A stabilized mixed finite element method for the biharmonic equation based on biorthogonal systems

Bishnu P. Lamichhane*
School of Mathematical \& Physical Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia Mathematical Sciences Institute, Australian National University, ACT 0200, Canberra, Australia

A R TICLE IN F O

Article history:

Received 9 November 2010
Received in revised form 7 April 2011

MSC:

65N30
65N15

Keywords:

Biharmonic equation
Clamped plate
Mixed finite element method
Saddle point problem
Biorthogonal system
A priori estimate

Abstract

We propose a stabilized finite element method for the approximation of the biharmonic equation with a clamped boundary condition. The mixed formulation of the biharmonic equation is obtained by introducing the gradient of the solution and a Lagrange multiplier as new unknowns. Working with a pair of bases forming a biorthogonal system, we can easily eliminate the gradient of the solution and the Lagrange multiplier from the saddle point system leading to a positive definite formulation. Using a superconvergence property of a gradient recovery operator, we prove an optimal a priori estimate for the finite element discretization for a class of meshes.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

There are many engineering applications, where fourth order elliptic and parabolic partial differential equations appear, for example, the Stokes problem in stream function and vorticity formulation [1], thin beams and plates, strain gradient elasticity [2,3], phase separation of a binary mixture [4] and scattered data fitting with thin plate splines [5]. Standard procedure needs H^{2}-conforming finite elements to discretize the variational formulation of the biharmonic equation. These H^{2}-conforming finite elements are difficult to construct in unstructured meshes; moreover, the resulting linear systems are also difficult to solve.

One approach to avoid this difficulty is to use a mixed formulation of the biharmonic equation. There are many mixed formulations of the biharmonic equations [6-8,2,9-13]. Often a mixed formulation is combined with a discontinuous Galerkin method as in $[3,14,4]$. The most popular mixed formulation is the Ciarlet-Raviart formulation based on the vorticity and stream function. A standard discretization of the Ciarlet-Raviart element yields a saddle point problem, and it is generally less efficient to solve a saddle point problem than a positive definite problem. We have proposed a finite element technique for discretizing the Ciarlet-Raviart formulation of the biharmonic equation in [15] using biorthogonal or quasibiorthogonal systems. Working with biorthogonal or quasi-biorthogonal systems, all auxiliary variables can be statically condensed out from the system and a positive definite system based only on a stream function can be obtained. However, the a priori error estimates show a suboptimal convergence behavior as in the use of the standard discretization technique. Therefore, we now work with another mixed formulation to obtain an optimal a priori error estimate.

[^0]In this contribution, we start with a mixed formulation of the biharmonic equation with clamped boundary condition proposed in [11,13]. The formulation is also obtained from Reissner-Mindlin plate equations when the plate thickness becomes zero [16,17]. If we use simple finite element spaces, we do not get the coercivity of the formulation. Then one needs to add a suitable stabilization term to obtain the coercivity as in [16]. Our goal here is to get an efficient finite element scheme to solve the biharmonic equation with the clamped boundary condition.

The formulation is obtained by introducing the gradient of the solution of the biharmonic equation as a new unknown and writing an additional variational equation in terms of a Lagrange multiplier. This gives rise to two additional vector unknowns: the gradient of the solution and the Lagrange multiplier. In order to obtain an efficient numerical scheme, we carefully choose a pair of bases for the space of the gradient of the solution and the Lagrange multiplier space in the discrete setting. Choosing the pair of bases forming a biorthogonal system for these two spaces, we can eliminate the degree of freedom associated with the gradient of the solution and the Lagrange multiplier and arrive at a positive definite formulation. The positive definite formulation involves only the degree of freedom associated with the solution of the biharmonic equation. Hence a reduced system is obtained, which is easy to solve.

We prove an optimal a priori error estimate for the finite element solution when the mesh is uniformly regular. The a priori error estimate deteriorates for irregular meshes. One essential ingredient for the proof of the optimal a priori error estimate is the use of superconvergence property of the gradient recovery technique [18]. The assumption on the mesh is also motivated from the gradient recovery technique. This is a major theoretical contribution of this paper to apply the gradient superconvergence in the proof of a priori error estimate. This idea may be applicable to other finite element techniques as well.

The structure of the rest of the paper is organized as follows. In the next section, we briefly recall a mixed formulation for the biharmonic equation suitable for our analysis. Section 3 is devoted to the numerical analysis of the approach. We also present the algebraic formulation of the problem and briefly discuss how the static condensation can be applied to get a formulation only based on the stream function. Finally, we prove an optimal a priori error estimates for a class of regular meshes in Section 4. Comparing the error estimate based on Ciarlet-Raviart formulation of the biharmonic equation, the new formulation gives better error estimate for a class of meshes, see [19,20,15].

2. A mixed formulation of biharmonic equation

In this section we introduce a mixed formulation of the biharmonic problem suitable for our purpose. Let $\Omega \subset \mathbb{R}^{d}$, $d \in\{2,3\}$, be a bounded convex domain with polygonal or polyhedral boundary $\partial \Omega$ and outward pointing normal \mathbf{n} on $\partial \Omega$, The biharmonic equation

$$
\begin{equation*}
\Delta^{2} u=f \quad \text { in } \Omega \tag{1}
\end{equation*}
$$

with clamped boundary condition

$$
\begin{equation*}
u=\frac{\partial u}{\partial \mathbf{n}}=0 \quad \text { on } \partial \Omega \tag{2}
\end{equation*}
$$

is studied extensively in $[6,7,2,8-12,21,14,4,13]$. Starting with the mixed formulation of the biharmonic problem presented in [11,13], a stabilization term is added as proposed in [16] for the Reissner-Mindlin plate equations so that the variational formulation can be discretized by using a biorthogonal system. Here the variational formulation is based on the stream function, its gradient and the Lagrange multiplier. The central idea of our approach is to use a pair of bases forming a biorthogonal system for discretizing the gradient of the stream function and the Lagrange multiplier.

In the following, we make use of the standard Sobolev spaces $L^{p}(\Omega), H^{s}(\Omega)$ and $W^{s, p}(\Omega)$, where $s, p \in \mathbb{R}$ with $p \geq 1$, see [22,23,2,24,25]. We will use $H_{0}^{1}(\Omega)$ and $H_{0}^{2}(\Omega)$ to denote the subspaces of $H^{1}(\Omega)$ and $H^{2}(\Omega)$, respectively, whose elements satisfy the homogeneous Dirichlet boundary condition in the sense of trace.

We consider the following variational form of the biharmonic equation (1) with the clamped boundary condition (2):

$$
\begin{equation*}
J(u)=\inf _{v \in H_{0}^{2}(\Omega)} J(v), \tag{3}
\end{equation*}
$$

with

$$
J(v)=\frac{1}{2} \int_{\Omega}|\Delta v|^{2} \mathrm{~d} \mathbf{x}-\int_{\Omega} f v \mathrm{~d} \mathbf{x} .
$$

Let $V:=H_{0}^{1}(\Omega) \times\left[H_{0}^{1}(\Omega)\right]^{d}$ and for two matrix-valued functions $\boldsymbol{\alpha}: \Omega \rightarrow \mathbb{R}^{d \times d}$ and $\boldsymbol{\beta}: \Omega \rightarrow \mathbb{R}^{d \times d}$, the inner product be defined as

$$
(\boldsymbol{\alpha}, \boldsymbol{\beta})_{H^{k}(\Omega)}:=\sum_{i=1}^{d} \sum_{j=1}^{d}\left(\alpha_{i j}, \beta_{i j}\right)_{H^{k}(\Omega)},
$$

where $(\boldsymbol{\alpha})_{i j}=\alpha_{i j}, \quad(\boldsymbol{\beta})_{i j}=\beta_{i j}$ with $\alpha_{i j}, \beta_{i j} \in H^{k}(\Omega)$, and the norm $\|\cdot\|_{H^{k}(\Omega)}$ is induced from this inner product. For $k=0$, an equivalent notation

$$
(\boldsymbol{\alpha}, \boldsymbol{\beta})_{L^{2}(\Omega)}:=\sum_{i=1}^{d} \sum_{j=1}^{d} \int_{\Omega} \alpha_{i j} \beta_{i j} \mathrm{~d} \mathbf{x}=\int_{\Omega} \boldsymbol{\alpha}: \boldsymbol{\beta} \mathrm{d} \mathbf{x}
$$

for the L^{2}-inner product will be used and the L^{2}-norm $\|\cdot\|_{L^{2}(\Omega)}$ is induced by this inner product.
A new formulation of the functional J in (3) is obtained by introducing an auxiliary variable $\sigma=\nabla u$ such that the minimization problem (3) is rewritten as the following constrained minimization problem [11,13]:

$$
\underset{\substack{(u, \sigma \in V \\ \sigma=v u}}{\arg \min }\left(\frac{1}{2}\|\nabla \boldsymbol{\sigma}\|_{L^{2}(\Omega)}^{2}-\int_{\Omega} f u \mathrm{~d} \mathbf{x}\right) .
$$

3. Finite element approximation

Let \mathcal{T}_{h} be a quasi-uniform partition of the domain Ω in simplices with the mesh-size h. Let \hat{T} be the reference triangle or tetrahedron defined as

$$
\hat{T}:=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}: x_{i}>0, i=1, \ldots, d, \text { and } \sum_{i=1}^{d} x_{i}<1\right\}
$$

Let $\mathcal{P}_{1}(T)$ be the space of linear functions on any element $T \in \mathcal{J}_{h}$. The finite element space based on the mesh \mathcal{T}_{h} is defined as the space of continuous functions whose restrictions to an element T are linear functions:

$$
S_{h}:=\left\{v_{h} \in H_{0}^{1}(\Omega):\left.v_{h}\right|_{T} \in \mathcal{P}_{1}(T), T \in \mathcal{T}_{h}\right\},
$$

see [2,21,17].
We assume that the discrete Lagrange multiplier space $M_{h} \subset L^{2}(\Omega)$ satisfies the following assumptions.
Assumption 1. $1(\mathrm{i}) \operatorname{dim} M_{h}=\operatorname{dim} S_{h}$.
1(ii) There is a constant $\beta>0$ independent of the triangulation \mathcal{T}_{h} such that

$$
\left\|\phi_{h}\right\|_{L^{2}(\Omega)} \leq \beta \quad \sup _{\mu_{h} \in M_{h} \backslash(0\}} \frac{\int_{\Omega} \mu_{h} \phi_{h} \mathrm{~d} \mathbf{x}}{\left\|\mu_{h}\right\|_{L^{2}(\Omega)}}, \quad \phi_{h} \in S_{h} .
$$

1(iii) The space M_{h} has the approximation property:

$$
\inf _{\lambda_{h} \in M_{h}}\left\|\phi-\lambda_{h}\right\|_{L^{2}(\Omega)} \leq C h|\phi|_{H^{1}(\Omega)}, \quad \phi \in H^{1}(\Omega) .
$$

To obtain the discrete form of the minimization problem (2), we introduce a finite element space $V_{h} \subset V$ as $V_{h}=$ $S_{h} \times\left[S_{h}\right]^{d}$. Replacing the space V in (2) by our discrete space V_{h}, our discrete problem is to minimize

$$
\begin{equation*}
\underset{\left(u_{h}, \sigma_{h}\right) \in V_{h}}{\arg \min }\left(\frac{1}{2}\left\|\nabla \boldsymbol{\sigma}_{h}\right\|_{L^{2}(\Omega)}^{2}-\int_{\Omega} f u_{h} \mathrm{~d} \mathbf{x}\right) \tag{4}
\end{equation*}
$$

subject to

$$
\begin{equation*}
\left\langle\boldsymbol{\sigma}_{h}, \boldsymbol{\tau}_{h}\right\rangle_{L^{2}(\Omega)}=\left\langle\nabla u_{h}, \boldsymbol{\tau}_{h}\right\rangle_{L^{2}(\Omega)}, \quad \boldsymbol{\tau}_{h} \in\left[M_{h}\right]^{d} \tag{5}
\end{equation*}
$$

Now we introduce a saddle point formulation of the minimization problem (4), see also [2,26]. Introducing a Lagrange multiplier unknown $\boldsymbol{\phi}_{h}$, the variational saddle point formulation of the minimization problem (4) is to find ($\left.\left(u_{h}, \boldsymbol{\sigma}_{h}\right), \boldsymbol{\phi}_{h}\right) \in$ $V_{h} \times\left[M_{h}\right]^{d}$ so that

$$
\begin{align*}
& \tilde{A}\left(\left(u_{h}, \boldsymbol{\sigma}_{h}\right),\left(v_{h}, \boldsymbol{\tau}_{h}\right)\right)+B\left(\boldsymbol{\phi}_{h},\left(v_{h}, \boldsymbol{\tau}_{h}\right)\right)=f\left(v_{h}\right), \quad\left(v_{h}, \boldsymbol{\tau}_{h}\right) \in V_{h}, \tag{6}\\
& B\left(\boldsymbol{\psi}_{h},\left(u_{h}, \boldsymbol{\sigma}_{h}\right)\right)=0, \quad \boldsymbol{\psi}_{h} \in\left[M_{h}\right]^{\prime},
\end{align*}
$$

where bilinear forms $\tilde{A}(\cdot, \cdot), B(\cdot, \cdot)$ and $f(\cdot)$ are given by

$$
\begin{aligned}
& \tilde{A}\left(\left(u_{h}, \boldsymbol{\sigma}_{h}\right),\left(v_{h}, \boldsymbol{\tau}_{h}\right)\right)=\int_{\Omega} \nabla \boldsymbol{\sigma}_{h}: \nabla \boldsymbol{\tau}_{h} \mathrm{~d} \mathbf{x}, \\
& B\left(\boldsymbol{\psi}_{h},\left(v_{h}, \boldsymbol{\tau}_{h}\right)\right)=\int_{\Omega} \boldsymbol{\tau}_{h} \cdot \boldsymbol{\psi}_{h} \mathrm{~d} \mathbf{x}-\int_{\Omega} \nabla v_{h} \cdot \boldsymbol{\psi}_{h} \mathrm{~d} \mathbf{x}, \quad \text { and } f\left(v_{h}\right)=\int_{\Omega} f v_{h} \mathrm{~d} \mathbf{x} .
\end{aligned}
$$

The mixed formulation of our problem is closely related to the mixed formulation of Mindlin-Reissner plate [26,16,27,28], and hence we use some ideas presented in $[26,16]$ to analyze our problem. The existence and uniqueness of the solution of
the saddle point problem (6) is performed by using the theory presented in $[26,16]$. The main difficulty here as well as in the context of Mindlin-Reissner plate is that the bilinear form $\tilde{A}(\cdot, \cdot)$ is not elliptic on the whole space V_{h}. However, it would be sufficient that the bilinear form $\tilde{A}(\cdot, \cdot)$ is elliptic on the space Ker B_{h} defined as

$$
\operatorname{Ker} B_{h}:=\left\{\left(v_{h}, \boldsymbol{\tau}_{h}\right) \in V_{h}: \int_{\Omega}\left(\boldsymbol{\tau}_{h}-\nabla v_{h}\right) \cdot \boldsymbol{\psi}_{h} \mathrm{~d} \mathbf{x}=0, \boldsymbol{\psi}_{h} \in\left[M_{h}\right]^{\mathrm{d}}\right\}
$$

If we choose S_{h} as the standard finite element space and M_{h} satisfying Assumption 1(i)-(iii), we cannot still satisfy coercivity of $\tilde{A}(\cdot, \cdot)$ even on the space $\operatorname{Ker} B_{h}$. That is why we modify the bilinear form $\tilde{A}(\cdot, \cdot)$ consistently by adding a stabilization term so that we obtain the ellipticity on the space $\operatorname{Ker} B_{h}$. The modification of the bilinear form $\tilde{A}(\cdot, \cdot)$ is done as suggested by Arnold and Brezzi [16] for the Mindlin-Reissner plate so that our discrete saddle point problem is to find $\left(\left(u_{h}, \boldsymbol{\sigma}_{h}\right), \boldsymbol{\phi}_{h}\right) \in$ $V_{h} \times\left[M_{h}\right]^{d}$ such that

$$
\begin{align*}
& A\left(\left(u_{h}, \boldsymbol{\sigma}_{h}\right),\left(v_{h}, \boldsymbol{\tau}_{h}\right)\right)+B\left(\boldsymbol{\phi}_{h},\left(v_{h}, \boldsymbol{\tau}_{h}\right)\right)=f\left(v_{h}\right), \quad\left(v_{h}, \boldsymbol{\tau}_{h}\right) \in V_{h}, \\
& B\left(\boldsymbol{\psi}_{h},\left(u_{h}, \boldsymbol{\sigma}_{h}\right)\right)=0, \quad \boldsymbol{\psi}_{h} \in\left[M_{h}\right]^{d}, \tag{7}
\end{align*}
$$

where the bilinear form $A(\cdot, \cdot)$ is defined as

$$
A\left(\left(u_{h}, \boldsymbol{\sigma}_{h}\right),\left(v_{h}, \boldsymbol{\tau}_{h}\right)\right)=\int_{\Omega} \nabla \boldsymbol{\sigma}_{h}: \nabla \boldsymbol{\tau}_{h} \mathrm{~d} \mathbf{x}+r \int_{\Omega}\left(\boldsymbol{\sigma}_{h}-\nabla u_{h}\right) \cdot\left(\boldsymbol{\tau}_{h}-\nabla v_{h}\right) \mathrm{d} \mathbf{x}
$$

with $r>0$ being a parameter. Since the stabilization term is consistent, the parameter $r>0$ can be arbitrary in principle. This parameter r can be utilized to accelerate the solver as in an augmented Lagrangian formulation [29]. Since we do not focus on this aspect of the problem, we simply put $r=1$ in the rest of the paper. After putting $r=1$, we have

$$
A\left(\left(u_{h}, \boldsymbol{\sigma}_{h}\right),\left(v_{h}, \boldsymbol{\tau}_{h}\right)\right)=\tilde{A}\left(\left(u_{h}, \boldsymbol{\sigma}_{h}\right),\left(v_{h}, \boldsymbol{\tau}_{h}\right)\right)+\int_{\Omega}\left(\boldsymbol{\sigma}_{h}-\nabla u_{h}\right) \cdot\left(\boldsymbol{\tau}_{h}-\nabla v_{h}\right) \mathrm{d} \mathbf{x}
$$

We note that the lowest order finite element approach proposed in [16] requires the enrichment of the finite element space S_{h} with element-wise-defined bubble functions and does not work for the clamped plate. Our goal is to obtain an efficient finite element approach based on the standard linear finite element space.

Here our interest is to eliminate the degree of freedom corresponding to σ_{h} and ϕ_{h} and arrive at a formulation only depending on u_{h}. This will dramatically reduce the size of the system matrix, and the system matrix after elimination of these variables will be positive definite. For the solution of the reduced system, one can thus use very efficient numerical techniques. Therefore, we closely look at the algebraic formulation of the problem. In the following, we use the same notation for the vector representation of the solution and the solutions as elements in $S_{h},\left[S_{h}\right]^{d}$ and $\left[M_{h}\right]^{d}$. Let A, B, W, K, D and M be the matrices associated with the bilinear forms $\int_{\Omega} \nabla \sigma_{h}: \nabla \boldsymbol{\tau}_{h} \mathrm{~d} \mathbf{x}, \int_{\Omega} \nabla u_{h} \cdot \psi_{h} \mathrm{~d} \mathbf{x}, \int_{\Omega} \nabla u_{h} \cdot \boldsymbol{\tau}_{h} \mathrm{~d} \mathbf{x}, \int_{\Omega} \nabla u_{h} \cdot \nabla v_{h} \mathrm{~d} \mathbf{x}, \int_{\Omega} \boldsymbol{\sigma}_{h} \cdot \boldsymbol{\psi}_{h} \mathrm{~d} \mathbf{x}$ and $\int_{\Omega} \sigma_{h} \cdot \boldsymbol{\tau}_{h} \mathrm{~d} \mathbf{x}$, respectively. The matrix D associated with the bilinear form $\int_{\Omega} \boldsymbol{\sigma}_{h}: \boldsymbol{\psi}_{h} \mathrm{~d} \mathbf{x}$ is often called a Gram matrix. In case of the saddle point formulation, u_{h}, σ_{h} and ϕ_{h} are three independent unknowns. Letting the test functions $\boldsymbol{\tau}_{h}$ and v_{h} to be zero subsequently in the first equation of (7), we have

$$
\begin{aligned}
& -\int_{\Omega} \nabla v_{h} \cdot \boldsymbol{\phi}_{h} \mathrm{~d} \mathbf{x}-\int_{\Omega}\left(\boldsymbol{\sigma}_{h}-\nabla u_{h}\right) \cdot \nabla v_{h} \mathrm{~d} \mathbf{x}=f\left(v_{h}\right), \quad v_{h} \in S_{h}, \\
& \int_{\Omega} \nabla \sigma_{h}: \nabla \boldsymbol{\tau}_{h} \mathrm{~d} \mathbf{x}+\int_{\Omega} \boldsymbol{\phi}_{h} \cdot \boldsymbol{\tau}_{h} \mathrm{~d} \mathbf{x}+\int_{\Omega}\left(\boldsymbol{\sigma}_{h}-\nabla u_{h}\right) \cdot \boldsymbol{\tau}_{h} \mathrm{~d} \mathbf{x}=0, \quad \boldsymbol{\tau}_{h} \in\left[S_{h}\right]^{d}
\end{aligned}
$$

Then the algebraic formulation of the saddle point problem (7) can be written as

$$
\left[\begin{array}{ccc}
\mathrm{K} & -\mathrm{W}^{T} & -\mathrm{B}^{T} \tag{8}\\
-\mathrm{W} & \mathrm{~A}+\mathrm{M} & \mathrm{D}^{T} \\
-\mathrm{B} & \mathrm{D} & 0
\end{array}\right]\left[\begin{array}{l}
u_{h} \\
\boldsymbol{\sigma}_{h} \\
\boldsymbol{\phi}_{h}
\end{array}\right]=\left[\begin{array}{c}
f_{h} \\
0 \\
0
\end{array}\right],
$$

where f_{h} is the vector form of discretization of the linear form $f(\cdot)$. Since our goal is to obtain an efficient numerical scheme, we want to statically condense out the degree of freedom associated with $\boldsymbol{\sigma}_{h}$ and $\boldsymbol{\phi}_{h}$. Looking closely at the linear system (8), we find that if the matrix D is diagonal, we can easily eliminate the degree of freedom corresponding to σ_{h} and $\boldsymbol{\phi}_{h}$. This then leads to a formulation involving only one unknown u_{h}.

Let $\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ be the standard nodal finite element basis of S_{h}. We define a space M_{h} spanned by the basis $\left\{\mu_{1}, \ldots, \mu_{n}\right\}$, where the basis functions of S_{h} and M_{h} satisfy a condition of biorthogonality relation

$$
\begin{equation*}
\int_{\Omega} \mu_{i} \varphi_{j} \mathrm{~d} \mathbf{x}=c_{j} \delta_{i j}, \quad c_{j} \neq 0,1 \leq i, j \leq n \tag{9}
\end{equation*}
$$

where $n:=\operatorname{dim} M_{h}=\operatorname{dim} S_{h}, \delta_{i j}$ is the Kronecker symbol, and c_{j} a positive scaling factor. This scaling factor c_{j} is chosen to be proportional to the area $\left|\operatorname{supp} \varphi_{j}\right|$.

In the following, we give these basis functions for linear simplicial finite elements in two and three dimensions. Here $S_{h} \subset H_{0}^{1}(\Omega)$ and $M_{h} \subset L^{2}(\Omega)$, but $\operatorname{dim} M_{h}=\operatorname{dim} S_{h}$. Thus there will be no degree of freedom for M_{h} on the boundary of Ω.

Because of this the local basis functions for M_{h} should be defined carefully. If an element T has no vertices on the boundary of Ω, the local basis functions for M_{h} are defined in a standard way. For the reference triangle $\hat{T}:=\{(x, y): 0<x, 0<$ $y, x+y<1\}$, we have

$$
\hat{\mu}_{1}:=3-4 x-4 y, \quad \hat{\mu}_{2}:=4 x-1, \quad \text { and } \quad \hat{\mu}_{3}:=4 y-1,
$$

where the basis functions $\hat{\mu}_{1}, \hat{\mu}_{2}$ and $\hat{\mu}_{3}$ are associated with three vertices $(0,0),(1,0)$ and $(0,1)$ of the reference triangle. For the reference tetrahedron $\hat{T}:=\{(x, y, z): 0<x, 0<y, 0<z, x+y+z<1\}$, we have

$$
\hat{\mu}_{1}:=4-5 x-5 y-5 z, \quad \hat{\mu}_{2}:=5 x-1, \quad \hat{\mu}_{3}:=5 y-1, \quad \text { and } \quad \hat{\mu}_{4}:=5 z-1,
$$

where the basis functions $\hat{\mu}_{1}, \hat{\mu}_{2}, \hat{\mu}_{3}$ and $\hat{\mu}_{4}$ are associated with four vertices $(0,0,0),(1,0,0),(0,1,0)$ and $(0,0,1)$ of the reference tetrahedron.

If an element T has a vertex on the boundary of Ω, we consider a local biorthogonal basis excluding this vertex. In this case, there will be only two local basis functions in the two-dimensional case and three local basis functions in the threedimensional case. Since the local biorthogonal basis is sought in a linear polynomial space, we will have one extra degree of freedom due to one excluded vertex. This degree of freedom is utilized to guarantee that the local basis functions sum to one.

In other words, for any element T, only those vertices which are inside Ω are used to construct local biorthogonal basis functions excluding those vertices on the boundary of Ω. However, it is important to guarantee that these local basis functions sum to one. If an element T has only one vertex inside Ω, then the local basis function is set to be a constant function. A special consideration is needed if an element T has all vertices on the boundary. In such a case, the support of a biorthogonal basis function of a neighboring element is extended to this element with value one on T. We refer to [30, 31] for more detail about the construction of these basis functions in the two-dimensional case. This construction is easily extended to the three-dimensional case.

The global basis functions for the test space are constructed by glueing the local basis functions together. This process is exactly as in the standard finite element method. We just need to replace the local finite element basis functions by these new local basis functions. These global basis functions then satisfy the condition of biorthogonality (9) with global finite element basis functions. As these functions in M_{h} are defined exactly in the same way as the finite element basis functions in S_{h}, they satisfy supp $\mu_{i}=\operatorname{supp} \varphi_{i}$ for $i=1, \ldots, n$.

Now we show that M_{h} satisfies Assumption 1(i)-(iii). As the first assumption is satisfied by construction, we consider the second assumption. Let $\phi_{h}=\sum_{k=1}^{n} a_{k} \phi_{k} \in S_{h}$ and set $\mu_{h}=\sum_{k=1}^{n} a_{k} \mu_{k} \in M_{h}$. By using the biorthogonality relation (9) and the quasi-uniformity assumption, we get

$$
\int_{\Omega} \phi_{h} \mu_{h} \mathrm{~d} \mathbf{x}=\sum_{i, j=1}^{n} a_{i} a_{j} \int_{\Omega} \phi_{i} \mu_{j} \mathrm{~d} \mathbf{x}=\sum_{i=1}^{n} a_{i}^{2} c_{i} \geq C \sum_{i=1}^{n} a_{i}^{2} h_{i}^{d} \geq C\left\|\phi_{h}\right\|_{L^{2}(\Omega)}^{2},
$$

where h_{i} denotes the mesh-size at ithe vertex. Taking into account the fact that $\left\|\phi_{h}\right\|_{L^{2}(\Omega)}^{2} \equiv\left\|\mu_{h}\right\|_{L^{2}(\Omega)}^{2} \equiv \sum_{i=1}^{n} a_{i}^{2} h_{i}^{d}$, we find that Assumption 1(ii) is satisfied. Since the sum of the local basis functions of M_{h} is one, Assumption 1(iii) can be proved as in [32,31].

After statically condensing out variables $\boldsymbol{\sigma}_{h}$ and $\boldsymbol{\phi}_{h}$, we arrive at a reduced system

$$
\left(\mathrm{K}-\left(\mathrm{W}^{T} \mathrm{D}^{-1} \mathrm{~B}+\mathrm{B}^{T} \mathrm{D}^{-1} \mathrm{~W}\right)+\mathrm{B}^{T} \mathrm{D}^{-1}(\mathrm{~A}+\mathrm{M}) \mathrm{D}^{-1} \mathrm{~B}\right) u_{h}=f_{h} .
$$

The variational formulation of this reduced system is given by (11).

4. An a priori error estimate

Before proceeding to establish an a priori error estimate, we want to eliminate the gradient of the smoother $\boldsymbol{\sigma}_{h}$ and Lagrange multiplier ϕ_{h} from the saddle point problem (7). To this end, we introduce a quasi-projection operator: Q_{h} : $L^{2}(\Omega) \rightarrow S_{h}$, which is defined as

$$
\int_{\Omega} Q_{h} v \mu_{h} \mathrm{~d} \mathbf{x}=\int_{\Omega} v \mu_{h} \mathrm{~d} \mathbf{x}, \quad v \in L^{2}(\Omega), \mu_{h} \in M_{h} .
$$

This type of operator is introduced in [33] to obtain the finite element interpolation of non-smooth functions satisfying boundary conditions, and is used in [34] in the context of mortar finite elements. The definition of Q_{h} allows us to write the weak gradient as

$$
\sigma_{h}=Q_{h}\left(\nabla u_{h}\right),
$$

where operator Q_{h} is applied to the vector ∇u_{h} component-wise. We see that Q_{h} is well defined due to Assumption 1(i) and (ii). Furthermore, the restriction of Q_{h} to S_{h} is the identity. Hence Q_{h} is a projection onto the space S_{h}. We note that Q_{h} is not the orthogonal projection onto S_{h} but an oblique projection onto S_{h}, see [35,36]. Using the biorthogonality relation between the basis functions of S_{h} and M_{h}, the action of operator Q_{h} on a function $v \in L^{2}(\Omega)$ can be written as

$$
Q_{h} v=\sum_{i=1}^{n} \frac{\int_{\Omega} \mu_{i} v \mathrm{~d} \mathbf{x}}{c_{i}} \varphi_{i},
$$

which tells that the operator Q_{h} is local in the sense to be given below, see also [37]. Let $S\left(T^{\prime}\right)$ be the patch of an element $T^{\prime} \in \mathcal{T}_{h}$ which is the interior of the closed set

$$
\bar{S}\left(T^{\prime}\right)=\bigcup\left\{\bar{T} \in \mathcal{T}_{h}: \partial T \cap \partial T^{\prime} \neq \emptyset\right\}
$$

Then Q_{h} is local in the sense that for any $v \in L^{2}(\Omega)$, the value of $Q_{h} v$ at any point in $T \in \mathcal{T}_{h}$ only depends on the value of v in $S(T)$ [37]. In the following, we will use a generic constant C, which will take different values at different places but will be always independent of the mesh-size h. The stability and approximation properties of Q_{h} in L^{2} and H^{1}-norm can be shown as in [31,30].

Lemma 1. Under Assumption 1(i)-(iii)

$$
\begin{array}{ll}
\left\|Q_{h} v\right\|_{L^{2}(\Omega)} \leq C\|v\|_{L^{2}(\Omega)} & \text { for } v \in L^{2}(\Omega) \\
\left|Q_{h} w\right|_{H^{1}(\Omega)} \leq C|w|_{H^{1}(\Omega)} & \text { for } w \in H^{1}(\Omega)
\end{array}
$$

and for $0<s \leq 1$ and $v \in H^{1+s}(\Omega)$

$$
\begin{aligned}
& \left\|v-Q_{h} v\right\|_{L^{2}(\Omega)} \leq C h^{1+s}|v|_{H^{s+1}(\Omega)} \\
& \left\|v-Q_{h} v\right\|_{H^{1}(\Omega)} \leq C h^{s}|v|_{H^{s+1}(\Omega)}
\end{aligned}
$$

Using the property of operator Q_{h}, we can eliminate the degrees of freedom corresponding to σ_{h} so that our problem is to find $u_{h} \in S_{h}$ such that

$$
\begin{equation*}
J\left(u_{h}\right)=\min _{v_{h} \in S_{h}} J\left(v_{h}\right), \tag{10}
\end{equation*}
$$

where

$$
J\left(v_{h}\right)=\left\|\nabla\left(Q_{h}\left(\nabla v_{h}\right)\right)\right\|_{L^{2}(\Omega)}^{2}+\left\|Q_{h}\left(\nabla v_{h}\right)-\nabla v_{h}\right\|_{L^{2}(\Omega)}-2 f\left(v_{h}\right)
$$

Let the bilinear form $a(\cdot, \cdot)$ be defined as

$$
a\left(u_{h}, v_{h}\right)=\int_{\Omega} \nabla \boldsymbol{\sigma}_{h}: \nabla \boldsymbol{\tau}_{h} \mathrm{~d} \mathbf{x}+\int_{\Omega}\left(\boldsymbol{\sigma}_{h}-\nabla u_{h}\right) \cdot\left(\boldsymbol{\tau}_{h}-\nabla v_{h}\right) \mathrm{d} \mathbf{x}
$$

with $\sigma_{h}=Q_{h}\left(\nabla u_{h}\right)$ and $\tau_{h}=Q_{h}\left(\nabla v_{h}\right)$. Since the bilinear form $a(\cdot, \cdot)$ is symmetric, the minimization problem (10) is equivalent to the variational problem of finding $u_{h} \in S_{h}$ such that [2,17]

$$
\begin{equation*}
a\left(u_{h}, v_{h}\right)=f\left(v_{h}\right), \quad v_{h} \in S_{h} \tag{11}
\end{equation*}
$$

Moreover, we can show that the bilinear form $A(\cdot, \cdot)$ is coercive on $V_{h} \times V_{h}$. For a proof, see [16].
Lemma 2. The bilinear form $A(\cdot, \cdot)$ is coercive on $V_{h} \times V_{h}$. That is

$$
A\left(\left(u_{h}, \boldsymbol{\sigma}_{h}\right),\left(u_{h}, \boldsymbol{\sigma}_{h}\right)\right) \geq C\left(\left\|u_{h}\right\|_{H^{1}(\Omega)}^{2}+\left\|\boldsymbol{\sigma}_{h}\right\|_{H^{1}(\Omega)}^{2}\right)
$$

Lemma 3. The bilinear form $a(\cdot, \cdot)$ satisfies

$$
a\left(u_{h}, u_{h}\right) \geq C\left(\left\|u_{h}\right\|_{L^{2}(\Omega)}^{2}+\left\|\nabla Q_{h}\left(\nabla u_{h}\right)\right\|_{L^{2}(\Omega)}^{2}\right), \quad u_{h} \in S_{h} .
$$

Proof. Using Poincaré and a triangle inequality

$$
\begin{aligned}
\left\|u_{h}\right\|_{L^{2}(\Omega)}^{2}+\left\|\nabla Q_{h}\left(\nabla u_{h}\right)\right\|_{L^{2}(\Omega)}^{2} & \leq C\left(\left\|\nabla u_{h}-Q_{h}\left(\nabla u_{h}\right)\right\|_{L^{2}(\Omega)}^{2}+\left\|Q_{h}\left(\nabla u_{h}\right)\right\|_{L^{2}(\Omega)}^{2}\right) \\
& \leq C\left(\left\|\nabla u_{h}-Q_{h}\left(\nabla u_{h}\right)\right\|_{L^{2}(\Omega)}^{2}+\left\|\nabla Q_{h}\left(\nabla u_{h}\right)\right\|_{L^{2}(\Omega)}^{2}\right),
\end{aligned}
$$

where we apply Poincaré inequality again in the last step since $Q_{h}\left(\nabla u_{h}\right) \in V_{h}$.
Due to this result, we can define an inner product

$$
\left(u_{h}, v_{h}\right)_{a}:=a\left(u_{h}, v_{h}\right), \quad \text { and the corresponding norm }\left\|u_{h}\right\|_{a}:=a\left(u_{h}, u_{h}\right)
$$

induced by the bilinear form $a(\cdot, \cdot)$. Hence the following theorem holds.
Theorem 1. The variational problem (11) admits a unique solution which depends continuously on the data.

Proof. Since $u_{h}, v_{h} \in S_{h}$, it follows that $\left|a\left(u_{h}, v_{h}\right)\right| \leq\left\|u_{h}\right\|_{a}\left\|v_{h}\right\|_{a}$ and $\left|f\left(v_{h}\right)\right| \leq C\left\|v_{h}\right\|_{a}$. Moreover, using the definition of our norm $\|\cdot\|_{a}, a\left(v_{h}, v_{h}\right)=\left\|v_{h}\right\|_{a}$, and thus $a(\cdot, \cdot)$ is elliptic with respect to the norm $\|\cdot\|_{a}$. Hence our variational problem (11) has a unique solution by Lax-Milgram Lemma [2,25]. From the definition of the P-inner product, we have

$$
a\left(v_{h}, v_{h}\right)=\left\|v_{h}\right\|_{a}^{2}, \quad v_{h} \in S_{h}
$$

and thus, for the solution $u_{h} \in S_{h},\left\|u_{h}\right\|_{a}^{2}=f\left(u_{h}\right)$.
Since we have a unique solution u_{h} of the variational problem (11), σ_{h} is also uniquely determined. The error estimate is obtained in the energy norm $\|\cdot\|_{A}$ induced by the bilinear form $A(\cdot, \cdot)$ defined as

$$
\|(u, \sigma)\|_{A}:=\sqrt{|\boldsymbol{\sigma}|_{H^{1}(\Omega)}^{2}+\|\boldsymbol{\sigma}-\nabla u\|_{L^{2}(\Omega)}^{2}}, \quad(u, \sigma) \in H^{1}(\Omega) \times\left[H^{1}(\Omega)\right]^{d} .
$$

Theorem 2. Let u be the solution of continuous problem (3) with $u \in H^{4}(\Omega), \sigma=\nabla u$ and $\boldsymbol{\phi}=\Delta \boldsymbol{\sigma}$, and u_{h} be that of discrete problem (11) with $\sigma_{h}=Q_{h}\left(\nabla u_{h}\right)$. Then there exists a constant $C>0$ independent of the mesh-size h so that

$$
\left\|\left(u-u_{h}, \boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\right)\right\|_{A} \leq C\left(\inf _{\left(w_{h}, \boldsymbol{\theta}_{h}\right) \in \operatorname{Ker} B_{h}}\left\|\left(u-w_{h}, \boldsymbol{\sigma}-\boldsymbol{\theta}_{h}\right)\right\|_{A}+h|\boldsymbol{\phi}|_{H^{1}(\Omega)}\right) .
$$

Proof. Here u, σ and ϕ satisfy [26]

$$
\begin{aligned}
& A((u, \boldsymbol{\sigma}),(v, \boldsymbol{\tau}))+B(\boldsymbol{\phi},(v, \boldsymbol{\tau}))=f(v), \quad(v, \boldsymbol{\tau}) \in V, \\
& B(\boldsymbol{\psi},(u, \boldsymbol{\sigma}))=0, \quad \boldsymbol{\psi} \in\left[L^{2}(\Omega)\right]^{d} .
\end{aligned}
$$

Let $\left(w_{h}, \boldsymbol{\theta}_{h}\right) \in \operatorname{Ker} B_{h}$ so that $\left(u_{h}-w_{h}, \boldsymbol{\sigma}_{h}-\boldsymbol{\theta}_{h}\right) \in \operatorname{Ker} B_{h}$, and hence

$$
\left\|\left(u_{h}-w_{h}, \boldsymbol{\sigma}_{h}-\boldsymbol{\theta}_{h}\right)\right\|_{A} \leq \sup _{\left(v_{h}, \boldsymbol{\tau}_{h}\right) \in \operatorname{Ker} B_{h}} \frac{A\left(\left(u_{h}-w_{h}, \boldsymbol{\sigma}_{h}-\boldsymbol{\theta}_{h}\right),\left(v_{h}, \boldsymbol{\tau}_{h}\right)\right)}{\left\|\left(v_{h}, \boldsymbol{\tau}_{h}\right)\right\|_{A}}
$$

Since $A\left(\left(u-u_{h}, \boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\right),\left(v_{h}, \boldsymbol{\tau}_{h}\right)\right)+B\left(\boldsymbol{\phi},\left(v_{h}, \boldsymbol{\tau}_{h}\right)\right)=0$ for all $\left(v_{h}, \boldsymbol{\tau}_{h}\right) \in \operatorname{Ker} B_{h}$, we have

$$
\begin{aligned}
A\left(\left(u_{h}-w_{h}, \boldsymbol{\sigma}_{h}-\boldsymbol{\theta}_{h}\right),\left(v_{h}, \boldsymbol{\tau}_{h}\right)\right) & =A\left(\left(u-w_{h}, \boldsymbol{\sigma}-\boldsymbol{\theta}_{h}\right),\left(v_{h}, \boldsymbol{\tau}_{h}\right)\right)+A\left(\left(u_{h}-u, \boldsymbol{\sigma}_{h}-\boldsymbol{\sigma}\right),\left(v_{h}, \boldsymbol{\tau}_{h}\right)\right) \\
& =A\left(\left(u-w_{h}, \boldsymbol{\sigma}-\boldsymbol{\theta}_{h}\right),\left(v_{h}, \boldsymbol{\tau}_{h}\right)\right)+B\left(\boldsymbol{\phi},\left(v_{h}, \boldsymbol{\tau}_{h}\right)\right) .
\end{aligned}
$$

Denoting the orthogonal projection of $\boldsymbol{\phi}$ onto $\left[M_{h}\right]^{d}$ with respect to L^{2}-inner product by $\tilde{\boldsymbol{\phi}}_{h}$, we have

$$
B\left(\boldsymbol{\phi},\left(v_{h}, \boldsymbol{\tau}_{h}\right)\right)=\int_{\Omega}\left(\boldsymbol{\tau}_{h}-\nabla v_{h}\right) \cdot\left(\boldsymbol{\phi}-\tilde{\boldsymbol{\phi}}_{h}\right) \mathrm{d} \mathbf{x} \leq C h\left\|\boldsymbol{\tau}_{h}-\nabla v_{h}\right\|_{L^{2}(\Omega)}|\boldsymbol{\phi}|_{H^{1}(\Omega)}
$$

The result then follows by using the continuity of $A(\cdot, \cdot)$.
The theoretical proof of the approximation is based on the superapproximation of a gradient recovery operator recently proposed in [18]. First we need an assumption on our mesh similar to mesh conditions in [18]. Let $\mathcal{N}_{h}=\left\{\mathbf{x}_{i}\right\}_{i=1}^{n_{v}}$ be the set of all interior vertex nodes in \mathcal{T}_{h}, and S_{i} be the support of the finite element basis function ϕ_{i} at $\mathbf{x}_{i} \in \mathcal{N}_{h}$. We impose the following assumption on our mesh.

Assumption 2. Choosing $\mathbf{x}_{i} \in \mathcal{N}_{h}$ as the origin of local coordinates,

$$
\sum_{T \in S_{i}} \frac{|T|}{\left|S_{i}\right|}\left(\mathbf{z}_{T}\right)=O\left(h^{1+\alpha}\right) \mathbf{1}, \quad \mathbf{x}_{i} \in \mathcal{N}_{h},
$$

where \mathbf{z}_{T} is the coordinate vector of the barycenter of element $T, \alpha>0$, and $\mathbf{1}$ is the d-dimensional vector having each component 1.

This assumption holds with $\alpha=\infty$ for uniform meshes of the regular pattern, the Union Jack pattern and the crisscross pattern. The assumption allows $O\left(h^{1+\alpha}\right)$ deviation from those meshes. If two adjacent triangles in \mathcal{T}_{h} form an $O\left(h^{1+\alpha}\right)$ parallelogram, this assumption is satisfied [18]. The two triangles are adjacent when they share a common edge, and the two adjacent triangles form an $O\left(h^{1+\alpha}\right)$ parallelogram if the lengths of any two opposite edges differ only by $O\left(h^{1+\alpha}\right)$. This assumption guarantees that the relative positions of the barycenters of the elements are controlled. We refer to $[18,38]$ for further discussion on such meshes.

Let $\left(\nabla I_{h} u\right)_{\mid T}$ be the restriction of $\nabla I_{h} u$ to an element $T \in \mathcal{T}_{h}$. Then

$$
Q_{h}\left(\nabla I_{h} u\right)\left(\mathbf{x}_{i}\right)=\sum_{T \in S_{i}} \frac{|T|}{\left|S_{i}\right|}\left(\nabla I_{h} u\right)_{\mid T} .
$$

The following theorem can be proved exactly as in [18].

Theorem 3. Under Assumption 2, if $u \in W^{3, \infty}\left(S_{i}\right)$, for any $\mathbf{x}_{i} \in \mathcal{N}_{h}$

$$
\left|\left(Q_{h}\left(\nabla I_{h} u\right)\right)\left(\mathbf{x}_{i}\right)-(\nabla u)\left(\mathbf{x}_{i}\right)\right| \leq C h^{1+\alpha}\|u\|_{W^{3, \infty}\left(S_{i}\right)}
$$

Our goal is to prove a superapproximation property of the gradient recovery operator Q_{h} as in [18].
Theorem 4. Let $u \in W^{3, \infty}(\Omega)$, and $I_{h} u$ be the Lagrange interpolation of u with respect to vertex nodes in \mathcal{T}_{h}. Assume that the triangulation satisfies Assumption 2. Then

$$
\left\|\nabla u-Q_{h}\left(\nabla I_{h} u\right)\right\|_{0, \Omega} \leq C\left(h^{2}|u|_{H^{3}(\Omega)}+h^{1+\alpha}\|u\|_{W^{3, \infty}(\Omega)}\right) .
$$

Proof. Since the Lagrange interpolation operator reproduces all piecewise linear polynomials with respect to the mesh \mathcal{T}_{h},

$$
\left\|u-I_{h} u\right\|_{0, \Omega} \leq C h^{2}|u|_{H^{3}(\Omega)} .
$$

Now we decompose

$$
\begin{equation*}
\nabla u-Q_{h}\left(\nabla I_{h} u\right)=\nabla u-I_{h} \nabla u+I_{h} \nabla u-Q_{h}\left(\nabla I_{h} u\right) . \tag{12}
\end{equation*}
$$

The approximation property of I_{h} yields

$$
\left\|\nabla u-I_{h} \nabla u\right\|_{0, \Omega} \leq C h^{2}|u|_{H^{3}(\Omega)}
$$

Under Assumption 2, we have Theorem 3, and hence

$$
\begin{aligned}
\left\|Q_{h}\left(\nabla I_{h} u\right)-I_{h} \nabla u\right\|_{L^{2}(\Omega)} & \leq C\left(\sum_{T \in \mathcal{T}_{h}}|T| \sum_{\mathbf{z} \in \mathcal{N}_{h} \cap \bar{T}}\left|\left(Q_{h}\left(\nabla I_{h} u\right)\right)(\mathbf{z})-(\nabla u)(\mathbf{z})\right|^{2}\right)^{1 / 2} \\
& \leq C h^{1+\alpha}\|u\|_{W^{3, \infty}(\Omega)}
\end{aligned}
$$

The reason for getting a better estimate than in [18] is that we have homogeneous Dirichlet boundary condition for the gradient. If the finite element mesh is uniformly regular, then we get $\alpha=1$, and hence we have the following corollary.

Corollary 1. Assuming that the mesh \mathcal{T}_{h} satisfies Assumption 2 with $\alpha=1$. Then for $\nabla u \in\left[H_{0}^{1}(\Omega)\right]^{d}$, we have the following superapproximation property

$$
\left\|\nabla u-Q_{h}\left(\nabla I_{h} u\right)\right\|_{0, \Omega} \leq C h^{2}\|u\|_{W^{3, \infty}(\Omega)}
$$

The following theorem guarantees the suboptimal convergence rate of the finite element approximation under Assumption 2.

Theorem 5. Under the assumptions of Theorem 2, there exists $\left(v_{h}, \boldsymbol{\tau}_{h}\right) \in \operatorname{Ker} B_{h}$ such that

$$
\left\|\left(u-v_{h}, \sigma-\boldsymbol{\tau}_{h}\right)\right\|_{A} \leq C\left(h|u|_{H^{3}(\Omega)}+h|u|_{H^{2}(\Omega)}+h^{\alpha}\|u\|_{W^{3}, \infty(\Omega)}\right) .
$$

Proof. Let v_{h} be the Lagrange interpolation of u with respect to the mesh \mathcal{T}_{h}. Then it is well known that

$$
\left\|u-v_{h}\right\|_{H^{k}(\Omega)} \leq h^{2-k}|u|_{H^{2}(\Omega)}, \quad k=0,1
$$

Let us recall the definition of the error in the energy norm

$$
\left\|\left(u-v_{h}, \boldsymbol{\sigma}-\boldsymbol{\tau}_{h}\right)\right\|_{A}=\sqrt{\left|\sigma-\boldsymbol{\tau}_{h}\right|_{H^{1}(\Omega)}^{2}+\left\|\boldsymbol{\sigma}-\boldsymbol{\tau}_{h}-\nabla u+\nabla v_{h}\right\|_{L^{2}(\Omega)}^{2}}
$$

Let $\boldsymbol{\tau}_{h}=Q_{h}\left(\nabla v_{h}\right)$ so that $\left(v_{h}, \boldsymbol{\tau}_{h}\right) \in \operatorname{Ker} B_{h}$. The approximation property of operator Q_{h} given by Theorem 4 yields

$$
\left\|\nabla u-Q_{h}\left(\nabla v_{h}\right)\right\|_{L^{2}(\Omega)} \leq C\left(h^{2}|u|_{H^{3}(\Omega)}+h^{1+\alpha}\|u\|_{W^{3, \infty}(\Omega)}\right) .
$$

Hence, it suffices to show that

$$
\left\|\boldsymbol{\sigma}-\boldsymbol{\tau}_{h}\right\|_{H^{1}(\Omega)} \leq C\left(h|u|_{H^{3}(\Omega)}+h^{\alpha}\|u\|_{W^{3, \infty}(\Omega)}\right)
$$

Since $\sigma=\nabla u$ and $\boldsymbol{\tau}_{h}=Q_{h}\left(\nabla v_{h}\right)$,

$$
\begin{equation*}
\left\|\boldsymbol{\sigma}-\boldsymbol{\tau}_{h}\right\|_{H^{1}(\Omega)} \leq\left\|\boldsymbol{\sigma}-Q_{h} \boldsymbol{\sigma}\right\|_{H^{1}(\Omega)}+\left\|Q_{h} \sigma-Q_{h}\left(\nabla v_{h}\right)\right\|_{H^{1}(\Omega)} \tag{13}
\end{equation*}
$$

The first term in the right-hand side of (13) has the correct approximation from Lemma 1 . To estimate the second term, we use an inverse estimate

$$
\left\|Q_{h} \sigma-Q_{h}\left(\nabla v_{h}\right)\right\|_{H^{1}(\Omega)} \leq \frac{C}{h}\left\|Q_{h} \sigma-Q_{h}\left(\nabla v_{h}\right)\right\|_{L^{2}(\Omega)}
$$

and apply the projection property and L^{2}-stability of Q_{h} to write

$$
\left\|Q_{h} \sigma-Q_{h}\left(\nabla v_{h}\right)\right\|_{H^{1}(\Omega)} \leq \frac{C}{h}\left\|\nabla u-Q_{h}\left(\nabla v_{h}\right)\right\|_{L^{2}(\Omega)} .
$$

Since Theorem 4 gives

$$
\left\|\nabla u-Q_{h}\left(\nabla I_{h} u\right)\right\|_{0, \Omega} \leq C\left(h^{2}|u|_{H^{3}(\Omega)}+h^{1+\alpha}\|u\|_{W^{3, \infty}(\Omega)}\right),
$$

we have

$$
\left\|\boldsymbol{\sigma}-\boldsymbol{\tau}_{h}\right\|_{H^{1}(\Omega)} \leq C\left(h|u|_{H^{3}(\Omega)}+h^{\alpha}\|u\|_{W^{3}, \infty(\Omega)}\right)
$$

We combine the result of Theorems 2 and 5 to get the final result.
Theorem 6. Let u be the solution of continuous problem (3) with $u \in H^{4}(\Omega), \sigma=\nabla u$ and $\boldsymbol{\phi}=\Delta \boldsymbol{\sigma}$, and u_{h} be that of discrete problem (11) with $\sigma_{h}=Q_{h}\left(\nabla u_{h}\right)$. Then under Assumption 2 there exists a constant $C>0$ independent of the mesh-size h so that

$$
\left\|\left(u-u_{h}, \sigma-\sigma_{h}\right)\right\|_{A} \leq C\left(h\|u\|_{H^{3}(\Omega)}+h^{\alpha}\|u\|_{W^{3, \infty}(\Omega)}+h|\boldsymbol{\phi}|_{H^{1}(\Omega)}\right) .
$$

If the mesh \mathcal{T}_{h} satisfies Assumption 2 with $\alpha=1$, we get the optimal estimate:

$$
\left\|\left(u-u_{h}, \sigma-\sigma_{h}\right)\right\|_{A} \leq \operatorname{Ch}\left(\|u\|_{W^{3, \infty}(\Omega)}+|\boldsymbol{\phi}|_{H^{1}(\Omega)}\right)
$$

5. Conclusion

A mixed finite element method is presented for approximating the biharmonic equation with clamped boundary condition. Two additional vector variables are introduced to obtain the mixed formulation: the gradient of the stream function and the Lagrange multiplier. Working with a pair of finite element bases forming a biorthogonal system for the gradient of the stream function and the Lagrange multiplier, we can eliminate these two vector variables from the algebraic system and arrive at a formulation involving only the stream function. This yields an efficient discretization scheme. The superapproximation property of the gradient recovery operator allows us to show that the finite element approximation is optimal for uniformly regular meshes.

Acknowledgments

I am grateful to the anonymous referees for their valuable suggestions to improve the quality of the earlier version of this work.

References

[1] V. Girault, P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin, 1986.
[2] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, 1978.
[3] G. Engel, K. Garikipati, T.J.R. Hughes, M.G. Larson, L. Mazzei, R.L. Taylor, Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity, Computer Methods in Applied Mechanics and Engineering 191 (2002) 3669-3750.
[4] G.N. Wells, E. Kuhl, K. Garikipati, A discontinuous Galerkin method for the Cahn-Hilliard equation, Journal of Computational Physics 218 (2006) 860-877.
[5] G. Wahba, Spline Models for Observational Data, first edition, in: Series in Applied Mathematic, vol. 59, SIAM, Philadelphia, 1990.
[6] P. Ciarlet, P. Raviart, A mixed finite element method for the biharmonic equation, in: C. De Boor (Ed.), Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations, Academic Press, New York, 1974, pp. 125-143.
[7] P.G. Ciarlet, R. Glowinski, Dual iterative techniques for solving a finite element approximation of the biharmonic euation, Computer Methods in Applied Mechanics and Engineering 5 (1975) 277-295.
[8] R.S. Falk, Approximation of the biharmonic equation by a mixed finite element method, SIAM Journal of Numerical Analysis 15 (1978) $556-567$.
[9] R. Falk, J.E. Osborn, Error estimates for mixed methods, RAIRO Analyse Numérique 14 (1980) 249-277.
[10] I. Babuška, J. Osborn, J. Pitkäranta, Analysis of mixed methods using mesh dependent norms, Mathematics of Computation 35 (1980) $1039-1062$.
[11] C. Johnson, J. Pitkäranta, Some mixed finite element methods related to reduced integration, Mathematics of Computation 38(1982) 375-400.
[12] P. Monk, A mixed finite element method for the biharmonic equation, SIAM Journal of Numerical Analysis 24 (1987) 737-749.
[13] X. Cheng, W. Han, H. Huang, Some mixed finite element methods for biharmonic equation, Journal of Computational and Applied Mathematics 126 (2000) 91-109.
[14] S.C. Brenner, L.-Y. Sung, C^{0} interior penalty methods for fourth order elliptic boundary value problems on polygonal domains, Journal of Scientific Computing 22-23 (2005) 83-118.
[15] B.P. Lamichhane, A mixed finite element method for the biharmonic problem using biorthogonal or quasi-biorthogonal systems, Journal of Scientific Computing 46 (2011) 379-396.
[16] D.N. Arnold, F. Brezzi, Some new elements for the Reissner-Mindlin plate model, in: Boundary Value Problems for Partial Differerntial Equations and Applications, Masson, Paris, 1993, pp. 287-292.
[17] D. Braess, Finite Elements. Theory, Fast Solver, and Applications in Solid Mechanics, second edition, Cambridge Univ. Press, 2001.
[18] J. Xu, Z. Zhang, Analysis of recovery type a posteriori error estimators for mildly structured grids, Mathematics of Computation 73 (2004) $1139-1152$.
[19] R. Scholz, A mixed method for 4th order problems using linear finite elements, RAIRO Analyse Numérique 12 (1978) 85-90.
[20] C. Davini, I. Pitacco, An uncontrained mixed method for the biharmonic problem, SIAM Journal of Numerical Analysis 38 (2001) $820-836$.
[21] S.C. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, New York, 1994.
[22] J.-L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, vol. I, Springer-Verlag, New York, 1972, Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181.
[23] R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[24] P. Grisvard, Elliptic Problems in Nonsmooth Domains, in: Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985.
[25] S.C. Brenner, L. Sung, Linear finite element methods for planar linear elasticity, Mathematics of Computation 59 (1992) 321 - 338.
[26] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991.
[27] D. Braess, Stability of saddle point problems with penalty, M ${ }^{2}$ AN 30 (1996) 731-742.
[28] D.N. Arnold, R.S. Falk, Analysis of a linear-linear finite element for the Reissner-Mindlin plate model, Mathemattical Models and Methods in Applied Science (1997) 217-238.
[29] D. Boffi, C. Lovadina, Analysis of new augmented lagrangian formulations for mixed finite element schemes, Numerische Mathematik 75 (1997) 405-419.
[30] B.P. Lamichhane, Higher Order Mortar Finite Elements with Dual Lagrange Multiplier Spaces and Applications. Ph.D. Thesis, Universität Stuttgart, 2006.
[31] C. Kim, R.D. Lazarov, J.E. Pasciak, P.S. Vassilevski, Multiplier spaces for the mortar finite element method in three dimensions, SIAM Journal of Numerical Analysis 39 (2001) 519-538.
[32] B.P. Lamichhane, A mixed finite element method for nonlinear and nearly incompressible elasticity based on biorthogonal systems, International Journal for Numerical Methods in Engineering 79 (2009) 870-886.
[33] L.R. Scott, S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Mathematics of Computation 54 (190) (1990) 483-493.
[34] C. Bernardi, Y. Maday, A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method. in: H. Brezzi et al., (Eds.), Nonlinear Partial Differential Equations and their Applications, Paris, 1994, pp. 13-51.
[35] A. Galántai, Projectors and Projection Methods, Kluwer Academic Publishers, Dordrecht, 2003.
[36] D.B. Szyld, The many proofs of an identity on the norm of oblique projections, Numerical Algorithms 42 (2006) 309-323.
[37] M. Ainsworth, J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Wiley-Interscience, New York, 2000.
[38] R. Bank, J. Xu, Asymptotically exact a posteriori error estimators, part I: grids with superconvergence, SIAM Journal on Numerical Analysis 41 (2003) 2294-2312.

[^0]: * Corresponding address: School of Mathematical \& Physical Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia. Tel.: +61249215529; fax: +61249216898.

 E-mail addresses: Bishnu.Lamichhane@newcastle.edu.au, blamichha@gmail.com.

