2] for a thorough treatment of the generalized gradients.

Remark 5.2. One of the relationships between the super-/sub-differen-
tial and the generalized gradient can be written as

D to(x) < dv(x), forany xe0,

provided that v is locally Lipschitz [8, Thm. 1.4]. It should be noted that
the above inclusion may be strict. To see this, take

o )‘-{xzsin(l/x)’ if xeR,x#0,
e 05 if x=0.

v is differentiable at 0, hence D v(0)= D _v(0)= {0}. But 0v(0) equals the
convex hull of the set of limits of the form lim v (y), where y — 0 (cf. [2,
Thm. 2.5.1]). So dv(0)=[0, 1]. Through this example, we may capture
some sense about the difference between the super-/sub-differential and the
generalized gradient: if the former is a nonsmooth notion of “differen-
tiability,” then the latter may be regarded as a nonsmooth notion of
“continuous differentiability.”

Now let us introduce the generalized solution of the HJ (1.4) in the
framework of Clarke’s generalized gradient.

DEerINITION 5.2. A locally Lipschitz function W is called a generalized
solution of the HJ (1.4), if W(1, x) = h(x), and, at each (¢, x)€ (0, 1) x R,

max [—p+sup H(¢, x,u,q)]1=0.

(p.g)edW(s,x) wel

It should be noted that, unlike the viscosity solution, generalized solu-
tions of the associated HJ may nor be unique under the assumptions
(A1)-(A3). This is seen from the following example.
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ExampLE 5.1. Consider the following optimal control problem

1
minimize 1 J u?(t) dt,
x(t)=u(t), ae fe[s 1],
x(s)=y,

control u(-):[s,1]— {reR'|-2<r<2}.

subject to {

The associated HJ (1.4) in this problem reads

{_U,(f, x)+sup~2<u<2(_vx(t$ x)u_ 41”2)=Oa

v(l, x)=0. (3:2)

V=0 is obviously a generalized solution of the above equation, which is
also the value function of the optimal control problem (and therefore the
unique viscosity solution of (5.2)). Now we are to show that the function

given by

- if =1-—1,
{0, if  |x] t (53)

Wi, x):= ]
GBX= = i x<i-t,

is also a generalized solution of the HJ (5.2). Note W is globally Lipschitz
continuous in (¢, x), and is not continuously differentiable only at the lines
x= +(1—1t) and x=0. Appealing to [2, Thm. 2.5.1], it is not difficult to
verify that for any 7€ (0, 1),

oW, 1—1)={(p.q)e R*|0<p=g<1},
oW(t,t—1)={(p,q)e R*|0< p= —g< 1},
OW(t,0)= {1} x[—1,1].

Hence,

max [-p+ sup (—qu—3u*)]= max (—p+ p’)=0.

(p.q)edW(r, 1 1) _l<u<? O<pxlt
We can check the similar equality in terms of dW/(z, t—1) and dW(1, 0).
Therefore, according to Definition 5.2, W is a generalized solution of the
HJ (5.2).

While there may be a lot of generalized solutions of the HJ, it would be
interesting to compare the generalized solutions and the unique viscosity
solution (i.e., the value function). The following Theorems 5.1 and 5.2 are
concerned with the problem.

409/177:1-15
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THEOREM 5.1. Let W be any generalized solution of the HJ (1.4). Then
Wis, y)< V(s y)

for any (s, y)€ [0, 1] x R%

Proof. Let (x(-), u(-)) be any admissible pair of the problem C, . Set
S(t) == f(t, x(t), u(t)). A similar argument as in proof of Theorem 3.1 yields
that for ae. te(s, 1],

W(t+ h, x(t)+ B (1)) — W(t, x(1))

d .
o= Jim

h
= —(—W)° (e, x(1)); (1, f(2)))
= - max [p+q-f(1)]

(p.g) e d(— Wi, x(1))

= min {p+qg -f(1)]
(p.q)e dW(1,x(1))

Z= min [P_Sup H(t’ x(f), u, q)—L(t’ x(t)’ u(t))]

(p.q)e dW(r,x(1)) uel
= —L(t, x(t), u(t)).

(by the definition of the generalized solutions)

Hence we conclude

W, x(1))— Wi(s, y)=J‘l % Wit x(t)) dt = —f‘l L(t, x(1), u(1)) dt,

which implies
Wis, 9) < [ L(t, x(0), u(1) dt + h(x(1)) = Jis, y; ()

The desired result thus follows since u(-) is arbitrary. J

DEerINITION 5.3. The closed super-(resp. sub-)differential of v at e Q,
denoted by Do (X)(resp. D v(%)), is a set defined by

Dtv(%):= { pe R"|there exist x,, — %, p,, — p such that p,e DT v(x,)}.
(resp.

D7 v(®):= {pe R"|there exist x, — £, p, — p such that p, € D "v(x,)}.)
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Since {xe Q|D}uv(x)#F} is dense in Q (cf. [5,9]), D} v(x) is a non-
empty set at each x € Q due to the locally Lipschitz property of v. Similarly,
D v(x) is also nonempty.

LemMa 5.1, Let ve C(Q) be locally Lipschitz continuous. Then at each
xeQ:
(a) CoD}uv(x)=Co D v(x)=0v(x), where Co denotes the convex
hull of a set.
(b) Dru(x)sD}uv(x)cdv(x), D v(x)< DI v(x)<S dv(x).
(c) D}uv(x) and D v(x) are compact sets.

Proof. (a) Let pe D}ov(x). Then there exist x,—x, p,— p such that
p.€ D v(x,) < dv(x,). By the upper semicontinuity of the multi-value func-
tion dv(-) [2, Prop. 2.1.5], it follows that pe dv(x). Note édv(x) is closed
and convex, so we have Co D fv(x) < dv(x). Conversely, since { p| there is
x, — x such that p=1lim, _ v,(x,)}< D} v(x), hence dv(x) <= Co D} v(x).
Therefore we conclude that dv(x)= Co D Fv(x). Similarly for the sub-case.

(b) and (c) are obvious from the definitions of the closed super-/
sub-differentials. |

Remark 5.3. 1t is possible that all the inclusions in {b) of Lemma 5.1 are
strict. For example, take v(x)=|x|. Then D}v(0)=, D v(0)={—1,1},
and dv(0)=[—-1,1].

The following lemma is readily seen on account of the continuity of the
Hamiltonian H and the compactness of the control region I

LEMMA 5.2. Let W be a locally Lipschitz viscosity solution of the HJ
(1.4), then at each (t, x)e (0, 1) x R,

—p+sup H(t, x,u,q)<0,  forall (p,q)eD;} W(1, x);

uel

—p+sup H(t, x, u, q) =0, forall (p,q)eD; W(1, x).

uel

THEOREM 5.2. A locally Lipschitz function W is a viscosity solution of the
HJ (1.4) if and only if W is a generalized solution and

—p+sup H(t, x,u,q)=0,  forall (p,q)eD; Wt x). (54)
uel
Proof. It suffices to prove the “only if” part. By virtue of Lemma 5.2
together with the facts that dW(f, x)=Co D} W(s,x) and that
—p+sup, . H(t, x, u, q) is convex in (p, ¢), we conclude that
max [—p+sup H(¢, x, u, q)] <O0. (5.5)

(p.q)e dW(1,x) wel
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Therefore (5.4) follows from (b) of Lemma 5.1 and Lemma 5.2. Moreover,
since D", W(1, x) is never empty, the maximum in the left-hand side of (5.5)
is precisely zero. This implies that W is a generalized solution of the HJ

(14). 1

Remark 5.4. The above theorem is originally due to Frankowska
[8, Thm. 2.37]. Here, we supplied a slightly different proof of it.

Remark 5.5. That a generalized solution may not beAthe viscosity solu-
tion can also be seen from Example 5.1. The function W given by (5.3) is

a generalized solution as shown in Example 5.1. On the other hand, for any
te(0,1),

DI W(t,0)=g, D, W(t0)={1}x[-11]
Then for any (p,q)e D, W(s,0),

—p+ sup (—qu—1iuY)= —144*<0,

—2<ux2

which violates the definition of the viscosity solutions. We see also that
(5.4) is not satisfied by W.
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