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Recent works have revealed that the recipe for field–antifield quantization of Lagrangian gauge theories
can be considerably relaxed when it comes to choosing a path integral measure ρ if a zero-order term νρ

is added to the � operator. The effects of this odd scalar term νρ become relevant at two-loop order.
We prove that νρ is essentially the odd scalar curvature of an arbitrary torsion-free connection that is
compatible with both the anti-Poisson structure E and the density ρ . This extends a previous result for
non-degenerate antisymplectic manifolds to degenerate anti-Poisson manifolds that admit a compatible
two-form.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

The main purpose of this Letter is to report on new geometric
insights into the field–antifield formalism. In general, the field–
antifield formalism [1–3] is a recipe for constructing Feynman
rules for Lagrangian field theories with gauge symmetries. The
field–antifield formalism is in principle able to handle the most
general gauge algebra, i.e. open gauge algebras of reducible type.
The input is usually a local relativistic field theory, formulated via
a classical action principle in a geometric configuration space. In
the field–antifield scheme, the original field variables are extended
with various stages of ghosts, antighosts and Lagrange multipliers—
all of which are then further extended with corresponding anti-
fields; the gauge symmetries are encoded in a nilpotent Fermionic
BRST symmetry [4,5]; and the original action is deformed into a
BRST-invariant master action, whose Hessian has the maximal al-
lowed rank. The full quantum master action

W = S +
∞∑

n=1

h̄n Mn (1.1)
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is determined recursively order by order in h̄ from a consistent set
of quantum master equations

(S, S) = 0, (1.2)

(M1, S) = i(�ρ S), (1.3)

(M2, S) = i(�ρ M1) + νρ − 1

2
(M1, M1), (1.4)

(Mn, S) = i(�ρ Mn−1) − 1

2

n−1∑

r=1

(Mr, Mn−r), n � 3. (1.5)

Here (· , ·) is the antibracket (or anti-Poisson structure), �ρ is the
odd Laplacian and νρ is an odd scalar, which become relevant in
perturbation theory at loop order 0, 1, and 2, respectively. It has
only recently been realized that the field–antifield formalism can
consistently accommodate a non-zero νρ term, thereby providing
a more flexible framework for field–antifield quantization [6–8].

The classical master equation (1.2) is a generalization of Zinn-
Justin’s equation [9], which allows to set up consistent renormal-
ization (if the field theory is renormalizable). If the theory is not
anomalous at the one-loop level, there will exist a local solution
M1 to the next Eq. (1.3), and so forth. Although the field–antifield
formalism in its basic form is only a formal scheme—i.e. particu-
larly, it assumes that results from finite-dimensional analysis are
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directly applicable to field theory, which has infinitely many de-
grees of freedom—it has nevertheless been successfully applied to
a large variety of physical models. It has mainly been used in a
truncated form of the full set of quantum master Eqs. (1.2)–(1.5),
where all the following quantities

(S, S), (�ρ S), νρ, M1, M2, M3, . . . , (1.6)

are set identically equal to zero. One can for instance mention the
AKSZ paradigm [10,11] as a broad example that uses the truncated
field–antifield formalism (1.6) to quantize supersymmetric topo-
logical field theories [12–15]. Currently, very few scientific works
describe solutions with non-zero Mn ’s, primarily due to the sin-
gular nature of the odd Laplacian �ρ in field theory (again be-
cause of the infinitely many degrees of freedom). Nevertheless, it
should be fruitful to study generic solutions of the full quantum
master equation. See the original paper [1] for an interesting so-
lution with M1 �= 0. Finally, it has in many cases been explicitly
checked that the field–antifield formalism produces the same re-
sult as the Hamiltonian formulation [16–18]. The formalism has
also influenced work in closed string field theory [19] and several
branches of mathematics. The geometry behind the field–antifield
formalism was further clarified in Refs. [20–23].

In this Letter we shall only explicitly consider the case of
finitely many variables. Our main result concerns the odd scalar νρ ,
which is a certain function of the anti-Poisson structure E AB

and the density ρ , cf. Eq. (6.1) below. It turns out that νρ has
a geometric interpretation as (minus 1/8 times) the odd scalar
curvature R of any connection ∇ that satisfies three conditions;
namely that ∇ is (1) anti-Poisson, (2) torsion-free and (3) ρ-
compatible. This is a rather robust conclusion as we shall prove
in this Letter that it even holds for degenerate antibrackets. (De-
generate anti-Poisson structures appear naturally from for instance
the Dirac antibracket construction for antisymplectic second-class
constraints [7,21,24,25].)

2. Anti-Poisson structure E A B

An anti-Poisson structure is by definition a possibly degenerate
(2,0) tensor field E AB with upper indices that is Grassmann-odd

ε
(

E AB) = εA + εB + 1, (2.1)

that is skewsymmetric

E AB = −(−1)(εA+1)(εB +1)E B A, (2.2)

and that satisfies the Jacobi identity
∑

cycl.A,B,C

(−1)(εA+1)(εC +1)E AD(−→
∂ l

D E BC ) = 0. (2.3)

3. Compatible two-form E A B

In general, an anti-Poisson manifold could have singular points
where the rank of E AB jumps, and it is necessary to impose a
regularity criterion to proceed. We shall here assume that the anti-
Poisson structure E AB admits a compatible two-form field E AB , i.e.
that there exists a two-form field E AB with lower indices that is
Grassmann-odd

ε(E AB) = εA + εB + 1, (3.1)

that is skewsymmetric

E AB = −(−1)εAεB E B A, (3.2)

and that is compatible with the anti-Poisson structure in the sense
that
E AB E BC EC D = E AD , (3.3)

E AB E BC EC D = E AD . (3.4)

This is a relatively mild requirement, which is always automatically
satisfied for a Dirac antibracket on antisymplectic manifolds with
antisymplectic second-class constraints [7,21,24,25]. Note that the
two-form E AB is neither unique nor necessarily closed. One can
define a (1,1) tensor field as

P A
C ≡ E AB E BC , (3.5)

or equivalently,

P A
C ≡ E AB E BC = (−1)εA (εC +1) P C

A . (3.6)

It then follows from either of the compatibility relations (3.3)
and (3.4) that P A

B is an idempotent

P A
B P B

C = P A
C . (3.7)

4. The �E operator

An anti-Poisson structure with a compatible two-form field E AB

gives rise to a Grassmann-odd, second-order �E operator that
takes semidensities to semidensities. It is defined in arbitrary co-
ordinates as [7]

�E ≡ �1 + ν(1)

8
− ν(2)

8
− ν(3)

24
+ ν(4)

24
+ ν(5)

12
, (4.1)

where �1 is the odd Laplacian

�ρ ≡ (−1)εA

2ρ

−→
∂ l

AρE AB
−→
∂ l

B , (4.2)

with ρ = 1, and where

ν(1) ≡ (−1)εA
(−→
∂ l

B

−→
∂ l

A E AB)
, (4.3)

ν(2) ≡ (−1)εAεC
(−→
∂ l

D E AB)
E BC

(−→
∂ l

A EC D)
, (4.4)

ν(3) ≡ (−1)εB
(−→
∂ l

A E BC
)

EC D(−→
∂ l

D E B A)
, (4.5)

ν(4) ≡ (−1)εB
(−→
∂ l

A E BC
)

EC D(−→
∂ l

D E B F )
P F

A, (4.6)

ν(5) ≡ (−1)εAεC
(−→
∂ l

D E AB)
E BC

(−→
∂ l

A EC F )
P F

D

= (−1)(εA+1)εB E AD(−→
∂ l

D E BC )(−→
∂ l

C E A F
)

P F
B . (4.7)

It is shown in Ref. [7] that the �E operator defined in Eq. (4.1)
does not depend on the choice of local coordinates, it does not
depend on the choice of compatible two-form field E AB , and it
does map semidensities into semidensities. Moreover, the Jacobi
identity (2.3) precisely ensures that �E is nilpotent

�2
E = 1

2
[�E ,�E ] = 0. (4.8)

Earlier works on the �E operator include Refs. [6,25–29].

5. The � operator

Classically, the field–antifield formalism is governed by the anti-
Poisson structure E AB , or equivalently, the antibracket

( f , g) ≡ (
f
←−
∂

r
A

)
E AB(−→

∂ l
B g

) = −(−1)(ε f +1)(εg+1)(g, f ). (5.1)

Quantum mechanically, the field–antifield recipe instructs one to
choose an arbitrary path integral measure ρ , and to use it to build
a nilpotent, Grassmann-odd, second-order � operator that takes
scalar functions into scalar functions. It is natural to build the �

operator by conjugating the �E operator (4.1) with appropriate
square roots of the density ρ as follows:

� ≡ 1√
ρ

�E
√

ρ. (5.2)
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In this way the � operator trivially inherits the nilpotency prop-
erty from the �E operator,

�2 = 1√
ρ

�2
E
√

ρ = 0. (5.3)

In physical applications the nilpotency (5.3) of � is important for
the underlying BRST symmetry of the theory.

6. The odd scalar νρ

The odd scalar function νρ is defined as

νρ ≡ (�1) = 1√
ρ

(�E
√

ρ)

= ν
(0)
ρ + ν(1)

8
− ν(2)

8
− ν(3)

24
+ ν(4)

24
+ ν(5)

12
, (6.1)

where ν(1) , ν(2) , ν(3) , ν(4) , ν(5) are given in Eqs. (4.3)–(4.7), and
the quantity ν

(0)
ρ is given as

ν
(0)
ρ ≡ 1√

ρ
(�1

√
ρ). (6.2)

The second-order � operator (5.2) decomposes as

� = �ρ + νρ, (6.3)

where �ρ is the odd Laplacian (4.2). The nilpotency of � implies
that

�2
ρ = (νρ, ·), (6.4)

(�ρνρ) = 0. (6.5)

The possibility of a non-trivial νρ has only recently been observed,
cf. Refs. [6–8]. In the past, the odd scalar term νρ was not present
due to a certain compatibility relation between E and ρ , which
was unnecessarily imposed, and which (using our new terminol-
ogy) made νρ vanish. In terms of the quantum master equation

�e
i
h̄ W = 0, (6.6)

the odd scalar νρ enters at the two-loop order O(h̄2)

1

2
(W , W ) = ih̄�ρ W + h̄2νρ, (6.7)

which in turn leads to the set of Eqs. (1.2)–(1.5).

7. Connection

In the next two Sections 7 and 8 we will briefly state our sign
conventions and definitions for the covariant derivative and the
curvature in the presence of Fermionic degrees of freedom. A more
complete treatment can be found in Refs. [8,30]. Other references
include Ref. [31]. Our convention for the left covariant derivative
(∇A X)B of a left vector field X A is [30]

(∇A X)B ≡ (−→
∂ l

A X B) + (−1)εX (εB +εC )ΓA
B

C XC ,

ε
(

X A) = εX + εA . (7.1)

A connection ΓA
B

C is called anti-Poisson if it preserves the anti-
Poisson structure E AB , i.e.

0 = (∇A E)BC

≡ (−→
∂ l

A E BC ) + (
ΓA

B
D E DC − (−1)(εB +1)(εC +1)(B ↔ C)

)
. (7.2)

It is useful to define a reordered Christoffel symbol Γ A
BC as

Γ A
BC ≡ (−1)εAεB ΓB

A
C . (7.3)
A torsion-free connection Γ A
BC has the following symmetry in the

lower indices:

Γ A
BC = −(−1)(εB +1)(εC +1)Γ A

C B . (7.4)

A connection Γ A
BC is called ρ-compatible if

Γ B
B A = (

lnρ
←−
∂r

A

)
. (7.5)

There are in principle two definitions for the divergence div X of a
bosonic vector field X with εX = 0. The first divergence definition
depends on the density ρ

divρ X ≡ (−1)εA

ρ

−→
∂ l

A

(
ρ X A)

, (7.6)

while the second definition depends on the connection ∇
div∇ X ≡ str(∇ X) ≡ (−1)εA (∇A X)A

= (
(−1)εA

−→
∂ l

A + Γ B
B A

)
X A . (7.7)

The ρ-compatibility condition (7.5) precisely ensures that the two
definitions (7.6) and (7.7) coincide, and hence that there is a
unique notion of volume [32]. We shall only consider torsion-free
connections ∇ that are anti-Poisson and ρ-compatible, i.e. connec-
tions that satisfy the above three conditions (7.2), (7.4) and (7.5).
Then the odd Laplacian �ρ can be written on a manifestly covari-
ant form

�ρ = (−1)εA

2
∇A E AB∇B = (−1)εB

2
E B A∇A∇B . (7.8)

8. Curvature

The Riemann curvature tensor is

R A
BC D ≡ (−1)εAεB

(−→
∂ l

BΓ A
C D

) + Γ A
B EΓ E

C D

− (−1)εBεC (B ↔ C). (8.1)

(Note that the ordering of indices on the Riemann curvature tensor
is slightly non-standard to minimize appearances of sign factors.)
The Ricci tensor is

R AB ≡ RC
C AB

= (−1)εC

ρ

(−→
∂ l

CρΓ C
AB

) − (−→
∂ l

A lnρ
←−
∂

r
B

) − ΓA
C

DΓ D
C B

= −(−1)(εA+1)(εB +1)R B A . (8.2)

9. Odd scalar curvature

The odd scalar curvature R is defined as the Ricci tensor R AB

contracted with the anti-Poisson tensor E AB ,

R ≡ R AB E B A = E AB R B A, ε(R) = 1. (9.1)

We now assert that the odd scalar curvature

R = −8νρ (9.2)

of an arbitrary connection ∇ that is anti-Poisson, torsion-free and
ρ-compatible, is equal to (minus eight times) the odd scalar νρ .
In particular one sees that the odd scalar curvature R carries no
information about the connection ∇ used, and it depends only
on E and ρ . Eq. (9.2) was proven for the non-degenerated case
in Ref. [8]. The degenerated case is proven in Appendix A.
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Appendix A. Proof of the Main Eq. (9.2)

Eq. (C.9) in Ref. [8] yields that the odd scalar curvature R can
be written as

R = −8ν
(0)
ρ − ν(1) − 1

2
R I , (A.1)

where ν
(0)
ρ , ν(1) and R I are defined in Eqs. (6.2), (4.3) and (A.2),

respectively. Since the expression (A.2) below for R I only depends
on the torsion-free part of the connection, one does in principle
not need the torsion-free condition (7.4) from now on. The heart
of the proof consists of the following ten “one-line calculations”:

R I ≡ Γ A
BC (EC B ←−

∂r
A) = Γ A

BC
((

EC D E D F E F B)←−
∂r

A

) = 2R II + R III, (A.2)

R II ≡ Γ A
BC P C

D
(

E D B ←−
∂r

A

) = −R IV − ν(2), (A.3)

R III ≡ (−1)εA (εC +1)ΓF
A

B E BC (−→
∂ l

A EC D
)

E D F = 2R III + RV, (A.4)

R IV ≡ Γ A
BC EC D(−→

∂ l
D E B F )

E F A = RVI − R IV, (A.5)

RV ≡ (−1)εAεC ΓF
A

B P B
C
(−→
∂ l

A EC D)
P D

F = RVII − ν(5), (A.6)

RVI ≡ Γ A
BC

(
EC B ←−

∂r
D

)
P D

A = 2RVIII + R IX, (A.7)

RVII ≡ (−1)(εA+1)(εC +1)E ABΓ B
C D E D F (−→

∂ l
F E AG)

P G
C

= R IV − RVIII, (A.8)

RVIII ≡ Γ A
BC P C

D
(

E D B ←−
∂r

F

)
P F

A = −R IV − ν(5), (A.9)

R IX ≡ (−1)εA (εC +1)ΓG
A

B E BC P A
D(−→

∂ l
D EC F

)
E F G = −RX − ν(4), (A.10)

RX ≡ (−1)εA ΓF
A

B E BC (−→
∂ l

C E AD
)

E D F = −R III − ν(3). (A.11)

Here we have used the upper compatibility relation (3.3) for the
two-form E AB in the second equality of Eqs. (A.2), (A.7), (A.8),
(A.9) and (A.10); the lower compatibility relation (3.4) for the two-
form E AB in the second equality of Eq. (A.4); the anti-Poisson
property (7.2) for the connection ∇ in the second equality of
Eqs. (A.3), (A.6), (A.9), (A.10) and (A.11); and the Jacobi iden-
tity (2.3) in the second equality of Eqs. (A.5) and (A.8). From these
ten relations (A.2)–(A.11), the quantity R III can be determined as
follows:

−R III = RV = RVII − ν(5) = (R IV − RVIII) + (R IV + RVIII) = 2R IV

= RVI = 2RVIII + R IX = −2
(

R IV + ν(5)
) + (

R III + ν(3) − ν(4)
)

= 2R III + (
ν(3) − ν(4) − 2ν(5)

)
, (A.12)

so that

R III = 1

3

(−ν(3) + ν(4) + 2ν(5)
)
. (A.13)
Next, R I can be expressed in terms of R III:

1

2
R I = R II + 1

2
R III = −(

R IV + ν(2)
) + 1

2
R III = R III − ν(2). (A.14)

Inserting Eqs. (A.13) and (A.14) into Eq. (A.1) yields the main
Eq. (9.2):

R = −8ν
(0)
ρ − ν(1) − 1

2
R I

= −8ν
(0)
ρ − ν(1) + ν(2) + 1

3

(
ν(3) − ν(4) − 2ν(5)

)

= −8νρ. (A.15)
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