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Abstract

The weighted low-rank approximation problem in general has no analytical solution in terms of the
singular value decomposition and is solved numerically using optimization methods. Four representations
of the rank constraint that turn the abstract problem formulation into parameter optimization problems are
presented. The parameter optimization problem is partially solved analytically, which results in an equivalent
quadratically constrained problem. A commonly used re-parameterization avoids the quadratic constraint and
makes the equivalent problem a nonlinear least squares problem, however, it might be necessary to change
this re-parameterization during the iteration process. It is shown how the cost function can be computed
efficiently in two special cases: row-wise and column-wise weighting.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

We consider the following matrix approximation problem.

* Corresponding author. Tel.: +32 16 32 17 03; fax: +32 16 32 19 70.
E-mail addresses: ivan.markovsky @esat.kuleuven.be (I. Markovsky), sabine.vanhuffel @esat.kuleuven.be (S. Van
Huffel).

0024-3795/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.1aa.2006.11.012


https://core.ac.uk/display/81125253?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.elsevier.com/locate/laa
mailto:ivan.markovsky@esat.kuleuven.be
mailto:sabine.vanhuffel@esat.kuleuven.be

1. Markovsky, S. Van Huffel / Linear Algebra and its Applications 422 (2007) 540-552 541

Problem 1 (Weighted low-rank approximation (WLRA)). Given a matrix D € R™*", a positive
definite matrix W € R™"*™" and an integer r < min(m, n), find an optimal W -weighted, rank-r
approximation of D, defined as

D* = arg min vecT(D — 5)erc(D — 5) subject to rank(ﬁ) <r (WLRA)
D

For W = I, the cost function of (WLRA) is |D — D II% and the problem has an analytical
solution in terms of the singular value decomposition (SVD) of D.

Theorem 1 (Eckart—Young-Mirsky [2]). Let D = UXV " be the SVD of D and partition U,

2 =:diag(o1,...,0y), g :=min(m, n), and V as follows:

U—'r -7 Z—'rZ qar g and V—'r -7

- [U] U2] m’ - [Ol Zzi|q —r - [V] V2] n’

Then the rank-r matrix

D*=u v,
is such that

ID—D*I} = min [D—DI} =0}, + - +o0z.

rank(D)<r

The solution D* is unique if and only if 0,1 # oOy.

Surprisingly, however, a similar analytical solution is not known for a general positive defi-
nite weight matrix W. Presently the most general WLRA problems that can be solved exactly
using SVDs are those with a weight matrix of the form W = W, ® Wy, where W; € R"™*" and
W, € R™ ™ are positive definite matrices and ® is the Kronecker product. The solution procedure
is based on the following theorem.

Theorem 2 (Two-sided WLRA). Define the modified data matrix
Dy, ==/ W¢ D/ Wr,
and let 5;‘1 be the optimal (unweighted) low-rank approximation of Dy,. Then
~ -1 —1
D* = (\/ W@) D;; (\/ Wr) s
is a solution of the following two-sided WLRA problem
min ||/ We(D — D)y/W;||%  subject to rank(D) < r.
D

A solution always exists. It is unique if and only if D}, is unique.

The link between two-sided WLRA and (WLRA) is
~ 2 —~
H\/Wg(D -DVWi| = Hvec(,/wg(D - D)\/Wr)
= H (\/Wr ® \/Wg>vec(D _ 13)‘

= VCCT(D — 5) (W: ® Wy) vec(D — 5).

‘ 2

:
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Here we used the identities
vec(AXB) = (BT ® A)vec(X) and (A ® B1)(A2 ® By) = (A1A2) ® (B By).

Of course, W € R™> ™" 'm n > 1, being representable as W, ® W, with W, € R**" and
Wy € R™*™ is a rather restrictive condition, i.e., representing a given positive definite weight
matrix W in the form W, ® W;, in general, requires approximation. It is shown in [10] that the
optimal approximation (in Frobenius norm sense), i.e., the solution of the problem

min W — W, ® Wel|[p  subject to Wy and W, are positive definite,
WrGRVlXﬂ’WZERWlXWI

can be computed in analytical form in terms of the SVD of a matrix constructed from W. This
result can be used for the computation of a suboptimal solution of the general WLRA problem as
follows:

1. approximate the weight matrix W by the Kronecker product W, ® W, with some positive
definite matrices W; € R™*" and W, € R™*™, using the result of [10], and

2. find an optimal WLRA of the data matrix D with the weight matrix W, ® W,, using
Theorem 2.

The computed WLRA with the weight matrix W; ® W, serves as a suboptimal solution for the
desired WLRA with the weight matrix W. It is intuitively clear (and there is empirical evidence)
that the better W is approximated, the closer the suboptimal solution to the optimal one is.

The suboptimal solution can be improved by numerical optimization methods. Since the prob-
lem is nonconvex there are no efficient optimization methods that are guaranteed to find a globally
optimal solution. What is aimed at instead is a locally optimal solution nearby the given initial
suboptimal approximation. Optimization methods for solving Problem 1 have been considered in
the literature under different names:

e criss-cross multiple regression [3],

e Riemannian singular value decomposition [1],

e maximum likelihood principal component analysis [13],
e weighted low-rank approximation [4], and

e weighted total least squares [7,5].

Gabriel and Zamir [3] consider an element-wise weighted low-rank approximation problem,
i.e., problem (WLRA) with diagonal weight matrix W, and propose an iterative solution method.
Their method, however, does not necessarily converge to a minimum point, see the discussion in
[3, Section 6, p. 491].

The Riemannian singular value decomposition framework of De Moor [1] includes the WLRA
problem with rank specification r = min(m, n) — 1 and a diagonal weight matrix W as a special
case. In [1], an algorithm resembling the inverse power iteration algorithm is proposed. The
method, however, has no proven convergence properties.

The maximum likelihood principal component analysis method of Wentzell et al. [13] is devel-
oped for applications in chemometrics, see also [9]. This method is an alternating least squares
algorithm. It applies to the general WLRA problems and is globally convergent. The convergence
rate, however, is linear and the method could be rather slow when the r + 1st and the rth singular
values of the data matrix D are close to each other. In the unweighted case this situation corresponds
to lack of uniqueness of the solution, cf., Theorem 1.



1. Markovsky, S. Van Huffel / Linear Algebra and its Applications 422 (2007) 540-552 543

Manton et al. [4] treat the problem as an optimization over a Grassman manifold and propose
steepest descent and Newton type algorithms. The least squares nature of the problem is not
exploited in this work and the proposed algorithms are not globally convergent.

The method of [7,5] is a heuristic for solving the first order optimality condition of (WLRA). A
solution of a nonlinear equation is sought instead of a minimum point of the original optimization
problem. The method is locally convergent with super linear convergence rate. The method is
not globally convergent and the region of convergence around a minimum point could be rather
small in practice.

In [6, Chapter 3] it is shown that the above mentioned algorithms differ in

1. the way the rank constraint is represented and
2. the local optimization method applied to the resulting (from the particular representation used)
parameter optimization problem.

Thus combining different rank representations with different local optimization methods, we
obtain different solution methods for the WLRA problem.

An important remaining issue is the efficiency of the algorithm in special cases of the general
WLRA approximation problem. Useful special cases are:

e clement-wise weighting: W = diag(wy, ..., Wyn), Where w; > 0,fori =1, ..., mn,

o column-wise weighting: W = diag(Wy, ..., W,), where W; € R™*", W; > 0,fori =1, ...,
n, and

o row-wise weighting: TTWT = diag(Wy, ..., Wy,), where W; € R™" W; > 0,fori =1,...,
m, and T is an mn X mn permutation matrix, such that vec(D) = Tvec(DT).

In this paper, we generalize the treatment of [6, Chapter 3], where left image and kernel
representations and column-wise weighting, i.e., weight matrices W = diag(Wy, ..., W,), are
considered. Our renewed interest in the problem was triggered from the difficulty that if m > n
the left image and kernel representations lead to larger number of parameters. It is advantageous
to use in such cases right image and kernel representations. Note that the problem can not be
resolved by transposing the data matrix because then W is in general no longer block diagonal
and this structure is exploited in the computations.

We start from a full weight matrix W and then specialize the results to column and row-wise
weighting. Section 2 presents four representations of the rank constraint in a parametric form. For
these representations equivalent optimization problems are derived in Section 3 by eliminating
the variable D. Section 4 presents unique parameterizations of the rank constraint, which sim-
plifies the equivalent optimization problems. The resulting problems are nonlinear least squares
problems and are solved by standard optimization methods, such as the Levenberg—Marquardt
method.

2. Low-rank representations

In order to solve (either analytically or numerically) the WLRA problem, we represent the
rank constraint rank(D) < r in a parametric form. Four possibilities are what are called im-
age and kernel representations with their left and right versions. The left image representa-
tion
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rank(D) < r < thereis P € R"", PTP =1, and L € R™", suchthat D = PL
<IM)

imposes an upper bound on the dimension of the column space of D. This representation has as
a parameter the matrix P. The right image representation

rank(ﬁ) <r & thereis P € R™ and L € R"™", LL" = I,, such that D=PL
(tIM)

has as a parameter the matrix L and imposes an upper bound on the dimension of the row space
of D.
The left kernel representation

rank(ﬁ) < r & there is Ry € R—)xm, RgR; = I,,_,, such that RyD = 0
((KER)

has as a parameter the matrix R; and imposes a lower bound on the dimension of the left kernel
of D. (The subscript “£” in R, stands for “left”.) The alternative (right) kernel representation

rank(D) < r < there isR, € "< R'R, =1, ,, suchthat DR, =0  (tKER)

has as a parameter the matrix R, and imposes a lower bound on the dimension of the right kernel
of D.

The four representations (¢/IM), (rIM), ((KER), and (rKER), however, lead to different number
of parameters to be optimized over in solving (WLRA). Fewer optimization variables result in
less computations per iteration as well as typically fewer iteration steps. Thus in the numerical
solution of the WLRA problem it is important to use a representation that leads to as few as
possible optimization variables.

Looking at the dimensions of the parameters P, L, Ry, and Ry, we see that

e ((KER) has the fewest free parameters if m < n andr < m/2,

e (¢IM) has the fewest free parameters if m < n and r > m/2,

e (rKER) has the fewest free parameters if m > n and r < n/2, and
o (rIM) has the fewest free parameters if m > n and r > n/2.

Due to the constraints PTP =1, LLT =1, Ry RlT =1, and R, RrT = I, however, not all
elements of the parameters are free. Equivalently the parameters P, L, Ry, and R; are not unique. In
Section 4, we derive so-called left and right input/output parameterizations of which the parameters
Xy € R =7) and X, € R~ are unconstrained and unique.

3. Equivalent optimization problems

In what follows we use the notation

d :=vec(D) and d = vec(ﬁ).
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Using the left image representation, (WLRA) yields the parameter optimization problem:

min | min(d — d)'W(d —d) subjectto D= PL |. (WLRAp)
d,L

PTP=I

Sfum(P)
Using the right image representation, (WLRA) yields the parameter optimization problem:

min | min(@ —d)"W(d —d) subjectto D = PL |. (WLRA[)

LLT=1 d,P

Sm (L)
Using the left kernel representation, (WLRA) yields the parameter optimization problem:

min | min(d — d)'W(d —d) subjectto RekD=0 |. (WLRAg,)
RlRf=1 -
JSexer (Re)

Using the right kernel representation, (WLRA) yields the parameter optimization problem:

min | min(d — d)"W(d —d) subjectto DR, =0 |. (WLRAR,)
T d

Ry Re=1

frkER (Rr)

(WLRAP), (WLRA,), (WLRAE,), and (WLRAR,) are double minimization problems with
outer minimization over the parameters of the rank representation and inner minimization over
the data approximation. The inner minimization problems are convex quadratic optimization
problems and can be solved analytically, yielding explicit expressions for the cost functions to be
minimized over the parameters of the rank representation.

Define for a symmetric positive definite matrix W € R™"*"™"
K c Rmnxo

and a full column rank matrix

fim(K) :=d"(W—-WKK "WK)'K"TW)d and dm(K):= KK WK)"'K"Wd.
(IM SOL)

Theorem 3 (Equivalent problems to (WLRAp) and (WLRA})). The optimization problem
(WLRA p) is equivalent to

min f(P)  subject to PTP =1 where ffIM(P) = fiu(I, ® P) (WLRA'p)

and the minimum is achieved at d = c?IM(In ® P). Similarly, (WLRA p) is equivalent to
min fum(L)  subject to LLT =1, where fim(L) = fim(LT @ I,)) (WLRA’))

and the minimum is achieved at d = c;'n\/[(L—r ® Iy).
Proof. For fyv, we have
fem = min(d —d) "W (d —d) subjecttod = (I, ® P)vec(L)
d,L N e N e’

P )
= min(d — P))"W(d — PI).
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This is a standard convex quadratic optimization problem, of which the solution is IM SOL) with
K — P c Rmn Xrn .
For fimv, we have

fam =min(d —d)"W(d —d) subjecttod = (LT ® I,) vec(P)
a.p NN
L p
= min(d —Lp) ' W(d — Lp),
P

so that the solution is given by IM SOL) with K = L € R™™>™" [J

Define for a symmetric positive definite matrix W € R™"*™" and a full row rank matrix
K c Rmnxo

fker(K) :=d " KT(KW'KkT)"'Kd, and
Ak (K) = (1 - W—lKT(KW—lKT)—lK) d. (KER SOL)

Theorem 4 (Equivalent problems to (WLRAg,) and (WLRAR,)). The optimization problem
(WLRAR,) is equivalent to

I%in feker (Re)  subject to RgR) =1,  where fiker(Ry)=fxer (In ® Re)
¥4
(WLRA'gy)
and the minimum is achieved at d = c?KER(In ® Ry). Similarly, (WLRAR,) is equivalent to
min fiker (Re) ~ subject to R Ry =1, where fiker (Re) = fKer (R, ® In)

(WLRAgy)

and the minimum is achieved at d = c?KER(R;r ® Iy).

Proof. Let AD := D — D and Ad := vec(AD). For fikgr, we have
feker = min Ad"WAd subjectto R¢(D — AD) =0

= min Ad"WAd subject to (I, ® Ry)Ad = vec(R;D),

which is a standard weighted least norm problem. The solution is given by (KER SOL) with
K =1, ® Ry. For fixgr, we have

fxer = min Ad"WAd subjectto (D — AD)R, =0

= min AdTWAd subject to (R; ® I,)Ad = vec(DRy),

of which the solution is given by (KER SOL) with K = R, ® I,,. [

4. Free parameters and input/output parameterizations

The outer minimization problems (WLRA'z), (WLRA'p), (WLRA'g,), and (WLRA'g, ) are
difficult constrained nonconvex optimization problems. In order to simplify them, we first elimi-
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nate the quadratic constraints PTP=ILLT =1, Ry RZ =/, and RrT R, = I by re-parameter-
izing the problems. The parameters P, L, Ry, and R; are not unique and the nonuniqueness is up
to a choice of basis for col span(P), row span(L), ker(Ry), and leftker(R;), respectively.

Theorem 5 (Equivalent parameters). For any nonsingular matrices U, V, Qy, and Qy of appro-
priate size,

o fum(P) = fam(PU),

o fm(L) = frim(V L),

o fiker(R¢) = fikEr(Q¢Re), and
o fiker (Rr) = fiker (R: Or).

In the above sense the parameters PU, VL, Q¢Ry, and R;Qy are equivalent to P, L, Ry, and
R;, respectively.

Proof. By the properties of the Kronecker product, we have

o [, Q(PU)=UI,Q P)(I, @ U),

e (VLY @1y = (LT L)V ® Iy),

e 1, ® (QuR) = (I, ® Qp)(I, ® Ry),

L (RrQr)T QI = (Q;r ® Im)(RrT ® Iy).

The matrices I, ® U, vi® Ly, I, ® Ry, Rr—r ® I, are nonsingular if and only if, respectively,
the matrices U, V, Qy, Q, are nonsingular.

Consider the solution (IM SOL) for the problems with image representations and let 7 be a
nonsingular matrix of dimension coldim(K'). We will show that fim(K) = fim(KT). Indeed,

dm(KT):= KT(TTKTWKT)"'TTK "Wd
=KTT Y K"WK)Y '@ 'TTK"Wd = dim(K). O
Consider then the solution (KER SOL) for the problems with kernel representations and let T
be a nonsingular matrix of dimension row dim(K). We will show that fxkgr(K) = fker(T K).
Indeed,
dxer(TK) = —WI'KTTT@KkW'KTTH™'TK)d
=U-WI'KkTTTTHy " WkW 'k HT7'TK)d = dggr(K). O

Next we show special equivalent parameters that suggest a re-parameterization eliminating
the nonuniqueness. Let [T, € R™*™ and II, € R"*" be permutation matrices and define the
partitionings

r

r n—r -1
IIyP=:|P r , LIl =: ,  Rell," =:
S R A

r m —r

_, Re Rg’z] m—r’

n—r

IR = [R1] r (I/O PRT)
Rip|n—r
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Since P and R; are full column rank and L and Ry are full row rank, then there are permutations
I, and II,, such that the square blocks Py, L1, Ry 2, and R; > are nonsingular. In what follows,

. . P
assume that I1, and II; are such permutations. Then equivalent parameters to [ Pl}’ [L1 Lz],
2

Rr,l
[Rgﬁl Rg,z], and |:Rr,2:| are

D . Ir 7. —1 Do —1
Po= [P2P1_1 } L:i=[1, L7'L)., Re:= [—RMR@,I —Im,,],

-1
R: = [_R“Rf’z ] .
_In—r
Theorem 6 (Link between image and kernel parameters). If col span (P) = ker(Ry) and at least

one of the blocks Py or Ry, defined in (I/O PRT), is nonsingular, then the other block is also
nonsingular and

PP = —R;JRe1 = X € R,
Similarly, if row span(L) = left ker(R;) and at least one of the blocks L or Ry, defined in
(I/0 PRT), is nonsingular, then the other block is also nonsingular and

Li'Ly=—Ri 1R, =t X;. € R0,

t

Proof. For the first statement we have

col span(P) = ker(Ry) = Egﬁ =0= [_RZéRl,l —Im_,] [Pzgll}
=0= PP = —R, 3Ry,
and for the second one
row span(L) = leftker(R;) = LR, = 0 = [, Li'Ly] |:_Rr,l Rr_21i|
=Li'Ly=-R,R,. O

Define the two partitionings of the matrix D

= . Zg r - . r n—r
HZD = |:§ei|m—r and DHr = [Ar Br]
The representations
there is X, € R” %" such that X,A; = B, = rank(D) < r (11/0)
and
there is X; € R™*®~") such that A, X; = B, = rank(ﬁ) <r (r1/0)

are called input/output ones. Their parameters X, and X; are unconstrained. Using the left
input/output parameterization (1I/O), the WLRA problem becomes

__min vec ! (D — HZI [éZ:D Wvec <D — Hzl [é\(]> subject to Xg;{g = §g
Av. By, Xe By By

(IWTLS)
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and using the right input/output parameterization (rI/O), the WLRA problem becomes

__min vec ! (D — [A\r §r] H;l) Wvec (D — [Zr Er] H;l)
Al’sBlWXl"

subject to A, X; = B;. (rtWTLS)

For fixed permutation matrices, problems (IWTLS) and (rfWTLS) are known in the literature as
weighted total least squares problems. Under the assumption that the permutations I, and II; are
properly chosen, IWTLS) and (fWTLS) are equivalent to (WLRA).

Note 1. If the permutations I, and II; are not properly chosen, the weighted total least squares
problems might have no solution or be close to having no solution (which leads to ill conditioned
computational problems). Such cases are called in the literature nongeneric total least squares
problems and have been analyzed in [11,12,8]. In particular, the formulation of [8] defines a
so-called core problem, corresponding to a given total least squares problem, that always has a
unique solution. The solution of the core problem coincides with the classical total least squares
solution whenever the latter exists and leads to the nongeneric total least squares solution, defined
in [11,12], when the classical total least squares solution fails to exist. The problem of detecting
when a given problem is nongeneric, however, involves checking singularity of a submatrix and
is therefore not straightforward numerically. In addition, the core problem is currently formulated
only for single right-hand-side problems (corresponding to low-rank approximation problems with
rank reduction by one). Statistical methods for detecting nongeneric cases and generalization of
the core problem formulation for the multiple-right-hand side total least squares problems are
topics of current research.

We solve the unconstrained outer minimization problems
. | 1 . _
miny, frm (H[ : [XzD , miny, fam ([ X171,

. (WLRA”)
minxk feKER ([Xg —I] Hr) , and IIlinXr erER <H€ |:_;i|>

using local optimization methods for nonlinear least squares problems, e.g., the Levenberg—
Marquardt method. Applying these methods, of prime importance is the number of optimization
parameters and the efficiency of the cost function (and its derivatives) evaluation. From the point
of view of minimal number of optimization variables the left (right) input/output parameterization
should be chosen when m < n (m > n), irrespective of the rank reduction r.

Next we verify on simulation examples that indeed the optimization problem using the “correct”
(left or right) input/output representation is easier to solve in the sense that it requires fewer
iterations steps under the same conditions (initial approximation and convergence tolerance).

Simulation example

The data matrix D is a sum of a random rank- matrix and a random full rank matrix (errors-
in-variables setup). The weight matrix W is a random positive definite matrix. In MATLAB D
and W are generated as follows:

d0 = rand(m, r) * rand(r, n);
d0 = d0/norm(d0,’ fro'); Y%normalization
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Table 1
Number of optimization variables and average iterations for the optimization algorithm solving (WLRA"') by left and
right kernel representations

m 2 3 4 5 6 7 8 9 10
n 10 9 8 7 6 5 4 3 2
r=1 Left 1/4 2/6 3/7 4/10 5/5 6/18 7/9 8/10 9/11
Right 9/11 8/13 717 6/10 5/5 4/11 3/7 2/6 1/4
r=2 Left - 2/5 4/27 6/21 8/11 10/44 12/27 14/28 -
Right - 14/12 12/34 10/69 8/11 6/39 4/24 2/6 -
r=3 Left - - 3/11 6/26 9/11 12/46 15/53 - -
Right - - 15/30 12/33 9/14 6/44 3/10 - -
r=4 Left - - - 4/9 8/14 16/12 - - -
Right - - - 16/12 8/13 4/8 - - -

w=rand(m*n, 2 %m*n); W =W * W]

dt = reshape(sqrtm(w)\randn(m % n, 1), m, n);

dt = dt/norm(dt,” fro'); Y%normalization
d=d0 + 0.001 % dt;

The matrix dimension m is varied from 2 to 10 and n := 12 — m. The desired rank r is varied
from 1 to 4. For each combination of m and r, N = 50 independently generated data matrices
are generated and for each one of them the problems (WLRA") with left and right input/output
representations are solved.

We use the Levenberg—Marquardt optimization algorithm from the Optimization toolbox
of MATLAB (1sgnonlin) with cost function evaluations only. In both cases (left and right
input/output representation), the algorithm is run from equivalent initial approximations ob-
tained using the singular value decompositions (unweighted low-rank approximation) and the
stopping criteria are set to the same tolerances. In this particular experiment, in all runs the
same solution was found by using the two representations. As expected the average number
of iterations, however, depends on the number of optimization parameters (elements of X,
and X;): the fewer the optimization variables, the fewer the average number of iterations for
convergence. Numerical results are shown in Table 1 in the format “# of optimization variables/#
of iterations”.

5. Special cases of column and row-weighting

Up to now we have considered the WLRA problem with a full weight matrix W. Of interest,
however, are the two special cases of element-wise weighting, i.e., W diagonal, column-wise
weighting, i.e., W block diagonal with blocks of dimension m x m, and row-wise weighting, i.e.,
TTWT block diagonal with blocks of dimension n x n, where T is the mn x mn permutation
matrix, such that vec(D) = Tvec(DT). The special structure of W can be exploited for efficient
cost function and first derivative evaluation.

Consider the column-wise weighting case, i.e., W is block-diagonal with blocks of dimen-
sion m x m. It turns out that the cost function formulas using the left image and left kernel
representations are easy to rewrite taking into account the special structure of W.
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dmm:=UI®PYUIQP)'WUIRP) (I P)TWd
& 3@1M,i =PP"W;P)'PTWid;,

where d; is the ith column of D and d is the ith column of D. Similar decoupling into independent
terms occurs for the left kernel representation:

5 —1 T !
dixer = (I~ W' U @ R)T (I @ ROWUI @ R)T) (I @ R0 )d
& duceri = (In = W R (RWRD) ™ Re) .

In the case of right image and right kernel representations the computational savings are
achieved as follows. For the right image representation

. —1
d = LT @ 1) (LT @ L) WL @ 1) (LT &L Wd, *)
denoting the ith column of L by /;, we have
L' L) WL @L)=[L1®Ln - 1, ®I]
Wi I ® I n
x Lo =) u e w
W | L] ® I i=l
Let
" -1
pi= (Zzizf ® W,~> [hew - L®W]d )
i=1
and P:=[p1 -+ p;]wherep” =:[p/ - p]]and p; € R".Note that p = vec(P).
Finally,

div=(L" ®IL,)p= Dum = PL.

Computing p using (**) and setting Duam = PL is a more efficient alternative to the direct
computation of dypv using (¥).

6. Conclusions

We have presented four representations of the rank constraint that turn the abstract weighted
low-rank problem formulation in concrete parameter optimization problems. The optimization
problem was solved analytically for the approximating matrix D, which resulted in an equivalent
optimization problem over the parameters of the rank representation only. We showed a unique
parameterization that avoids the quadratic constraint and further transforms the optimization
problem into a classical nonlinear least squares problem. Finally we showed how the cost function
can be computed efficiently in two special cases: row-wise and column-wise weighting.
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