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a b s t r a c t

Matrix methods are increasingly popular for polynomial root-finding. The idea is to
approximate the roots as the eigenvalues of the companion or generalized companion
matrix associated with an input polynomial. The algorithms also solve secular equation.
QR algorithm is the most customary method for eigen-solving, but we explore the
inverse Rayleigh quotient iteration instead, which turns out to be competitive with the
most popular root-finders because of its excellence in exploiting matrix structure. To
advance the iteration we preprocess the matrix and incorporate Newton’s linearization,
repeated squaring, homotopy continuation techniques, and some heuristics. The resulting
algorithms accelerate the known numerical root-finders for univariate polynomial and
secular equations, and are particularly well suited for the acceleration by using parallel
processing. Furthermore, even on serial computers the acceleration is dramatic for
numerical approximation of the real roots in the typical case where they are much less
numerous than all complex roots.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Background on root-finding

The solution of a univariate polynomial equation is the classical problem of mathematics and numerical mathematics,
extensively studied for four millennia (since the Sumerian times) and is still a research area with highly important
applications to numerical, algebraic and geometric computations (see, e.g., [1–8], and the bibliography therein).

The increasingly popular matrix methods approximate the roots as the eigenvalues of the associated companion and
generalized companionmatrices. Matlab’s function ‘‘roots’’ applies the QR algorithm to companionmatrices. The algorithms
in [9,10] alternate the steps of Weierstrass’ polynomial root-finding iteration (also called Durand–Kerner’s) and of the QR
algorithm applied to diagonal plus rank-one generalized companion matrices (hereafter we refer to them as DPR1 matrices)
associated to polynomial and secular equations. (See our Theorem 7.1, the papers [11–13,8], and the bibliography therein
on secular equation.)

Neither of these algorithms exploits the structure of input matrices, but nonetheless for the task of approximation of all
n roots of a polynomial of degree n, the Fortune’s package EIGENSOLVE [9] competes with the other current best root-finder
MPSOLVE by Bini and Fiorentino [14], based on Börsch–Supan’s iteration (also called Aberth’s or Aberth–Ehrlich’s).
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Empirically these and various other celebrated iterative root-finders and eigen-solvers rapidly converge to the solution
right from the start and with rare exceptions need a rather small constant number of iteration loops per root or eigenvalue.
It follows that in practice one needs just the order of bn2 bit operations (up to a polylog factor) to approximate all the n roots
of an input polynomial of a degree nwithin the relative error bound 2−b (cf. [3,15]).

This is a nearly optimal number of bit operations. Indeed for the worst case input onemust process at least bn2 input bits
and therefore must perform at least 0.5bn2 bit operations to ensure the above bound on the output errors because in the
worst case the input errors are magnified by the factor of n in the output. (Compare, e.g., the roots of the two polynomials
(x− 4/7)n − 2−n and (x− 4/7)n − 3−n.)

Such a magnification is not typical for random inputs, and one can decrease the computational cost on the average by
tuning the precision of computing to each specific input and output. Such tuning has been incorporated in the MPSOLVE
and EIGENSOLVE and can be included into most of the popular root-finders and eigen-solvers as well.

No adequate formal support has been provided so far for the empirical data on the fast convergence of the cited iterations,
but this has not been a serious issue for the users, who gladly employ iterative algorithms as soon as their iteration loop is
performed fast and their fast convergence has empirical support.

Nearly optimal (up to a polylog factor) upper bounds on the parallel and sequential Boolean and arithmetic time-
complexity of the approximation of all roots of a polynomial have been proved based on the divide-and-conquer root-
finder in [16,4,17]. These bounds, however, slightly exceed the empirical bounds supported by the other cited iterations, and
since the users rely on empirical bounds, the implementation work for the algorithm in [16,4,17] has never had sufficient
motivation.

1.2. Advancing the RQ iteration

We devise polynomial root-finders based on the inverse Rayleigh quotient iteration [15,18–20], which is a variant of
Newton’s iteration [21,22,19], but its power is enhanced because it approximates both eigenvalues and the associated
eigenvectors. (Hereafter we use the abbreviation ‘‘RQ’’ for ‘‘Rayleigh quotient’’.) The iteration is a popular means for fast
refinement of an approximate eigenvector and empirically has good global convergence to matrix eigenpairs.

It was first applied to polynomial root-finding in [23], then in [24,25]. In these applications the iteration exploited the
input matrix structure, used linear arithmetic time cRQn per step (for a scalar cRQ) and linear memory space, empirically
converged in a few steps [15], and readily incorporated the techniques for tuning the precision of computing for each
specific input and output. One can extend the iteration to approximating all eigenvalues via deflation, by applying the
iteration concurrently at sufficiently many distinct initial points, or by combining these two techniques. Even for the task
of the approximation of all roots the iteration competes with the Börsch–Supan and Weierstrass algorithms according to
the tests in [26,23], although its strength is in approximating a single root and all roots in a fixed region. Under appropriate
implementation it should become the method of choice for these tasks, and with some further advance can become such
also for approximating all roots.

The QR algorithm in [11] also exploits the input matrix structure, and for companion and DPR1 matrices uses linear
memory space and only cQRRn arithmetic operations per step provided that the associated polynomial has only real roots [8].
The papers [27,28] remove this restriction and still support a linear time bound cQRn, but the constant cQR noticeably exceeds
cRQ and cQRR. Furthermore unlike the RQ iteration, the QR algorithm in the papers [11,27,28] has numerical problems in
exploiting matrix structure and also restricts concurrency in the approximation of distinct eigenvalues.

In the present paper we pushed the advantages of the RQ approach further by incorporating our novel techniques, which
simplify every iteration step and avoid or minimize application of deflation techniques for the approximation of all roots.
Even under the sequential model of computing we yield noticeable progress versus the algorithms in [23] (see our tables in
Sections 5 and 6). Furthermore our preprocessing turns the shifted companion matrices into bidiagonal matrices and turns
the DPR1 matrices into diagonal ones, which allows significant parallel acceleration of our iteration steps.

To improve the chances for fast convergence one can apply the iteration to both input polynomial and its reverse and
can alternate it with other root-finders such as iterative factorization algorithms in Section 10.

1.3. Real eigen-solving and root-finding

Our another achievement is a novel numerical algorithm that approximates all real roots of a polynomial with real
coefficients where real roots are much less numerous than the nonreal ones. The latter case is typical both for random
input polynomials [29] and in the practice of algebraic–geometric computations, but the known numerical algorithms
approximate all real roots not much faster than they approximate all complex roots. This holds in terms of both theoretical
estimates and the actual CPU time [30].

To yield our acceleration we combine our simplified RQ iteration with repeated squaring of the matrix functions
M(0)
= I+ 2

√
−1(M−

√
−1 I)−1 and (M(0))−1 whereM is the input matrix. On the one hand, such squaring is inexpensive

in the case of companion matrices M (see [31,32]) and DPR1 matrices M (see our Theorems 2.1, 7.8 and 7.9). On the other
hand, the smallest eigenvalues of the matrices (M(0))k+(M(0))−k

‖(M(0))k+(M(0))−k‖
converge to zero as k grows large, so that we can readily

approximate the eigenspace associated with these eigenvalues, which (as one can easily prove) is precisely the eigenspace
associated with the real eigenvalues of the input matrixM .
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At that point we can deflate the input matrix M , thus reducing the original task to the approximation of the r real
eigenvalues of the resulting r × r matrix. The latter task is simplified versus the original root-finding task because r < n
and because the eigen-solvers in [11,33] are highly effective for matrices having only real eigenvalues.

As an alternative to deflation we can direct the RQ iteration towards the approximation of the r real eigenvalues.
Empirically this approach works with just a few or no squarings. This makes it more amenable to parallel acceleration,
but even under the sequential model of computing we accelerate the known algorithms dramatically, by the factor n/r .

In this part of our work we were seeking real roots via real eigen-solving for the companion and DPR1 matrices, but the
algorithm can be applied to approximate the real eigenvalues of any real matrix and remains highly effective as long as the
matrix is structured.

We also show a promising matrix-free variation of this algorithm directed to real polynomial root-finding.

1.4. Summary of our progress, some technical aspects, and a brief discussion

In sumwe apply the RQ iteration to the companion and DPR1matrices, combine it with additive preprocessing, Newton-
like linearization, homotopy continuation techniques, Newton’s iterative polynomial factorization, and various heuristics.
Our algorithms noticeably accelerate the known numerical root-finders for polynomial and secular equations. Parallel
processing enables substantial additional speedup, but even under themodel of sequential computations we yield dramatic
acceleration for the important task of approximating all real roots in the typical case where they are much less numerous
than all roots.

Our extensive numerical experiments (the contribution of the second author) are in good accordancewith our theoretical
study and demonstrate the power of our algorithms.

Our techniques can be of independent interest. Some of them can be extended to root-finding for polynomial systems of
equations (see Appendix D) and to real eigen-solving for structured matrices.

There are various natural directions for advancing our study (see Section 12).

1.5. Organization of the paper

We organize our paper as follows. In the next two sections we recall some definitions and basic results on matrix
computations and additive preprocessing. In Section 4 we recall and modify the RQ iteration, in particular by employing
additive preprocessing. In Section 5 we describe Newton-like linearization of the modified RQ iteration. In Sections 6 and 7
we apply these techniques to the companion and DPR1 generalized companion matrices, respectively, to devise our root-
finders. In Sections 8 and 9 we present our real eigen-solver and real root-finder, respectively. In Section 10 we cover some
iterative techniques for numerical factorization of a polynomial, which can be applied to deflation and can alternate with
the steps of RQ iteration. In Section 11we cover our numerical experiments.We leave Section 12 for a brief discussion. In the
Appendix we recall a number of successful eigen-solving techniques and outline a sample extension to solving polynomial
systems of equations.

Sections 9 and 10 can be read independently from the other sections. Section 8 involves the RQ iteration, but can actually
use just its rudimentary version in equations (4.1)–(4.4).

2. Some definitions

Hereafter ‘‘op’’ stands for ‘‘arithmetic operation’’.
MT is the transpose and MH is the Hermitian transpose of a matrixM .

(M1, . . . ,Mk) = ((MT
i )ki=1)

T is a 1× k block matrix with the blocksM1,M2, . . . ,Mk.
diag(M1, . . . ,Mk) = diag(Mi)

k
i=1 is a k× k block diagonal matrix having the diagonal blocksM1, . . . ,Mk.

O = Ok,l is the k× l matrix filled with zeros.
I = Ik = (e(k)

j )kj=1 is the k×k identitymatrixwith columns e(k)
1 , . . . , e(k)

k . To simplify the notationwedrop the superscripts
(k) and write ej = e(k)

j where this causes no confusion.
J = Jk = (ek, . . . , e1) is the k× k reflection matrix, J2 = I .
‖M‖ is the 2-norm of a matrixM .

Nonsingular matrices M and linear systems My = f are ill conditioned where the condition numbers cond(M) =
‖M‖ ‖M−1‖ are large (in the context of the computational task and computer environment) or equivalently where the
matricesM are close to singular matrices. In this case the computation of the inverse matricesM−1 and the solution vectors
y is prone to magnification of the input and rounding errors and requires higher precision [15,34,35,19]. Otherwise the
matrix and the linear systems are well conditioned.

R(M) = {z : z = My over all vectors y} is the range of a matrixM .
N (M) = {x : Mx = 0} is its null space, made up of the null vectors x.
ρ = dim(R(M)) is the rank of a matrixM . ν = dim(N (M)) is its nullity.
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ν + ρ = n for an n× nmatrixM .
S is a right (resp. left) invariant subspace or eigenspace of a matrixM ifMS ⊆ S (resp. SM ⊆ S).

Suppose B and C are matrices of full rank, BM = LB, and MC = CL. Then {L, B} and {L, C} are left and right eigenpairs of
the matrix M , respectively, and {L, B, C} is its eigentriple. If L = λ is a scalar, B = b and C = c are vectors, then λ = λ(M) is
an eigenvalue of the matrixM , whereas b and c are the associated left and right eigenvectors.

det(M − xI) is the characteristic polynomial of the matrixM . Its root of a multiplicity ν is an eigenvalue λ(M) of algebraic
multiplicity ν = ν(λ).

The dimension νg = νg(λ) of the space of the right (as well as left) eigenvectors associated with an eigenvalue λ is its
geometric multiplicity, νg ≤ ν.

An eigenvalue is simple if its algebraic and geometric multiplicities are equal to one.
Hereafter λj = λj(M) for j = 1, 2, . . . , n denote the n eigenvalues repeated according to their algebraic multiplicities

and listed in the nonincreasing order,
|λ1| ≥ |λ2| ≥ · · · ≥ |λn|. (2.1)

ΛK (M) is the set {λj}j∈K for a subset K of the set {1, 2, . . . , n}. Λ(M) = ΛK (M) for K = {1, 2, . . . , n}. SK = S(M, ΛK )
and TK = T(M, ΛK ) are the two eigenspaces of all left and right eigenvectors, respectively, associated with all eigenvalues
in this set. The eigenspace S{1,...,ν} is dominant and the eigenspace S{ν+1,...,n} is dominated if |λν+1/λν | < 1.

‘‘The SMW formulae’’ is our abbreviation for the Sherman–Morrison–Woodbury inversion and determinantal formulae

(K − UVH)−1 = K−1 + K−1UG−1VHK−1, G = Ir − VHK−1U, (2.2)

det(K − UVH) = (det K) detG (2.3)
whereM, K ∈ Cn×n,U, V ∈ Cn×r , 0 < r < n, K = M + UVH , and the matricesM and K are assumed to be nonsingular.

Banded matrices B = (bi,j)i,j have a lower bandwidth l and an upper bandwidth u if bi,j = 0 where i − j > l or j − i > u
(cf. [15, Section 1.2.1]). The inverse of such an n × n matrix (if it is nonsingular) is a rank structured matrix defined by
O((l+ u+ 1)n) parameters [36].

Fact 2.1. Let an n× n banded matrix B have a lower bandwidth l and an upper bandwidth u. Then one can multiply this matrix
by a vector by using O((l + u + 1)n) ops. The same cost bound holds for the solution of a linear system of equations with the
coefficient matrix B provided the matrix and the system are nonsingular.

Theorem 2.1. Let Mi = Bi + UiVH
i , Bi ∈ Cn×n,Ui, Vi ∈ Cn×r for 1 ≤ r ≤ n and i = 1, 2. Then M = B + UVH where

M = M1M2,U = (U1, B1U2), V = (MH
2 V1, V2),U, V ∈ Cn×(2r), and B = B1B2 ∈ Cn×n. Furthermore if Bi are lower triangular

matrices with bandwidths bi for i = 1, 2, then B is a lower triangular matrix with a bandwidth b ≤ b1 + b2.

Corollary 2.1. Under the assumption of Theorem 2.1, let bi and ri for i = 1, 2 denote fixed positive integers and let n → ∞.
Then it is sufficient to perform O(n) ops to compute
(a) the representation M = B+ UVH for the matrix M = M1M2,
(b) the representation of the matrix B−11 ∈ Cn×n with O(b1n) parameters as a rank structured matrix if B1 is a lower triangular

and nonsingular matrix (cf. [36]) and
(c) the matrices U−, V− ∈ Cn×r such that M−11 = B−11 + U−VH

−
provided that the matrices B1 and M1 are nonsingular.

Proof. Part (a) is immediately verified. Part (b) is proved in [36]. Part (c) follows from the SMW formula (2.2). �

We use some results on computations with other structured matrices, e.g., Hankel, Toeplitz and Toeplitz-like (see [37]
and the bibliography therein). We write

Fp =



0 −p0

1
. . . −p1
. . .

. . .
...

. . . 0 −pn−2
1 −pn−1

 , Zf =



0 f

1
. . . 0
. . .

. . .
...

. . . 0 0
1 0

 . (2.4)

Let f be a nonzero scalar. Then Zf is the unit f -circulant matrix. Z = Z0 is the n× n downshift matrix, Fp = Z − enpT is the
companion matrix of a monic polynomial p(x) = xn +

∑n−1
i=0 pixi, p = (pi)n−1i=0 . Forward substitution supports the following

result.

Lemma 2.1. Given a vector w = (wi)
n−1
i=0 and a nonsingular n×n diagonal matrix D, one can compute the vector y = (yi)n−1i=0 =

(D+ Z)−1w in at most 2n− 1 ops. 2n− 2 ops are sufficient for computing the vector z = (I + aZ)−1w for a fixed scalar a.

Remark 2.1. Parallel acceleration of the latter computations by the factor n/ log n can be achieved based on Cyclic
Reduction [38, Section 9.3], [39].
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3. Computation in the null space with additive preprocessing and augmentation

Let us recall some results on additive preprocessing from [40, Theorem 3.1 and its corollaries].

Theorem 3.1. Suppose M is an n× n matrix having a rank ρ and the nullity ν = n− ρ,U and V are two matrices of size n× r,
and the matrix K = M + UVH is nonsingular. Then

ν ≤ rank(U) ≤ r, N (M) ⊆ R(K−1U). (3.1)

Furthermore R(K−1U) = N (M) if rank(U) = ν .

Corollary 3.1. Under the assumptions of Theorem 3.1 (except for equation rank(U) = ν) we have

(a) R(K−1UX) = N (M) if R(X) = N (MK−1U),
(b) the converse is true if rank(K−1U) = r, and
(c) N (MK−1U) = N (Iν − VHK−1U) if the matrix U has full rank.

Recipes for computing the nullity of a matrix.
The following observations (implied by Theorem 3.1 and Corollary 3.1) can be used for computing the nullity of a matrix.
(a) For n × r matrices U and V and n × n matrix M with a nullity ν, the matrix K = M + UVH is singular if r < ν (in

virtue of bounds (3.1)) but is likely to be nonsingular if r ≥ ν and if the matrices U and V are random or random structured
(see [41] for specific probability estimates).

(b) Let the matrix K be nonsingular. Then R(K−1U) = N (M) for r = ν, whereas R(K−1UX) = N (M) if r > ν and if
R(X) = N (MK−1U) = N (Ir − VHK−1U).

Additive preprocessing A H⇒ A + UVH and augmentations A H⇒ K =

A U
S W


and A H⇒ K̃ =


W S
U A


=

O Ir
In O


K


O In
Ir O


are closely linked to each other and have similar power. Theorem 3.1 and other respective results can

be extended to the augmented matrices K either directly or based on a factorization in [40, Theorem 4.3], which reduces
augmentation to additive preprocessing.

We refer the readers to the papers [42,40,24] on application of additive preprocessing and augmentation to regularization
and preconditioning of matrix computations, in particular of the solution of linear systems of equations.

4. The RQ and SQ iterations with preprocessing

The RQ (that is, Rayleigh quotient) iteration has an n× n matrix M and its approximate eigenpair {λ(0),w0} as an input
and recursively updates the eigenpairs as follows,

yi = (M − λ(i)I)−1wi, (4.1)

λ(i+1)
= λ(i)

+
yHi wi

yHi yi
, (4.2)

ci ≈ 1/

yHi yi,wi+1 = ciyi (4.3)

for i = 0, 1, . . . . It stops and outputs the eigenpair {λ(i),wi}where

‖Mwi − λ(i)wi‖ < τ‖Mwi‖ (4.4)

for a fixed tolerance τ . One can skip checking this bound where |λ(i+1)
− λ(i)

| > τ |λ(i)
|.

The iteration extends the Power method

yi+1 = Myi/‖Myi‖, λ
(i)
1 =

yHi yi+1
yHi yi

, i = 0, 1, . . . , (4.5)

where the pairs {λ(i)
1 , yi} converge to the eigenpair {λ1, x1} provided | |λ2||λ1| | ≤ θ < 1 and the eigenvalue λ1 is simple

[15, Section 7.3.1], [19, Section 2.1.1]. The RQ iteration rapidly converges to an eigenpair {λj, yj} for almost any initial vector

w0 provided | λj−λ(0)

λk−λ(0) | ≤ θ < 1 for all k ≠ j and for θ not close to one. Unless a reasonably close initial approximate

eigenvalue is available, it is customary to choose the initial values λ(0) on a large circle Cc,γ = {λ
(0)
: |λ(0)

− c| = γ } for
c = 0 or c = 1

n traceM and γ ≈ 10‖M‖, say. Empirically this recipe works fine. Apart from rare cases of hard inputs, one
can expect to have convergence in quite a small number of iteration loops (cf. Section 11).

Seeking all eigenvalues of an n×nmatrixM one can choose hn equally spaced initial pointsλ(0) on the circle Cc,γ for h ≥ 1
(cf. [43]) and concurrently initialize the iteration at all of these points. Some processes can converge to the same eigenvalues
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from distinct initial approximations, but typically the iteration approximates a substantial fraction of the eigenvalues, if not
all of them [43]. By combining this algorithm with deflation one can recursively approximate all eigenvalues.

The ith iteration loop (4.1)–(4.3) is essentially equivalent to computing Newton’s update of an approximate eigenpair
{λ(i), yi} (see [21,22,19]), and this implies local quadratic convergence of the iteration.

Subspace iteration converges under weaker assumptions, whereas Rayleigh–Ritz (Galerkin) techniques split out the
eigenspaces associatedwith a desired number of eigenvalues and avoid convergence to the eigenpairs already approximated
(see the Appendix and [44,19]). Furthermore these methods update approximate eigenvectors and eigenspaces faster by
employing all vectors from the Krylov linear space defined by all previously computed approximate eigenvectors instead
of just the single most recent approximate eigenvector. In application to root-finding, however, this advantage should be
weighed against the incurred increase of the computational cost of an iteration step (see Remark B.3).

According to both formal and empirical study, the RQ iteration remains effective wherever instead of the pairs
{λ(i+1),wi+1} one computes approximations {λ̃(i+1), w̃i+1} such that (λg − λ̃(i+1))−1 ≫ (λj − λ̃(i+1))−1 unless j = g . Thus
to save some ops, we can replace the values ci in (4.3) with their approximations and (cf. [23]) at the stage (4.2) of updating
the eigenvalue replace the RQs with simple quotients (hereafter we refer to them as SQs),

λ(i+1)
= λ(i)

+
eHj wi

eHj yi
, eHj yi ≠ 0. (4.6)

We can also simplify updating the eigenvectors in (4.3) by incorporating additive preprocessingMi = M − λ(i)I → Ki =

Mi+uivHi for appropriate pairs of vectors ui and vi such that the linear systems with the matrix Ki can be solved more easily
than the ones with the matrixMi. Indeed the eigenvectors associated with an eigenvalue λj are precisely the null vectors of
the matrix M − λjI , and our results in the previous section can be applied. Therefore we can replace stage (4.1) in the RQ
and SQ iterations with the computation of the vector yi equal either to K−1i (1+ g−1i uivHi K

−1
i )wi for gi = 1− vHi K

−1
i ui or to

K−1i ui. We call the two resulting algorithms the SMW and AP iterations, respectively, each having the RQ and SQ variations.
Hereafter we use the abbreviation ‘‘AP ’’ for ‘‘additive preprocessor’’.

For λ(i) equal to an eigenvalue λj(M), both SMW and AP iterations compute an associated eigenvector yi, due to the
SMW formula and Corollary 3.1, respectively. For λ(i) equal to an eigenvalue λj(M), the SMW iteration produces the same
approximations yi as the RQ or SQ iterations up to rounding errors. The AP iteration computes distinct approximations but
for ui = θiyi−1 and appropriate scalars θi preserves local quadratic convergence of the RQ and SQ iterations [41,45].

Remark 4.1. Our approach can be extended to the approximation of an eigenvalue λj(M) having geometricmultiplicity ν or
even a cluster or any fixed set of ν simple eigenvalues for 1 ≤ ν ≪ n. One should seek eigenspaces instead of eigenvectors,
employ n × ν matrices Ui and Vi instead of the vectors ui and vi, and apply the Rayleigh–Ritz (Galerkin) procedure in the
Appendix or [44,19] instead of RQ or SQ iteration. See some details in [45].

5. AP iteration with Newton-like linearization

Theorem 5.1. Let {λ, X, Y } be an eigentriple of an n×nmatrixM where the eigenvalueλ has algebraic and geometricmultiplicity
ν (see the definitions in Section 2), and so X and Y are n × ν matrices. Furthermore assume that U, V , X̃ , and Ỹ are n × ν

matrices, 0 < ν < n, and a triple {λ̃, X̃, Ỹ } approximates an eigentriple {λ, X, Y }. Write M(λ) = M − λI, M̃ = M − λ̃I, K =
M + UVH , K(λ) = K − λI , and K̃ = K − λ̃I and suppose K̃H X̃ = V , K̃ Ỹ = U, and the matrices K(λ) and K̃ are nonsingular.
Write δ = λ− λ̃ and ∆ = Y − Ỹ . Then

(i) XHK(λ) = VH , K(λ)Y = U,
(ii) ∆ = δK̃−1(I − δK̃−1)−1Ỹ = δK̃−1Ỹ + O(|δ|2),
(iii) M̃Ỹ = δUT + O(|δ|2) where T = VH K̃−2U.

Proof. Part (i) follows from Theorem 3.1. Next combine the equations K(λ)Y = U, K̃ Ỹ = U, K(λ) = K̃ − δI and
deduce that K̃Y = U + δY , Y = K̃−1U + δK̃−1Y = Ỹ + δK̃−1Y . Consequently ∆ = Y − Ỹ = δK̃−1Y , and so
∆ = δK̃−1Ỹ + δK̃−1∆, implying part (ii). Now recall that M(λ) = M̃ − δI , and so M(λ)Y = (M̃ − δI)Y = O. Consequently
M̃Y = δY = δỸ + O(|δ|2), δỸ = M̃Ỹ + M̃∆ + O(|δ|2). Replace ∆ by its expression from part (ii) and deduce that
δỸ = M̃Ỹ+δM̃K̃−1Ỹ+O(|δ|2). Substitute the equation M̃ = K̃−UVH and obtain that δỸ = M̃Ỹ+δỸ−δUVH K̃−1Ỹ+O(|δ|2).
Therefore M̃Ỹ = δUVH K̃−1Ỹ + O(|δ|2). Substitute Ỹ = K̃−1U and T = VH K̃−2U and obtain part (iii). �

Corollary 5.1. Under the assumptions of Theorem 5.1, let the matrix U have full column rank. Then δT = G + O(|δ|2) where
G = Iν − VH K̃−1U and T = VH K̃−2U + O(|δ|2).

Proof. First recall that M̃Ỹ = K̃ Ỹ − UVH Ỹ = U − UVH Ỹ = UG. Combine this equation with part (ii) to obtain that
δ(i)UT = UG+ O(|δ|2) and arrive at the corollary. �
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Now assume an n×n input matrixM , fix an initial approximation λ(0) to its isolated eigenvalue λ of multiplicity ν, apply
Newton-like linearization, that is recursively apply Theorem 5.1 and Corollary 5.1 deleting the terms in O(|δ|2), and arrive
at the following algorithm.

Algorithm 5.1. AP iteration with Newton-like linearization 1.

Initialization: Compute the matrix M0 = M − λ(0)I . Set i = 0.

Computations: 1. Generate a pair of n×ν matrices Ui and Vi, of full rank ν. Scale them to have the ratio ‖UiVH
i ‖

‖Mi‖
neither small

nor large.
2. Compute the matrix Ki = Mi + UiVH

i , expected to be nonsingular.
3. Stop and output FAILURE if the matrix Ki is singular. Otherwise compute the matrix Yi = K−1i Ui.
4. If the stopping criterion ‖MiYi‖ ≤ t‖M‖ ‖Yi‖ holds for a fixed tolerance t , output an approximate

eigenpair {λi, Yi} and stop. Otherwise successively compute the matrices Yi = K−1i Ui, Ỹi = K−1i Yi,Gi =

Iν − VH
i Yi, and Ti = VH

i Ỹi.
5. Fix a pair of integers g and h in the range rν,ν = {1 ≤ g ≤ ν, 1 ≤ h ≤ ν} and compute the scalar

t(i)g,h = eTg Tieh. If t
(i)
g,h = 0, then remove the pair {g, h} from the range, that is set rν,ν ← rν,ν − {g, h}, and

repeat Stage 5.

6. Otherwise compute the scalars δ(i)
=

eTg Gieh
t(i)g,h

and λ(i+1)
← λ(i)

+ δ(i).

7. Compute the matrixMi+1 = Mi − δ(i)I , increment the integer i: i← i+ 1 and reapply the iteration loop,
beginning with Stage 1.

Correctness of the algorithm and its local quadratic convergence follow from Theorem 5.1 and Corollary 5.1.

Remark 5.1. One can choose the matrices Ui to simplify the computations in Algorithm 5.1 (cf. the next two sections).

Remark 5.2. Assume that the matrices Xi = K−Hi Vi, Yi = K−1i Ui, and Ti = XH
i Yi are filled with random and independent

entries. Then the ratio ‖Ti‖
‖Xi‖ ‖Yi‖

tends to be very large even in the case where the ratio n/ν is moderately large. In our tests,
at the initial stages where the approximation errors δ(i) were not small, this ratio tended to be very large indeed in the case
of random matrices Ui and Vi. We avoid this problem if we ensure small approximation errors δ(i) or if M = MH and if we
choose Vi = Ui. In the latter case we have Xi = K−Hi Vi = K−1i Ui = Yi and XHYi = ‖Yi‖

2. We can extend this technique
heuristically to the case of non-Hermitian matrices M by first setting Vi = Ui and then recursively redefining the matrix
Vi ← K−1i Yi until the norm ‖Yi‖ = ‖VH

i K−1i Yi‖would grow to the desired level.

Remark 5.3. Corollary 5.1 implies that the norm ‖Gi‖ = O(|δ(i)
|) is small near an eigenvalue, which leads to numerical

problems at the stage of computing the matrix Gi, but one can overcome them with the techniques of iterative refinement
in [42].

Remark 5.4. We can modify Algorithm 5.1 near the solution based on the representation of the matrix K−1i+1 = (Ki −

δ(i)I)−1 = K−1i (I− δ(i)K−1i )−1 as the formal power series
∑
∞

j=0(δ
(i))jK−1−ji . If the value |δ(i)

| ‖K−1i ‖ is small, we can truncate
this series to the first two terms and reduce the computation of the matrices Xi+1, Yi+1,Gi+1, and Ti+1 to the solution of
linear systems with the samematrix K−1i . Then wewould only need its single factorization and would avoid factorization of
the matrices Ki+j for j = 1 and possibly even for j = 2, 3, . . . . An alternative of solving linear systems with the twomatrices
K−1i and I − δ(i)K−1i can be also attractive where ‖δ(i)K−1i ‖ < 0.5, say, so that the matrix I − δ(i)K−1i is strongly diagonally
dominant.

Let us alternatively compute the scalars δ = δ(i) and the matrices ∆ = ∆(i).
Ignoring the terms in O((|δ| + ‖∆‖)|δ|) deduce from part (ii) of Theorem 5.1 that M̃∆ ≈ δMK̃−1Ỹ .
Furthermore we have M̃Y = (M − λ̃I)Y = (M − λI + δI)Y . Consequently M̃Y = δY because MY = λY . It follows that

M̃∆ = M̃Y − M̃Ỹ = δY − M̃Ỹ ≈ δỸ − M̃Ỹ . Combine the two expressions for M̃∆ and obtain that δ(Ỹ − M̃K̃−1Ỹ ) ≈ M̃Ỹ
and consequently

δe(n)T
g (Ỹ − M̃K̃−1Ỹ )e(ν)

h ≈ e(n)T
g M̃Ỹe(ν)

h for all pairs of g and h. (5.1)

Based on these equations we can modify Algorithm 5.1 as follows.

Algorithm 5.2. AP iteration with Newton-like linearization 2.
Initialization and Stages 1–4 of Computations are as in Algorithm 5.1. Modify the rest of its Computations as follows.

5. Fix a pair of integers g and h in the range rn,ν = {1 ≤ g ≤ n, 1 ≤ h ≤ ν} and compute the scalar t(i)g,h = e(n)T
g (Yi −

MiK−1i Yi)e
(ν)
h . If t(i)g,h = 0, then remove the pair {g, h} from the range, that is set rn,ν ← rn,ν − {g, h}, and repeat Stage 5.
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6. Otherwise compute the scalars δ(i)
=

e(n)T
g MiYie

(ν)
h

t(i)g,h
and λ(i+1)

= λ(i)
+ δ(i) and the vector ∆i = δ(i)∆̃i.

7. Compute the matrixMi+1 = Mi− δ(i)I , increment the integer i : i← i+1 and reapply the iteration loop, beginning with
Stage 1.

Correctness of the algorithm follows from part (ii) of Theorem 5.1 and Eq. (5.1).
Recall that Ki = Mi+UiVH

i , deduce that I−MiK−1i = UiVH
i K−1i and therefore Yi−MiK−1i Yi = UiVH

i K−1i Yi, and obtain yet
another modification of the previous algorithms.

Algorithm 5.3. AP iteration with Newton-like linearization 3.
Initialization and Stages 1–4, 6 and 7 of Computations are as in Algorithm 5.2. Modify Stage 5 of its Computations as

follows.
5. Fix a pair of integers g and h in the range rn,ν = {1 ≤ g ≤ n, 1 ≤ h ≤ ν} and compute the scalar t(i)g,h =

e(n)T
g UiVH

i K−1i Yie
(ν)
h . If t(i)g,h = 0, then remove the pair {g, h} from the range, that is set rn,ν ← rn,ν − {g, h}, and repeat

Stage 5.

Algorithms 5.1–5.3 output the same values up to the perturbations of the order quadratic in |δ(i)
| and ‖∆i‖, and so our

previous analysis canbe extended. Our experiments have showedquite similar convergencepatterns for all three algorithms,
but the arithmetic cost of an iteration loop in their application to companion and generalized companion matrices a little
varies (see Tables 1 and 2 in the next sections).

In all three algorithmswe can choose additive preprocessorsUiVH
i forwhich the subsequent computations are simplified.

e.g., we can turn a Hessenberg matrix Mi into a 2× 2 block triangular matrix Ki having two Hessenberg diagonal blocks. In
the next sections we yield more substantial simplifications where the matricesMi are already quite simple.

6. Polynomial root-finding via eigen-solving for companion matrices

6.1. A companion matrix and its eigenspaces

The n roots λ1, . . . , λn of a monic polynomial p(x) =
∑n

i=0 pix
i
=

∏n
j=1(x − λj) with the coefficient vector p = (pi)n−1i=0

are precisely the n eigenvalues of the associated companion matrix Fp in (2.4). (Here we assume that pn = 1, but see
Remark 6.1.) We can approximate the roots by applying the algorithms in the previous sections to the matrix Fp and by
exploiting its structure. One can immediately verify the following facts and corollary.

Fact 6.1. Any eigenvalue λj = λj(Fp) has a left eigenvector yTj = (λi−1
j )ni=1.

Corollary 6.1. Suppose a companion matrix Fp has n distinct simple eigenvalues λj = λj(Fp) for j = 1, 2, . . . , n. Then
YFpY−1 = diag(λj)

n
j=1 where Y = (yTj )

n
j=1 = (λi−1

j )nj,i=1.

Fact 6.2. Assume a companion matrix Fp defined by the coefficient vector p of a monic polynomial p(x) =
∑n

i=0 pix
i and let

r(x) = u(x)
w(x) be a rational function for two polynomials u(x) and w(x) such that the matrix w(Fp) is nonsingular. Let λj = λj(Fp)

and r(λj) for j = 1, 2, . . . , n denote the eigenvalues of the matrices Fp and r(Fp), respectively, which share their associated
eigenvectors for every j. If pr(x) =

∏n
j=1(x − r(λj)) = xn +

∑n−1
i=0 pr,ixi and p(r) = (pr,i)n−1i=0 is the vector of the n trailing

coefficients of this polynomial, then the matrix Fp(r) has eigenvalues r(λj) and the associated left eigenvectors (r(λi−1
j ))ni=1 for

j = 1, 2, . . . , n.

The monic polynomials prev(x) = 1
p0
xnp(1/x) =

∑n
i=0

pi
p0
xn−i =

∏n
j=1


x− 1

λj


(where p0 ≠ 0), pa(x) = anp(x/a) (for a

scalar a ≠ 0), and p(x− µ) = q(x) =
∑n

i=0 qix
n−i
=

∏n
j=1(x− (λj + µ)) have the roots 1/λj, aλj, and λj + µ, respectively,

for j = 1, 2, . . . , n. Let prev, pa, and q denote the coefficient vectors of the polynomials p(x), pa(x), and q(x) above. Then the
matrices Fprev , Fpa , and Fq share their eigenvalues but not eigenspaces with the matrices F−1p , aFp, and Fp −µI , respectively.
For p0 ≠ 0 we have

F−1p = ZT
−


pi
p0

n

i=1
eT1 = JFprev J. (6.1)

Since J = J−1, it follows that the matrices F−1p and Fprev share their eigenvalues, whereas Jv is an eigenvector of the matrix
Fprev if and only if v is a common eigenvector of the matrices F−1p and Fp.

Computation of the coefficients of the polynomial p(x − µ) takes O(n log n) ops (see, e.g., [37]). Generally this may
require a substantial increase of the input precision, but not for the shifts µ into the points − pn−1

npn
=

1
n trace(Fp) and

−n p0
p1
= n/trace(F−1p ) (where p1 ≠ 0) because the scaled trace (resp. its reciprocal) is the average value of the roots of

the polynomial p(x) (resp. prev(x)).
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Table 1
Number of ops per an SQ loop in four algorithms applied to an n× n companion matrix.

Algorithm SQ/GE SQ/AP Algorithm5.1/SQ/AP Algorithm5.3/SQ/AP

ops 7n− 3 2n+ 3 4n+ 1 3n+ 4

Remark 6.1. Scaling by 1
pn

reduces any polynomial p(x) =
∑n

i=0 pix
i with pn ≠ 0 to the case of monic polynomial.

If pn ≈ 0, however, then one may prefer to use the recipes in [46,47] or to work with the reverse of the polynomial
q(x) = p(x−s) for a scalar s such that the value |q(0)| is not small; in particular one can choose s = 0 if the value |p(0)| is not
small.

6.2. The RQ iteration and its acceleration

Suppose we apply the RQ iteration in (4.1)–(4.4) to the matrix Fp. The iteration updates the approximations to an
eigenvector in 8n ops based on the SMW formula (cf. (2.2) and (4.1)) and to an eigenvalue in 4n ops (cf. (4.2)), computes a
square root and performs n ops for scaling in (4.3), and uses 9n− 2 ops for testing stopping criterion (4.4).

We can employ the Subspace iteration and the Rayleigh–Ritz (Galerkin) methods, which have some benefits cited in
Section 4, but there is a research challenge of preserving both matrix structure and fast (even local) convergence (see
Remark B.3).

In this subsection we advance into the opposite direction of decreasing the cost bounds per iteration loop by suchmeans
as employing the SQ iteration and additive preprocessing and modifying the stopping criterion.

1. The SQ iteration in Section 4 updates an eigenvalue in two ops and enables us to skip scaling.
2. With the simplifying AP peTn we update an approximate eigenvector in 2n− 1 ops per step by modifying expression (4.1)

as follows,

yi = (Fp − λ(i)I + pen)−1p = (Z − λ(i)I)−1p for |λ(i)
| ≥ 1. (6.2)

Likewise with the simplifying AP (p+ e1 + λ(i)en)eTn we can update an eigenvector in at most 2n− 2 ops as follows,

yi = (Fp − λ(i)I + (p+ e1 + λ(i)en)en)−1(p+ e1 + λ(i)en) for |λ(i)
| ≤ 1 (6.3)

where Fp − λ(i)I + (p+ e1 + λ(i)en)en = (I − λ(i)Z)ZT
1 . In both cases we can compute the vector yi in less than 2n ops in

virtue of Lemma 2.1 and can readily employ concurrency for further acceleration (see Remark 2.1).
The matrix Z − λ(i)I is well conditioned for |λ(i)

| ≥ 1, whereas the matrix I − λ(i)Z is well conditioned for |λ(i)
| ≤ 1.

In fact we have more options because we can shift to the matrices Fprev or F
−1
p = JFprev J assuming w.l.o.g. that p0 ≠ 0.

3. We can save n ops in approximating an eigenvector if we replace the matrix Fp with its transpose F T
p , which preserves

the spectrum of Fp. Indeed (Z − µI)−Ten = (ZT
− µI)−1en = (µi−n)n−1i=0 . If µ is an eigenvalue, then this is an associated

eigenvector of the matrix F T
p (see Fact 6.1).

4. In the stopping criterion we only need about 4n ops if instead of bound (4.4) we test whether |p(λ(i))| ≤ us(λ(i)) for
the unit roundoff (machine epsilon) u (cf. [48, Section 4]) and for s(λ) =

∑n
j=0(4j + 1)|pj| |λ(i)

|
j. Furthermore since

xj = (λh
j )

n−1
h=0 is a left (resp. right) eigenvector associated with an eigenvalue λj of the matrix Fp (resp. of F T

p ) (cf. Fact 6.1),
we can skip testing unless the ratio of two fixed consecutive components of the current approximation to an eigenvector
is close to λ(i) and unless the value |λ(i)

− λ(i−1)
| is small enough.

In our experiments a few initial steps of our simplified iteration (which employed Eq. (6.2) and a simplifying AP) and of
the original RQ or SQ iteration with no preprocessing have regularly produced approximations to an eigenvalue of about
the same quality. Then our simplified iteration stopped refining these approximations any further. At this point, however,
we shifted to the RQ or SQ iteration with no preprocessing. Finally, having computed an approximation that was reasonably
close to an eigenvalue, we refined it by applying Algorithm 5.1 or Algorithm 5.3 with the same simplifying APs. Our tests
confirm fast convergence of this three-stage iteration.

Table 1 displays the numbers of ops per step in these variations of the SQ iteration where ‘‘GE’’ stands for ‘‘Gaussian
elimination’’. In the ops count for Algorithms 5.1 and 5.3 we assumed that t(i)g,h ≠ 0, that is the denominators have not
vanish, already for the first choices of the pairs {g, h}.

Concurrent application of our iterations to thematrices Fprev , Fpa , Fq, F
−1
p , aFp, and Fp−µI (see Section 6.1)would increase

the chances to approximate a sufficiently large fraction of all roots between the successive deflations.

6.3. Initialization and continuous scaling

One can apply the standard initialization recipes for polynomial root-finding, in particular Bini’s effective heuristic
algorithm in [48, Section 2],which involvesO(n log n) ops. According to Bini’s tests in [48] the algorithmproduces reasonable
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approximations to all root radii, that is to the distances rj = |λj|, j = 1, . . . , n from the roots to the origin. Then, according to
Bini’s recipe, one should uniformly distribute hn initial approximations for a fixed h ≥ 1 (e.g., h = 3 log2 n) in the respective
narrow annuli lying about the circles {x : |x| = rj}, j = 1, . . . , n. Some sets of circles can lie close to each other and be
covered by the same annuli. According to the tests in [48,23], this initialization policy enables quite fast convergence and
decreases the chances for recomputing the roots already computed. For some input polynomials some roots can still be
missing, but one can obtain more roots by applying the iteration concurrently to the polynomials p(x), prev(x), and possibly
p(x− s) and prev(x− s1) for some selected shifts s and s1, e.g., for the shifts s = −

pn−1
npn

and s1 = −
p1
np0

into the average values
of the roots.

Standard support for initialization also comes from homotopy continuation techniques. One can first choose a family
of polynomials p(u, x) continuously depending on a real parameter u in a fixed range [s, t] where s < t and the roots
of a polynomial p(s, x) are easy to approximate, whereas p(t, x) = p(x). Then one can choose a sequence of values
u0 = s, u1, . . . , uq = t with sufficiently small step sizes |uk+1 − uk| for all k and recursively approximate the roots
of the polynomial p(uk+1, x) by using the initial approximations by the computed roots of the polynomial p(uk, x) for
k = 0, 1, . . . , q− 1.

In the most customary variant of this process (cf., e.g., [49]), one chooses s = 0, t = 1, and p(u, x) = p(x) + (1 − u)an

where the value |a| is large enough so that the values aωj
n (for j = 0, 1, . . . , n − 1 and ωn denoting a primitive nth root of

one) are reasonable initial approximations to the roots λ
(0)
j of the polynomial p(0, x).

Apparently there are many other effective variations of these techniques. Our tests show the efficiency of the heuristic
policieswhere p(u, x) = fl


unp

 x
u


, t = 1, |s| is small, and fl(f ) denotes a polynomial f whose coefficients are represented

with floating point and are rounded to double precision.

6.4. Deflation

Deflation is a reliable way of decreasing the problem size and avoiding convergence to the same eigenvalue. Suppose
we have computed the eigenvalues λk(1), . . . , λk(h) of the companion matrix Fp. Then we can deflate the matrix by applying
the Rayleigh–Ritz (Galerkin) methods. These customary techniques, however, are too costly in our case because they do
not preserve the structure of the matrix Fp. Instead we can divide (with no remainder) the polynomial p(x) by the product
d(x) =

∏h
j=1(x− λk(j)) by applying the classical polynomial division (which uses (2n− h)h ops). Alternatively we can apply

Toom’s approach in [50], that is, first evaluate bothpolynomials p(x) and d(x) at the 2lth roots of unityωj = exp(2π j
√
−1/2l)

for j = 0, 1, . . . , 2l
− 1 and l = 1 + ⌊log2(n − h)⌋, then concurrently compute the 2l quotients q(ωj) = p(ωi)/d(ωj) for

j = 0, 1, . . . , 2l
− 1, and finally interpolate to the quotient polynomial q(x). This takes O(n log n) ops if we apply FFT-based

fast evaluation and interpolation algorithms amenable to parallel acceleration.
We can refine the output as follows. Write p(x) = d(x)(q(x) + ∆(x)) where q(x) is the computed quotient and ∆(x) is

the error polynomial. Then we can compute the error polynomial ∆(x) = (p(x) − d(x)q(x))/d(x) and the refined quotient
q(x) + ∆(x). Such Newton-like steps can be repeated recursively and can be expressed in terms of operations with the
associated structured matrices (see Section 10).

6.5. Repeated squaring techniques for a companion matrix

In this section we recall repeated squaring of a (shifted) companion matrix Fp. The algorithm quite rapidly approximates
its complex eigenvalues and has solid formal support in [31,32], but in our tests with random companion matrices was still
outperformed by the RQ iteration and its modifications. Application to approximating real roots of a polynomial in Section 8
may give repeated squaring new life.

Write F (0)
= Fp and recursively compute the matrices F (i+1)

= (F (i))2 for i = 0, 1, . . . . The impact of i steps of
repeated squaring amounts to the impact of 2i steps of the Power Iteration (4.5),whose convergence therefore is dramatically
accelerated.

Furthermore, squaring and pairwisemultiplication of rationalmatrix functions r(Fp) can be reduced essentially to a small
number of FFTs and performed in O(n log n) ops in numerically stable way (see [31], [32, Section 6]). Every matrix r(Fp)
has Toeplitz-like structure, has displacement rank at most two, and can be inverted in O(n log2 n) ops if it is nonsingular
(cf., [31,32], [37, Chapter 5]).

Remark 6.2. Repeated squaring is effective for the class r(Fp), but tends to destroys other matrix structures quite rapidly.
E.g., in about log2 n repeated squarings, an n× n tridiagonal, Toeplitz, Hankel, Vandermonde and Cauchy matrices generally
become unstructured, and since then their squaring requires the order of n3 ops, although one can obtain some practical
acceleration by using block matrix algorithms on multiprocessors [15, Chapter 6].

The h initial squarings of the matrix Fp−µI as well as its inverse (where it is nonsingular) are less costly. They use O(hn)
ops in virtue of Theorem 2.1 applied to the matrices Fp − µI = B+ UVH for B = Z − µI,U = −en, and V = p.

Seeking approximations to other roots of the polynomial p(x), we can reapply repeated squaring by using explicit
deflation in Section 6.4 or implicit deflation in [31], [32, Section 6].
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7. Polynomial root-finding via DPR1 eigen-solving

7.1. DPR1 matrix, its eigenspaces, and back and forth transforms into companion matrices

Companion matrix Fp and its transpose are the best known examples of generalized companion matrices whose eigen-
values are precisely the roots of a polynomial p(x) =

∑n
i=0 pix

i
=

∏n
j=1(x− λj). Among the other important classes [51,8],

we choose the DPR1 (that is diagonal+ rank-one) matrices

C = Cs,u,v = Ds − uvH (7.1)

for s = (si)ni=1,u = (ui)
n
i=1, v = (vi)

n
i=1,

Ds = diag(si)ni=1,
∏
i

si ≠ 0, (7.2)

di = uivi =
p(si)
qi(si)

≠ 0, qi(x) =
∏
j≠i

(x− si), i = 1, . . . , n, (7.3)

qi(si) = q′(si), i = 1, . . . , n, q(x) =
n∏

j=1

(x− si). (7.4)

Note that C − µI for a scalar µ is also a DPR1 matrix. Furthermore, unlike the companion matrices, DPR1 matrices are
defined by the values of the associated polynomial on a fixed set of points rather than by the coefficients.

Theorem 7.1. The eigenvalues of the matrix C in (7.1) are precisely the roots of the polynomial p(x) as well as of the associ-
ated secular equation

n−
i=1

uivi

si − λ
= 1. (7.5)

Proof. See, e.g., [11,9], [23, Theorem 4.4]. �

Theorem 7.2. Assume n distinct scalars s1, . . . , sn and let the DPR1 matrix C in Eq. (7.1) have n distinct eigenvalues λ1, . . . , λn.

Then it has the eigendecomposition C = W−1D3W where D3 = diag(λj)
n
j=1,W =


ui

si−λj

n

i,j=1
, and W−1 =


vj

si−λj

n

i,j=1
.

Proof. The theorem follows from Theorem 3.1. �

For two fixed sets of distinct knots s1, . . . , sn and values d1, . . . , dn, we can define infinite number of DPR1 matrices
Ds − uvH with uivi = di for all i. All of them share their eigenvalues (but not eigenspaces).

DPR1 and companion matrices for the same polynomial can be transformed into one another based on polynomial
interpolation and multipoint evaluation [37, Sections 3.1 and 3.3] that take almost linear arithmetic time, but these
transformations generally require using extended precision to counter numerical stability problems.

Theorem 7.3. O(n log2 n) ops are sufficient for the transition from the companion matrix Fp to the DPR1 matrix C
in (7.1) associated with the same polynomial p(x). The bound decreases to O(n log n) in the case of DPR1 matrices with the knots
si = aωi−1

k for i = 1, . . . , n, where a is a nonzero scalar, ωq = exp(2π
√
−1/q) denotes a primitive q-th root of unity, k ≥ n

and k = O(n).

7.2. Some basic operations with DPR1 matrices

Next, for a given DPR1 input matrix C in (7.1), we estimate the arithmetic cost of computing the DPR1 matrices
C − µI, C−1, and Crev (associated with the reverse polynomial prev(x)).

Theorem 7.4. Suppose 3n+1 scalarsµ, ui, vi, and si for i = 1, . . . , n define a DPR1 generalized companionmatrix C in Eq. (7.1).
Write s = 1−

∑n
i=1

uivi
si

and let s ≠ 0. (For s = 0 Eq. (7.5) has the root λ = 0.) Thenwe can compute 3n parameters u(new)
i , v

(new)
i ,

and s(new)
i , i = 1, . . . , n, that define a DPR1 generalized companion matrices (a) C −µI in n ops, (b) C−1 in 6n ops (provided the

matrix C is nonsingular), and (c) Crev associated with the polynomial prev(x) in 4n+ 1 ops.
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Table 2
Number of ops per an iteration loop in four algorithms applied to an n× n DPR1 matrix.

Algorithm [23] SQ/AP Algorithm5.1/SQ/AP Algorithm5.3/SQ/AP

ops 9n 3n+ 2 5n+ 1 4n+ 2

Proof. (a) Define a DPR1 matrix C −µI by reusing all the parameters ui = u(new)
i and vi = v

(new)
i and recomputing only the

values s(new)
i = si − µ.

(b) Apply the SMW formula to obtain that C−1 = (D−uvH)−1 = D−1+ g−1D−1uvHD−1 = D−+u−vH− where D− = D−1

(n ops),w = D−1u (n ops), g = 1− vHw (2n ops), u− = gw (n ops), and vH
−
= vHD−1 (n ops).

(c) To define a DPR1 matrix Crev, we seek 3n parameters u(new)
i , v

(new)
i , and s(new)

i , i = 1, . . . , n, such that

n−
i=1

d(new)
i

s(new)
i − (1/λ)

= 1 (7.6)

for d(new)
i = u(new)

i v
(new)
i and for all values λ satisfying Eq. (7.5). First rewrite Eq. (7.6) as

∑n
i=1

d(new)
i λ

s(new)
i λ−1

= 1. Then substitute

the expressions d(new)
i λ

s(new)
i λ−1

=
d(new)
i

s(new)
i


1+ 1

s(new)
i λ−1


for i = 1, . . . , n and deduce that Eq. (7.6) is equivalent to the equation∑n

i=1
d(new)
i

s(new)
i

1
s(new)
i λ−1

= s(new) for s(new)
= 1 −

∑n
i=1

d(new)
i

s(new)
i

. Now write s(new)
i = 1/si, d

(new)
i = −s(new)di/s2i for i = 1, . . . , n

and deduce that s(new)
= 1/s and Eqs. (7.5) and (7.6) are equivalent to one another. It remains to compute s(new)

i = 1/si (in
n ops), wi = di/si (in n ops), u(new)

i = wi/si (in n ops) for i = 1, . . . , n,−s =
∑n

i=1 wi − 1 (in n ops), v(new)
i = −1/s for

i = 1, . . . , n (in single division). �

7.3. The RQ and SQ iterations for DPR1 matrices and its modification

Assume the SQ iteration applied to a DPR1 matrix C in Eq. (7.1). It updates an approximate eigenvalue as in Sections 4
and 6.2. To update an eigenvector apply the SMW formula (2.2) for r = 1.

Theorem 7.5. For the vector u = (±1,±1, . . . ,±1)T , a scalar µ, a vector w, and the DPR1 matrix C in Eq. (7.1), we can
compute the vector (C − µI)−1w by performing 9n ops provided the matrix C − µI is nonsingular.

Proof. See [23, Theorem 5.1]. �

With the simplifying AP uvH we reduce updating an eigenvector in the SQ iteration to computing the vector (D−µI)−1w;
this takes 2n ops. Moreover we can perform these ops in ⌈2n/s⌉ arithmetic parallel steps if we can distribute them among
s processors for any s, 2 ≤ s ≤ n.

Theorem 7.6. For a scalar µ, four vectors s,u, v, and w of dimension n, and the DPR1 matrix C in Eq. (7.1), let the matrix
K = C + uvH − µI = Ds − µI be nonsingular. Then we can compute the vector K−1w by performing 2n ops.

As a stopping criterion we can just check whether secular Eq. (7.5) is satisfied for a fixed scalar λ within a fixed tolerance
bound. This takes 2n ops assuming that the products di = uivi have been given to us for all i. Moreover these ops can be
reused when we update an approximate eigenvalue λ(k) in Algorithm 5.1 based on the formula

λ(k+1)
= λ(k)

+
1− βk

γk
, βk =

n−
j=1

dj
sj − λ(k)

, γk =

n−
j=1

dj
(sj − λ(k))2

(7.7)

provided sj ≠ λ(k) for all pairs {j, k}. This updating takes 5n+ 1 ops.
In Table 2 we display the number of ops per step of our SQ eigen-solving iterations applied to a DPR1 matrix (under the

same assumptions as in Table 1 for companion matrices).
Here is the specification of Theorem 5.1 to a DPR1 matrix C .

Theorem 7.7. We have |λ(k+1)
− λ| = O(|λ(k)

−λ|2) as |λ(k)
− λ| → 0 for λ(k+1) in Eq. (7.7) and an eigenvalue λ of the matrix

C in (7.1).
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7.4. Initialization and continuous scaling

The initialization and deflation recipes in Section 6.3 can be applied in the case of DPR1 matrices as well, including
concurrent application of the eigenvalues of DPR1 matrices associated with the polynomials p(x), prev(x), and possibly
p(x − s) and prev(x − s1) for some selected shifts s and s1 (cf. Theorem 7.4). Moreover, versus the companion matrices,
we have numerous options of employing the DPR1 matrices C = D + uvT that share their eigenvalues for distinct pairs of
the vectors u and v such that uivi = di for a fixed set {d1, . . . , dn} and for all i.

Bini’s heuristic initialization in [48, Section 2] involves the coefficients p0, . . . , pn not available in the DPR1 case, but our
experiments show that random choice of the initial approximations to the eigenvalues on the unit circle (for random DPR1
inputs in the range {0, 1}) serves as effectively. For various other inputs one can try initial approximations on a sufficiently
large circle centered near the origin or the point 1

n trace(C), the average of the eigenvalues, and can employ deflation where
the iteration converges to the same root fromdistinct initial points. Then againwe can apply the iteration concurrently to the
polynomials p(x), prev(x), and possibly p(x− s) and prev(x− s1) for some selected shifts s and s1, to approximate more roots.

Continuous scaling can be easily applied to DPR1 matrices, and the standard homotopy continuation process, defined by
the equation p(u, x) = p(x)+ (1− u)an, can be readily extended to the DPR1 inputs. We only need to perform n divisions
by q1(s1), . . . , qn(sn) per homotopic step provided all divisors qi(si) have been precomputed. One can also explore other
policies, e.g., continuous scaling of the parameters si and di = uivi for all i.

7.5. Deflation

We can deflate the n× n DPR1 matrix in 4n− 4 ops in a numerically stable algorithm, to arrive at an (n− 1)× (n− 1)
DPR1 matrix (see [23, Section 6]).

Suppose for some l < n we have computed l eigenvalues λn−l+1, . . . , λn of a DPR1 matrix C in Eq. (7.1). Then we can
compute the remaining eigenvalues λ1, . . . , λn−l as the eigenvalues of an (n − l) × (n − l) DPR1 matrix C̃ defined by the
subvector (si)n−li=1 of the vector s = (si)ni=1 and by the vector d̃ = (d̃i)n−li=1 where d̃i = di

∏n−l
j=1

si−sn+1−j
si−λn+1−j

, i = 1, . . . , n− l. Overall

the computation of the matrix C̃ takes 4(n− l)l ops and can be readily distributed among up to n− l processors assigned to
computing the vector d̃.

7.6. Updating a DPR1 matrix

For the task of the computation of all eigenvalues of a DPR1 matrix we have an additional resource, not available for
companion matrices, but successfully exploited in [10,9] for convergence acceleration in the DPR1 case. Namely, we can
begin with crude approximations s1, . . . , sn to the eigenvalues and then recursively update them (and respectively update
the DPR1 matrix based on Eqs. (7.1)–(7.4)) as we improve the approximations. This updating takes 9n − 8 ops when we
change a single approximation si into a new one s̃i. Indeed besides n divisions in (7.3), we need four ops to compute the value
q̃′(sj) = q′(sj)

sj−s̃i
sj−si

for any integer j, j ≠ i, 2n− 3 ops to compute the value q̃′(si) =
∏

j≠i(s̃i− sj), and 2n− 1 ops to compute
the value p(s̃i). Using Taylor expansion of the polynomial p(x) at the point si would stabilize numerical computation of the
latter value provided the ratio |s̃i− si|/|si| is noticeably less than one. Likewise we can update l approximate eigenvalues by
performing (9n− 8)l ops and can readily achieve parallel acceleration provided that l > 1 and that we update a number of
approximations si simultaneously.

7.7. Repeated squaring techniques for a DPR1 matrix

Unlike the companion matrix structure, the DPR1 structure deteriorates in squaring, so that the order of log n squaring
steps can completely destroy the structure of a DPR1matrix. Let us show some remedies for the latter disadvantage. First of
all inO(n) opswe can perform the first h squarings of an n×nDPR1matrix and of its inversewhere thematrix is nonsingular
and h is a small constant. Here are some specific estimates.

Theorem 7.8 (Cf. Theorem 2.1). The ith successive squaring of the shifted DPR1 matrix C0 = C − µI = D+ uvT takes at most
22i+1n multiplications and 4i(2n− 1) additions for i ≤ log2 n.

Proof. Write U0 = u, V0 = v, Ci+1 = D2i+1
+ D2iUiV T

i + UiV T
i D

2i
+ UiV T

i UiV T
i , i = 0, 1, . . . , represent the output matrix

as Ci+1 = D2i+1
+ Ui+1V T

i+1 where Ui+1 = (D2iUi,Ui), V T
i+1 = (V T

i , V T
i D

2i
+ V T

i UiV T
i ), and count ops used in the squaring

Ci → Ci+1 = C2
i . �

Furthermore our next theorem applied to r = 2 and DPR2 matrix (D − uvH)2 enables us to square a DPR1 matrix
recursively in O(n log n) ops per squaring, although this squaring is implicit, does not preserve the eigenvectors, and has
numerical deficiency of employing the characteristic polynomial rather than just the eigenvectors and eigenspaces. We
state this theorem in a more general form than we need in this paper (see [52] on its more narrow version).
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First we define n × n DPRr matrices as diagonal + rank-r matrices of the form C = D − UVH where D is an n × n
diagonal matrix and U and V are n × r matrices. If both matrices C and D are nonsingular we can apply the SMW formula
and deduce that C−1 is a DPRr matrix as well. Furthermore we immediately observe that C1C2 = D1D2−U1Ṽ1− Ũ2V2 where
Cj = Dj − UjVH

j are DPRrj matrices for j = 1, 2, Ṽ1 = VH
1 (D2 − U2VH

2 ) and Ũ2 = D1U2, so that C1C2 is a DPR(r1 + r2) matrix.

Theorem 7.9. (a) For 2n distinct scalars s1, . . . , sn, µ1, . . . , µn define the diagonal matrix D = diag(si)ni=1, a pair of n × r
matrices U and V , and the DPRr matrix C = D−UVH . Then it is sufficient to use O((r3+ log2 n)n) ops to compute the values
det(C − µhI) for h = 1, . . . , n.

(b) Furthermore O((r3 + log n)n) ops are sufficient if si = aωi−1
k and µh = bωh−1

l for h, i = 1, . . . , n and two nonzero scalars
a and b, where ωq denotes a primitive q-th root of one, k ≥ n, l ≥ n, and k+ l = O(n).

Proof. We have det(C − µhI) = (det(D − µhI)) det(Ir − VH(D − µhI)−1U) (cf. (2.3)). Within the claimed cost bounds we
compute at first the coefficients and then the values det(D−µhI) =

∏n
j=1(sj −µh) of the polynomial

∏n
j=1(sj − x) at the n

points x = µh, h = 1, . . . , n (cf. [37, Section 3.1]). It remains to compute the r × r matrices Ir − Gh = VH(D− µhI)−1U =∑n
j=1

vijujk
sj−µh

r−1

i,k=0
, h = 1, . . . , n (in O(nr)2) ops), then the r × r matrices Gh for h = 1, . . . , n (in rn ops), and finally the n

values of their determinants (in (4r3 − 15r2 + 23r − 6)n/6 ops by means of Gaussian elimination). �

We can readily extend the theorem to the cases where the diagonal matrix D is replaced with a bidiagonal matrix B =
(bij)i,j, bij = 0 for i > j+1 and i < j, or a tridiagonal matrix T = (tij)i,j, tij = 0 for |i− j| > 1. Indeed thematrix (P−µhI)−1U
can be computed in O(nr) ops for P = B (see Lemma 2.1) and P = T [15, Section 4.36]. Furthermore det(B − µhI) =∏n

j=1(bjj−µh), whereas one can compute the coefficients of the characteristic polynomial det(xI−T ) inO(n log2 n) ops based
on [15, Eq. (8.5.2)].

Theorem 7.9 bounds the cost of computing the values of the characteristic polynomial det(µhI − C) of the matrix C at n
points µ1, . . . , µn. Within the same cost bound we can compute the coefficients of the polynomial q(x) =

∏n
h=1(x − µh)

and the values q′(µh) for all h, thus defining a DPR1 matrix that shares its eigenvalues with the matrix C (cf. (7.1)–(7.4)). In
particular we can apply the algorithm supporting this theorem for r = 2 to compute (in O(n logg n) ops for g = 1 or g = 2)
a DPR1matrix sharing the eigenvalues with the squares of the eigenvalues of a given DPR1matrix. This enables us to extend
the repeated squaring techniques in Section 6.5 to DPR1 matrices.

Throughout the process of squaring we can choose the values si and µh to our advantage. We can choose si = ωi−1
3k

for

i = 1, 2, . . . , n and an integer k such that n ≤ 3k < 3n. Then in all squarings we would have s2
g

i = ω
(i−1)j
3k

for i = 1,
2, . . . , n, j = 2g mod 3k, g = 1, 2, . . . , and so we can apply part (b) of Theorem 7.9. One can readily modify the
squaring stages in our algorithm to compute cubic powers rather than squares, and then we can choose s2

g

i = ω
(i−1)j
2k

for
i = 1, 2, . . . , n, j = 2g mod 2k, g = 1, 2, . . . , and employ the FFT subroutines.

8. Real eigen-solving

In this section we approximate the real eigenvalues of a real non-Hermitian matrix M , which may also have nonreal
eigenvalues. We are motivated by the two special cases where M is a companion matrix Fp or a DPR1 matrix C , but our
algorithm can be applied to any matrixM .

We assume that the matrix M2
+ I is nonsingular for otherwise λ = ±

√
−1 are the eigenvalues of the matrix M , and

we can deflate it. Alternatively we can shift to the matrix aM for a random real a ≠ 0, and then the matrix a2M2
+ I is

nonsingular with a probability close to one. We begin with the following simple observation.

Fact 8.1. The transition M → M(0)
= I + 2

√
−1(M −

√
−1I)−1 maps the real eigenvalues of a matrix M onto the unit circle

C1 = {x : |x| = 1}.

It remains to approximate the eigenvalues of the matrixM(0) lying on the circle C1.
By squaring a matrix we square its eigenvalues. Therefore repeated squaring of the matricesM(0) and (M(0))−1 keeps the

eigenvalues on the circle C1, so that the respective eigenvalues of the matrices 1
2 ((M

(0))2
k
+ (M(0))−2

k
) lie in the unit disc

D1 = {x : |x| ≤ 1} for all integers k, whereas the absolute values of all the other eigenvalues of these matrices converge
to∞ as k → ∞. Thus the eigenspace of such a matrix associated with the former eigenvalues is dominated as k → ∞
unless M(0) is a unitary matrix, that is unless M(0)(M(0))H = I . This gives us a chance to approximate such eigenspaces of
the matrices 1

2 ((M
(0))2

k
+ (M(0))−2

k
) already for moderate integers k, which is precisely the eigenspace of the matrix M

associated with its real eigenvalues. Then we can readily approximate the real eigenvalues themselves. In this algorithmwe
compute the matrices (M(0))2

k
and (M(0))−2

k
for k = 2i, i = 0, 1, . . . by means of repeated squaring.

Let us supply some results supporting this outline. Write M(i+1)
= (M(i))2, Mi =

1
2 (M

(i)
+ (M(i))−1) = 1

2 (I +
M(i+1))(M(i))−1, λ(i)

j = λj(M(i)), and λj,i = λj(Mi) for j = 1, . . . , n; i = 1, 2, . . . , and observe the following simple facts. The
first of them enables the computation of all matricesMi in real arithmetic whereM is a real matrix.
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Fact 8.2. Mi =
1
2 ((M +

√
−1I)2

i+1
+ (M −

√
−1I)2

i+1
)(M2
+ I)−2

i
for i = 0, 1, . . . In particular, M0 = (M2

− I)(M2
+ I)−1,

M1 = (M4
− 6M2

+ I)(M2
+ I)−2.

Fact 8.3. The eigenvalues of the matrices Mi are given by 1
2 (λ

(i)
j + (λ

(i)
j )−1) = 1

2 ((λ
(0)
j )2

i
+ (λ

(0)
j )−2

i
) for j = 1, . . . , n and all i.

Fact 8.4. For every positive integer i the matrix Mi shares its eigenspaces with the matrix M.

Fact 8.5. For every positive integer i the map M → Mi moves the real eigenvalues into the unit disc D1 = {x : |x| ≤ 1}.

Fact 8.6. Either |λ(i)
j | = 1 for all i and j (or equivalently M(0)HM(0)

= M(0)M(0)H
= I) or the eigenspace SR associated with all

the real eigenvalues of the matrix M is a dominated eigenspace of the matrices Mi for all sufficiently large integers i. Furthermore
the domination increases infinitely as i→∞.

Facts 8.2–8.6 together with Theorem 3.1 imply the following corollary.

Corollary 8.1. Unless M(0)HM(0)
= M(0)M(0)H

= I (or equivalently unless |λ(i)
j | = 1 for all i and j), the spaces R(K−1i Ui)

converge to the eigenspace SR provided r is the dimension of the eigenspace, Ki = Mi + UiVH
i ,Ui and Vi are n × r matrices, Ki

and VH
i Ui are nonsingular and well conditioned matrices, and i→∞.

The corollary shows that for large integers i the spaces R(K−1i U) closely approximate the eigenspace SR.
We can obtain the integer r from the Sturm sequence for the characteristic polynomial of the matrix M or by means of

binary search based on the recipes for computing the nullity in Section 3 applied to the matrices Mi for sufficiently large
integers i.

Suppose that we have computed a matrix Bi (e.g., Bi = K−1i Ui in Corollary 8.1) whose range R(Bi) approximates the
eigenspace SR much closer than the eigenspaces associated with the remaining eigenvalues. Such an approximation is
obtained where the number

θi = min
j:λj|(Mi)|>1

max{|λ(i)
j |, 1/|λ

(i)
j |} = θ2i

0

becomes sufficiently large. (Here we assume that not all eigenvalues of the matrixM are real, and so θ0 > 1.)
We can refine the computed approximation to the eigenspace SR by applying the inverse Rayleigh–Ritz (Galerkin)

iteration to the matrix Mi; then we can recall Fact 8.4 and deflate the matrix M by decoupling its r × r block L, whose r
eigenvalues are precisely the r real eigenvalues of the matrixM (see the Appendix and [44,19] on the inverse Rayleigh–Ritz
(Galerkin) iteration and deflation). Besides decreasing the size of the original problem from n to r , we get rid of all nonreal
roots and can reduce thematrix to the rank structured (semiseparable or quasiseparable) form and then apply the structured
QR algorithms in [11] or [33]. Hereafter we refer to the above procedure for the approximation of the real eigenvalues as
Algorithm 8.1.

In our tests for M = Fp, however, we observed rapid convergence of the RQ or SQ iterations even where we initialized
them near the origin or near the point 1

n trace(M) and applied to the matricesM0,M1 andM2. More precisely we continued
the iteration until we satisfied our stopping criterion with the tolerance 10−2. We used the computed eigenvector (shared
by the matrices Mi and Fp) to initialize the second stage, where we applied the RQ or SQ iteration to the matrix Fp with
the tolerance 10−6. Hereafter we refer to this algorithm as Algorithm 8.2. Whenever the process converged to a nonreal
eigenvalue (this occurred in less than 20% of runs in our tests), we deflated it togetherwith its complex conjugate eigenvalue
and reapplied the same algorithm to the deflated matrix of dimension n− 2.

Estimating the arithmetic cost of the computations in Algorithms 8.1 and 8.2 we can incorporate our estimates for the
arithmetic cost of repeated squaring in the two previous sections in both cases whereM = Fp is the companion matrix and
M = C is a DPR1matrix. We also note that forM = Fp the computation of each of the matrices (M±

√
−1I)−1 takes 4n− 1

ops. (We only need the first column of the inverse [31,32] and compute it by applying Gaussian elimination.) For M = C
such computation takes 6n ops (see Theorem 7.4), andM ±

√
−1I and (M ±

√
−1I)−1 are DPR1 matrices.

Remark 8.1. Wecan stop our iterationwhere the relative residual norms for our approximations arewithin a fixed tolerance
bound. To be sure that the approximated eigenvalues are real, we can choose the tolerance based on the gap estimates for
polynomial roots (see [53] and the references therein). To refine the computed approximations and to handle more rare
hard inputs, we can shift to the well developed symbolic methods for the isolation of the real roots of a polynomial (see [30]
and the references therein).
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9. Matrix-free real root-finding

Let us describe a matrix-free variant of the latter approach to real root-finding. Remark 8.1 can be applied to this variant
as well.

Algorithm 9.1. Real root-finding
Input: a small positive tolerance τ , a positive integer n, and n+ 1 real values p0, p1, . . . , pn, pn ≠ 0, such that the

polynomial p(x) =
∑n

i=0 pix
i has an unknown number r of real roots. (One can shift the variable x to ensure

that pn−1 = 0.)
Output: the integer r and the approximations to the r real roots of the polynomial p(x)within the required precision.

Initialization: If p(
√
−1) = p(−

√
−1) = 0, set n← n− 2 and p(x)← p(x)

x2+1
. If p(1) = 0, set n← n− 1 and p(x)← p(x)

x−1 .
Repeat until p(

√
−1)p(1) ≠ 0.

Computations: 1. Compute the polynomial p0(x) = (x−
√
−1)n

p(1) p

1+ 2

√
−1

x−
√
−1


. (p0(x) =

∏n
j=1(x − λj) for n unknown roots

λ1, . . . , λn. The real roots of the polynomial p(x) aremapped into the roots of themonic polynomial p0(x)
lying on the unit circle C1 = {x : |x| = 1}.)

2. Fix a reasonably large integer k and apply k steps of the Dandelin’s (Lobachevsky’s, Gräffe’s) root-squaring
iteration pi+1(x) = (−1)npi(

√
x)pi(
√
−x), i = 0, 1, . . . , k. (We have pi(x) =

∏n
j=1(x − λ2i

j ), so that the
i-th iteration step squares the roots of the polynomial pi−1(x) for all i. The map p(x)→ pi(x)+ xnpi(1/x)
moves all real roots of the input polynomial p(x) into the disc D2 = {x : |x| ≤ 2} and for large integers i
moves all its other roots far away from this disc.)

3. Having performed k squaring steps, apply the algorithm in [54] (cf. [55,17]) to estimate the root radii of
the polynomial pk+1(x), that is the distances |λj|

2k+1 of all its roots from the origin. Allow relative errors
within a fixed tolerance δ and output the number r of the roots that lie in the annulus 1−δ ≤ |λ| ≤ 1+δ.
(Count the roots with their multiplicities.) If r = n, output v(x) = p(x) and stop.

4. Otherwise, as soon as the roots of the polynomial pk(x) lying on the unit circle C1 become sufficientlywell
separated from the other roots, apply [56, Algorithm2.1] to the polynomial pk(x) =

∏n
j=1(x−λ

(k)
j ), which

should replace p(x) in [56]. The algorithm outputs polynomialp(x) = ∑n
i=0pixi = ∏n

j=1(x −
1
2 (λ

(k)
j +

1/λ(k)
j )) whose r absolutely smallest roots lie in the unit disc D1 = {x : |x| ≤ 1}, whereas all other roots

lie far from this disc.
5. Apply the algorithms in [54,57,17] to compute an approximate factorv(x) ≈

∏r
h=1(x− z(k)

h ) of degree r
sharing these r roots with the polynomialp(x).

6. Apply a selected root-finder to compute the r roots z(k)
1 , . . . , z(k)

r of the latter factor.

7. Observe thatλ(k)
jh

for h = 1, . . . , r equals either z(k)
h +


z(k)
h − 1 or 1/(z(k)

h +


z(k)
h − 1) = z(k)

h −


z(k)
h − 1.

For every h select one of the two expressions for λ
(k)
jh

for which pk(λ
(k)
jh

) = 0.
8. For l = k, k − 1, . . . , 1 recursively descend from the r roots λ

(l)
j1

, . . . , λ
(l)
jr of the polynomial pl(x) to the

r roots λ
(l−1)
j1

, . . . , λ
(l−1)
jr of the polynomial pl−1(x) by recalling that (λ

(l−1)
jh

)2 = λ
(l)
jh

and pl−1(λ
(l−1)
jh

) = 0
for all pairs of h and l. (Cf. [16,4,17].)

9. Compute and output the approximate real roots λjh =
√
−1

λ
(0)
jh
+1

λ
(0)
jh
−1

of the polynomial p(x) for h =

1, . . . , r .

Every squaring step as well as the root radii estimation takes O(n log n) ops, and so do Stage 1 (reduced to two variable
shifts and the transition to the reverse polynomial between them (cf. [37, Problem 2.4.3])), Stage 3 (see [54,55,17]), Stage 4
(see [56,58]), and Stage 5 provided that the roots in the unit disc D1 are well separated from the other roots. Stages 7 and 8
involve O(rn) ops, whereas Stage 9 involves 3r ops. The cost of performing Stage 6 is dominated where r ≪ n, and we can
further accelerate the computations at Stage 6 as follows.

(a) Use [56, Eqs. (12)–(14)] to compute the coefficients q0, . . . , qr defining the representation v(x) =
∑r

i=0 qi(y
i
+y−i), x =

y+y−1

2 , of the polynomialv(x) with the roots z(k)
1 , . . . , z(k)

r . The computation can be performed by interpolating to the
polynomial q(y) = yrv(x) from its values at the 2lth roots of unity yj = exp(2π j

√
−1/2l), j = 0, 1, . . . , 2l

− 1, l =
1+⌊log2 2r⌋. More preciselywe can compute the values of the polynomial v(x) at the Chebyshev points xj = 1

2 (yj+y−1j )

and then multiply these values by yrj and y−rj . With FFT we only need O(r log r) ops at both stages of evaluation and
interpolation [58].

(b) Recall from [56, Section 2] that the polynomial q(y) = yrv(x) =
∑r

i=0 qi(y
r+i
+ yr−i) has 2r roots λ

(k)
jh

and 1/λ(k)
jh

for
h = 1, . . . , r . Note that these roots lie on the unit circle C1. Transform them into real values by applying the substitution
y→
√
−1 1+w

1−w
= −
√
−1


1+ 2

w−1


. Then again O(r log r) ops are sufficient at this stage.
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(c) Apply the Laguerre or quasi-Laguerre algorithms in [59–63] to approximate the 2r real roots w1, . . . , w2r of the
polynomial (1− w)rq(

√
−1 1+w

1−w
) of degree 2r .

(d) Obtain the 2r roots λ
(k)
jh

and 1/λ(k)
jh

for h = 1, . . . , r of the polynomial q(y) by applying the inverse transform w →

1+y
√
−1

1−y
√
−1

.
(e) Continue as at Stages 7–9 of Algorithm 9.1.

This modification of Algorithm 9.1 is said to be Algorithm 9.2. The main benefit of using it is the application of the
Laguerre or quasi-Laguerre root-finders, which are proved to be highly effective where all roots are real. These proofs can
be extended to the case where all roots lie on the unit circle C1, and we can compress Steps (b)–(d) above into the direct
application of the respective extension of the Laguerre or quasi-Laguerre algorithm to the polynomial q(y). Thismodification
of Algorithm 9.1 is said to be Algorithm 9.3.

Algorithms 9.1–9.3 can face numerical problems at Stage 2 because the required computational precision rapidly
increases in root squaring, due to the uneven growth of the absolute values of the polynomial coefficients. One can safely
perform a squaring step numerically by using the order of n2 ops provided the computation of a logarithm as well as an
exponential is also counted as an op [64], although computations with extended precision would still be required at Stage 3.

We can, however, reuse the remedy from the previous section, that is we can stop Stage 2 at a smaller integer k, say at
k ≤ 2, and instead of performing Stage 5 seek the roots of the polynomialv(x) by applying to the polynomialp(x) Müller’s
or Newton’s iteration initiated near the origin. We can expect that it converges to a root of the polynomialp(x) lying in the
unit disc D1 because such roots tend to be closest to the origin among all roots. Having approximated such a root z(k) of
the polynomialp(x), we proceed as in Stages 7–9 to approximate the respective root λ of the input polynomial p(x) and
output it if this is a real root. Otherwise, we would have λ = r + s

√
−1 for real r and s ≠ 0, and then we would deflate

the polynomial p(x) by dividing it by x2 − 2rx+ r2 + s2 and would reapply the algorithm to the quotient polynomial. This
modification of Algorithm 9.1 is said to be Algorithm 9.4.

Correctness verification for Algorithms 9.1–9.4 is rather straightforward, and we omit it.

10. Numerical factorization of a polynomial

Factorization p(x) = u(x)v(x) of a polynomial p(x) of a degree n into the product of two factors u(x) =
∑k

i=0 uixi and
v(x) =

∑l
i=0 vixi of degrees k and l = n − k, respectively, served as a basis for effective root-finding algorithms in [54,16,

17], but it also represents deflation, that is polynomial division with no remainder and is of independent interest due to its
applications to the time series analysis, Weiner filtering, noise variance estimation, covariance matrix computation, and the
study of multi-channel systems [65–70].

The factorization can be equivalently expressed by any of the two following vector equations (cf., e.g., [73,74]),

Cl(u)v = p (10.1)

or

Ck(v)u = p. (10.2)

Here u = (ui)
k
i=0, v = (vi)

l
i=0, and p = (pi)ni=0 are the coefficient vectors of the polynomials u(x), v(x), and p(x),

respectively, whereas Cl(u) ∈ C(n+1)×(l+1) and Ck(v) ∈ C(n+1)×(k+1) are the convolution matrices associated with the
product u(x)v(x). They are lower trapezoidal Toeplitz matrices (with all the superdiagonal and subdiagonal entries zero)
defined by their first columns Cl(u)e1 = (uT , 0T )T and Ck(v)e1 = (vT , 0T )T , respectively. Eqs. (10.1) and (10.2) provide an
equivalent representation via structured linear system of equations. We assume that the polynomial u(x) is monic, so that
u0 = 1, v0 = p0.

Now suppose we are given approximate factors u0(x) ≈ u(x) (monic) and v0(x) ≈ v(x) and wish to refine them.
We can write r0(x) = p(x) − u0(x)v0(x) or equivalently r0 = p − Cl(u0)v0 = p − Cv(v0)u0 and define a fixed point
iteration with Newton’s updates as follows,


ūi+1
vi+1


=


ūi
vi


+∆i. Here uh and vh for all h denote the coefficient vectors of the

polynomials uh(x) (monic) and vh(x), each of the vectors ūh is obtained by deleting the first (unit) coordinate of the vector
uh,−Ji∆i = ri, Ji = −(C(vi), Cl(ui)) ∈ C(n+1)×(n+1) are the Jacobians for i = 0, 1, . . . , and the matrix C(vi) ∈ C(n+1)×k is
obtained by deleting the first column from the matrix Ck(vi) ∈ C(n+1)×(k+1). (We delete the column because u0 = 1 is not a
variable in the expression r0 = p− Cv(v0)u0.)

Clearly the resulting Newton iteration algorithm (we refer to it as Algorithm 10.1) has local quadratic convergence. Its
ith step is essentially the solution of a linear system of equations with the (n+ 1)× (n+ 1) Sylvester matrix−Ji.

If we are given just a single approximate factor u0(x), we can initialize the Newton process by computing the coefficient
vector of the second factor v0 as an approximate solution of the overdetermined linear system (10.1) of n equations with
l unknowns. We can compute this approximate solution as the solution of the lower (resp. upper) triangular Toeplitz
linear system formed by the l first (resp. last) equations of the system, but its least squares solution generally gives a little
better fitting. We can obtain such a solution from the normal Hermitian linear system of l equations (Cl(u0))

HCl(u0)v0 =
(Cl(u0))

Hp, whose Toeplitz matrix has the lower and upper bandwidth l [71]. The algorithm in [72, Section 2.14] reduces the
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solution of such a system to the solution of a lower triangular Toeplitz linear system whose n × n matrix has a bandwidth
at most 2l and of a k× k Toeplitz linear system. We refer to the resulting algorithm for numerical deflation (or equivalently
for polynomial division with no remainder) as Algorithm 10.2.

Instead of Newton’s process we can define iteration by alternating the application of Algorithm 10.2 to updating the
factors ui(x) and vi(x) recursively, so that a sequence of approximations v0(x), u1(x), v1(x), u2(x), . . . to the factors u(x)
and v(x) is recursively computed as least squares solutions of the linear systems (10.1) and (10.2) with alternating inputs
u = ui, v = vi for i = 0, 1, . . . . We refer to this factorization algorithm as Algorithm 10.3.

For every integer i, i = 0, 1, . . . we can refine an approximate factor ui(x) (resp. vi(x)) of a polynomial p(x) as an
approximate gcd g(x) of the two polynomials ui(x) (resp. vi(x)) and ap(x) where a is a scalar having a large absolute value
|a|. This choice should suppress the perturbation of the polynomial p(x), so that up to scaling the approximate gcd g(x)
would be close to a divisor of the gcd, and we can readily compute it from a subresultant matrix (cf., e.g., [73, Section 6.10],
[37, Section 2.10], [74]).

We can apply such a refinement of both factors ui(x) and vi(x) at every ith iteration step of Algorithm 10.3 or only
at some selected steps according to a fixed policy. In both cases we refer to this refined version of Algorithm 10.3
as Algorithm 10.4.

Furthermore one can alternate the steps of Algorithms 10.1–10.4 to enhance the power of the refinement of the initial
factorization and ensure fast convergence to the factors u(x) and v(x).

One can apply the above algorithms to the approximation of a single root λ (resp. a pair of roots λ1 and λ2) by
choosing its (their) possibly crude initial approximation λ̃ (resp. approximations λ̃1 and λ̃2) and setting u0(x) = x − λ̃

(resp. u0(x) = (x − λ̃1)(x − λ̃2)), but in our tests we consistently observed substantially faster convergence of the RQ
iteration versus this factorization algorithm in the case of k = 1 (that is for approximating a single root for the same
input polynomials). Perhaps the greater power of the RQ iteration comes because, unlike the factorization algorithm, it
approximates eigenpairs of the associated matrix (rather than just its eigenvalues). If, however, the task is the refinement
of a crude initial approximation and if both integers k and l are not small (that is if we wish to split a polynomial into two
factors of larger degrees), the factorization algorithm may become superior because it has simpler iteration steps.

11. Numerical tests

We performed a series of numerical experiments in the Graduate Center of the City University of New York using a Dell
server with a dual core 1.86 GHz Xeon processor and 2 G memory running Windows Server 2003 R2. The test Fortran code
was compiled with the GNU gfortran compiler within the Cygwin environment.

We generated random numbers with the random_number intrinsic Fortran function assuming the uniform probability
distribution over the range {x : 0 ≤ x < 1}. To shift to the range {y : b ≤ y ≤ a + b} for fixed real a and b, we applied the
linear transform x→ y = ax+ b.

We tested our algorithms in Sections 4, 5 and 8 for the approximation of real and complex eigenvalues of random general
matrices (only in Table 3), random companion matrices Fp (defined by random vectors p), and random DPR1 matrices
(defined by random vectors s and d = v for u = (1)ni=1), of sizes n × n for n = 64, 128, 256. For each input size and
each iterative algorithm we generated 100 input instances and run 100 tests. Our tables show the minimum, maximum,
and average (mean) numbers of iteration loops until convergence in these runs as well as the standard deviations in the
columns marked by ‘‘min’’, ‘‘max’’, ‘‘mean’’, and ‘‘std’’, respectively.

For the initialization of the RQ and SQ iterations we used equally spaced points on the unit circle {x : |x| = 1} or ‘‘large’’
circle {x : |x| = a‖M‖} for the input matrices M and for a = 2, except for testing convergence to distinct eigenvalues (see
Tables 18 and 19) where we set a = 10.

Tables 3 and 4 display the data on the approximation of the complex eigenvalues by the RQ and SQ iterations
in (4.1)–(4.6) and the AP iteration in Section 4, respectively, assuming the initial values λ0 chosen at random on a large
circle and using the tolerance τ = 10−6 in the stopping criterion (4.4). For testing the AP iteration (in both RQ and SQ
versions) we generated APs uT

i vi for ui = yi−1 and vi = en for all integers i, except that we have chosen the simplifying APs
for i = 0, that is the APs peTn or (p+ e1 + µen)eTn in the case of companion matrices Fp and the APs uvH in the case of DPR1
matrices C .

Tables 5–8 display the test results where three eigen-solving algorithms were combined for the companion matrices Fp
and DPR1 matrices C . At Stage 1 we set tolerance τ to 10−1 in (4.4) and applied the RQ version of the AP iteration with the
simplifying APs. Then at Stage 2 we set tolerance to 10−4 and refined the computed crude approximations by applying the
RQ iterationwith no preprocessing. Finally at Stage 3we set tolerance to 10−6 and applied Algorithms 5.1 or 5.3 where again
we used the simplifying APs. All tables display the respective numbers of steps at every stage, and Tables 7 and 8 also show
the percent (number) of the cases of divergence in 100 tests.

Tables 9–14 display the results of our tests of the real eigen-solving Algorithm 8.2 in Section 8 assuming the companion
input matrix and using 0, 1, and 2 squarings. Tables 9, 11 and 13 show the number of iteration loops at Stage 1, at which the
iteration stopped as soon as the error decreased below the tolerance 10−2. Tables 10, 12 and 14 cover Stage 2 of refinement
of these computed approximations until they decreased the error below the tolerance 10−6. The rightmost columns in
Tables 10, 12 and 14 display the numbers of real roots computed in 100 test runs.
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Tables 15–17 display the results of our tests for initialization via continuous scaling. Table 15 shows the number of
iterations at Stage 1 where we chose the initial approximate eigenvalues on a large circle, applied the AP iteration with
simplifying APs to the companion and DPR1matrices associated with the polynomial p(1.02x), and set the output tolerance
to 10−1.

Tables 16 and 17 show the numbers of iterations at Stages 2 and 3 where we applied the RQ version of Algorithm 5.1 for
ν = 1 and with simplifying APs for all integers i to the same polynomial p(1.02x) and to the polynomial p(x), respectively,
and set the output tolerance to 10−6 in both cases. We initialized Stages 2 and 3 by using the eigenvalue approximations
output in the preceding stage.

Tables 18–20 display the numbers of iteration loops in our tests for approximating distinct eigenvalues of the companion
andDPR1matricesM associatedwith a randompolynomial p(x) of degree n, with the reverse polynomial prev(x) = xnp(1/x),
or with both of them, as we specify in the first column of each table. The two last columns of each table show the percents

Table 3
Numbers of RQ and SQ iteration loops in algorithms (4.1)–(4.6).

Iteration Matrix n Min Max Mean Std

RQ Companion 64 4.00 12.00 6.10 1.65
RQ Companion 128 4.00 11.00 6.21 1.48
RQ Companion 256 4.00 13.00 6.18 1.50
SQ Companion 64 4.00 16.00 7.75 2.27
SQ Companion 128 5.00 17.00 8.37 2.49
SQ Companion 256 4.00 19.00 7.65 2.86
RQ DPR1 64 5.00 12.00 7.67 1.61
RQ DPR1 128 5.00 14.00 7.97 1.95
RQ DPR1 256 5.00 14.00 7.88 1.69
SQ DPR1 64 5.00 21.00 9.34 2.72
SQ DPR1 128 5.00 21.00 9.80 2.94
SQ DPR1 256 5.00 17.00 9.12 2.54
RQ Random 64 3.00 3.00 3.00 0.00
RQ Random 128 3.00 3.00 3.00 0.00
RQ Random 256 3.00 3.00 3.00 0.00
SQ Random 64 3.00 4.00 3.92 0.27
SQ Random 128 3.00 4.00 3.78 0.42
SQ Random 256 3.00 4.00 3.57 0.50

Table 4
Numbers of RQ and SQ iteration loops in the AP iteration.

Iteration Matrix n Min Max Mean Std

RQ Companion 64 5.00 13.00 8.52 1.48
RQ Companion 128 5.00 14.00 9.38 1.56
RQ Companion 256 7.00 14.00 10.24 1.36
SQ Companion 64 5.00 21.00 10.39 2.89
SQ Companion 128 4.00 18.00 11.40 3.00
SQ Companion 256 5.00 19.00 12.24 3.65
RQ DPR1 64 4.00 15.00 7.74 2.03
RQ DPR1 128 5.00 13.00 7.72 2.13
RQ DPR1 256 5.00 15.00 7.70 2.29
SQ DPR1 64 6.00 21.00 9.83 2.67
SQ DPR1 128 5.00 17.00 9.59 2.72
SQ DPR1 256 5.00 19.00 9.54 2.87
RQ Random 64 3.00 3.00 3.00 0.00
RQ Random 128 3.00 3.00 3.00 0.00
RQ Random 256 3.00 3.00 3.00 0.00
SQ Random 64 3.00 4.00 3.74 0.44
SQ Random 128 3.00 4.00 3.79 0.41
SQ Random 256 3.00 4.00 3.65 0.50

Table 5
Numbers of RQ loops at Stage 1 (the AP iteration with the simplifying APs)
in the combination of three eigen-solving algorithms.

Matrix n Mean Std

Companion 64 3 0
Companion 128 3 0
Companion 256 3 0
DPR1 64 2.18 0.48
DPR1 128 2.04 0.50
DPR1 256 2.04 0.38
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Table 6
Numbers of RQ loops at Stage 2 (the RQ iteration) in the
combination of three eigen-solving algorithms.

Matrix n Mean Std

Companion 64 4.69 0.65
Companion 128 4.86 0.43
Companion 256 4.78 0.57
DPR1 64 4.86 0.48
DPR1 128 4.88 0.39
DPR1 256 4.90 0.30

Table 7
Numbers of RQ loops at Stage 3 (Algorithm5.1with the simplifying
APs) in the combination of three eigen-solving algorithms.

Matrix n Mean Std % of divergent tests

Companion 64 3.16 6.02 3
Companion 128 5.55 12.42 6
Companion 256 3.79 3.25 6
DPR1 64 1.71 1.97 6
DPR1 128 2.28 2.52 3
DPR1 256 2.16 2.33 2

Table 8
Numbers of RQ loops at Stage 3 (Algorithm5.3with the simplifying
APs) in the combination of three eigen-solving algorithms.

Matrix n Mean Std % of divergent tests

Companion 64 3.00 4.39 2
Companion 128 4.22 5.58 7
Companion 256 5.87 12.29 6
DPR1 64 2.06 2.56 1
DPR1 128 1.85 2.18 2
DPR1 256 1.72 2.39 5

Table 9
Numbers of RQ and SQ iteration loops in Algorithm 8.2
(no squaring, Stage 1).

Iteration n Min Max Mean Std

RQ 64 2 17 3.86 2.19
RQ 128 2 15 4.12 2.27
RQ 256 2 15 3.72 1.76
SQ 64 2 18 4.22 2.76
SQ 128 2 45 5.18 5.68
SQ 256 2 33 4.57 4.02

Table 10
Numbers of RQ and SQ iteration loops in Algorithm 8.2 (no squaring, Stage 2).

Iteration n Min Max Mean Std % of real roots

RQ 64 0 2 0.99 0.32 90
RQ 128 0 2 0.9 0.43 89
RQ 256 0 2 0.82 0.42 82
SQ 64 0 2 1 0.37 91
SQ 128 0 2 0.97 0.38 91
SQ 256 0 2 0.88 0.45 90

of distinct eigenvalues computed in our tests among all the n eigenvalues. In these tests we applied the RQ and SQ iterations
to the matrices M at 3n log2 n initial equally spaced points on the selected circles, namely {x : |x| = 3‖M‖} in Table 18,
{x : |x| = 3‖M‖} in Table 19, and Bini’s circles in Table 20.

Table 21 shows the average numbers of iteration loops per eigenvalue in our tests where we applied RQ iteration with
recursive deflation to DPR1 matrices.
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Table 11
Numbers of RQ and SQ iteration loops in Algorithm 8.2
(one squaring, Stage 1).

Iteration n Min Max Mean Std

RQ 64 2 9 3.9 1.18
RQ 128 2 6 3.75 0.86
RQ 256 2 13 3.7 1.4
SQ 64 2 10 4.23 1.5
SQ 128 2 9 4.19 1.29
SQ 256 2 8 4.25 1.35

Table 12
Numbers of RQ and SQ iteration loops in Algorithm 8.2 (one squaring, Stage 2).

Iteration n Min Max Mean Std % of real roots

RQ 64 0 17 2.44 2.27 89
RQ 128 0 6 2.39 1.28 89
RQ 256 0 14 2.51 1.79 83
SQ 64 0 14 2.3 2.01 86
SQ 128 0 10 2.46 1.81 90
SQ 256 0 12 2.9 2.32 83

Table 13
Numbers of RQ and SQ iteration loops in Algorithm 8.2
(two squarings, Stage 1).

Iteration n Min Max Mean Std

RQ 64 2 12 4.01 1.53
RQ 128 2 9 3.89 1.12
RQ 256 3 10 4.05 1.23
SQ 64 2 24 4.07 2.39
SQ 128 3 9 3.92 1.12
SQ 256 3 10 4.07 1.27

Table 14
Numbers of RQ and SQ iteration loops in Algorithm 8.2 (two squarings, Stage 2).

Iteration n Min Max Mean Std % of real roots

RQ 64 0 4 1.51 0.72 91
RQ 128 0 6 1.71 1 91
RQ 256 0 8 2.06 1.43 88
SQ 64 0 4 1.62 0.79 90
SQ 128 0 16 2.33 2.49 90
SQ 256 0 12 2.27 1.88 83

Table 15
Numbers of RQ iteration loops in the algorithm with simplifying APs and
continuous scaling (Stage 1: the AP iteration, t = 1.02).

Matrix n Mean Std

Companion 64 2 0
Companion 128 2 0
Companion 256 1.9 0.10
DPR1 64 1.94 0.24
DPR1 128 1.96 0.20
DPR1 256 1.97 0.17

Table 16
Numbers of RQ iteration loops in the algorithm with simplifying APs and
continuous scaling (Stage 2: Algorithm 5.1, t = 1.02).

Matrix n Mean Std

Companion 64 5.91 2.72
Companion 128 6.38 3.68
Companion 256 6.80 9.80
DPR1 64 5.55 0.24
DPR1 128 5.79 2.97
DPR1 256 6.20 3.61
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Table 17
Numbers of RQ iteration loops in the algorithmwith simplify-
ing APs and continuous scaling (Stage 3: Algorithm 5.1, t = 1).

Matrix n Mean Std

Companion 64 2.72 1.01
Companion 128 2.78 1.17
Companion 256 3.07 1.50
DPR1 64 2.50 0.87
DPR1 128 2.64 1.23
DPR1 256 2.66 1.03

Table 18
Percent of distinct computed rootswith 3n log2 n initial eigenvalues on
the unit circle.

Polynomials Iteration Matrix n Mean Std

p(x) RQ Companion 32 73.16 10.53
p(x) RQ Companion 64 67.58 8.24
p(x) SQ Companion 32 91.00 6.75
p(x) SQ Companion 64 91.67 5.64
p(x) RQ DPR1 32 96.50 3.30
p(x) RQ DPR1 64 95.56 2.57
p(x) SQ DPR1 32 90.63 7.37
p(x) SQ DPR1 64 91.22 5.85
prev(x) RQ Companion 32 75.06 8.44
prev(x) RQ Companion 64 74.78 5.89
prev(x) SQ Companion 32 95.06 4.89
prev(x) SQ Companion 64 97.19 2.08
prev(x) RQ DPR1 32 97.47 4.21
prev(x) RQ DPR1 64 98.33 1.82
prev(x) SQ DPR1 32 95.38 4.34
prev(x) SQ DPR1 64 97.27 2.38
Both RQ Companion 32 94.56 5.99
Both RQ Companion 64 93.84 5.07
Both SQ Companion 32 99.00 2.03
Both SQ Companion 64 99.38 1.11
Both RQ DPR1 32 98.25 2.14
Both RQ DPR1 64 98.56 1.63
Both SQ DPR1 32 98.91 2.32
Both SQ DPR1 64 99.20 1.36

Table 19
Percent of distinct computed rootswith 3n log2 n initial eigenvalues on
a large circle.

Polynomials Iteration Matrix n Mean Std

p(x) RQ Companion 32 4.63 2.45
p(x) RQ Companion 64 2.20 1.00
p(x) SQ Companion 32 11.72 6.16
p(x) SQ Companion 64 7.81 3.28
p(x) RQ DPR1 32 7.84 6.92
p(x) RQ DPR1 64 5.02 7.21
p(x) SQ DPR1 32 84.72 13.09
p(x) SQ DPR1 64 79.39 14.25
prev(x) RQ Companion 32 4.97 6.48
prev(x) RQ Companion 64 2.80 3.29
prev(x) SQ Companion 32 18.31 12.14
prev(x) SQ Companion 64 15.70 9.77
prev(x) RQ DPR1 32 7.78 7.71
prev(x) RQ DPR1 64 4.16 7.13
prev(x) SQ DPR1 32 70.28 34.50
prev(x) SQ DPR1 64 54.44 36.43
Both RQ Companion 32 5.81 6.97
Both RQ Companion 64 3.16 3.08
Both SQ Companion 32 20.63 12.69
Both SQ Companion 64 16.97 8.84
Both RQ DPR1 32 14.28 10.62
Both RQ DPR1 64 8.50 11.39
Both SQ DPR1 32 93.41 11.20
Both SQ DPR1 64 88.42 13.52
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Table 20
Percent of distinct computed roots with 3n log2 n initial eigenvalues
on Bini’s circle.

Polynomials Iteration Matrix n Mean Std

p(x) RQ Companion 32 24.03 7.62
p(x) RQ Companion 64 22.31 4.35
p(x) SQ Companion 32 33.66 7.84
p(x) SQ Companion 64 34.03 4.68
p(x) RQ DPR1 32 47.31 9.66
p(x) RQ DPR1 64 44.33 7.53
p(x) SQ DPR1 32 47.91 7.31
p(x) SQ DPR1 64 44.31 5.51
prev(x) RQ Companion 32 20.41 7.79
prev(x) RQ Companion 64 22.42 5.79
prev(x) SQ Companion 32 32.66 7.85
prev(x) SQ Companion 64 35.38 5.95
prev(x) RQ DPR1 32 53.97 7.43
prev(x) RQ DPR1 64 54.08 5.35
prev(x) SQ DPR1 32 50.13 9.58
prev(x) SQ DPR1 64 43.70 6.71
Both RQ Companion 32 40.03 8.98
Both RQ Companion 64 40.75 6.06
Both SQ Companion 32 51.56 7.94
Both SQ Companion 64 52.73 6.04
Both RQ DPR1 32 86.53 7.93
Both RQ DPR1 64 84.69 6.77
Both SQ DPR1 32 68.78 9.86
Both SQ DPR1 64 61.31 7.32

Table 21
Numbers of RQ iteration loops per eigenvalue of aDPR1
matrix using deflation.

Matrix n Mean Std

DPR1 64 7.85 2.00
DPR1 128 7.65 1.87
DPR1 256 7.98 2.05

12. Discussion

We covered a number of approaches to complex and real root-finding and eigen-solving and polynomial factorization.
Can we enhance their power by alternating their steps and possibly the steps of some known iterative root-finders? If so,
what is the best policy of such an alternation? Further refinement of the algorithms is another natural challenge. The greatest
promise comes from the recursive improvement of theDPR1matrices in Section 7.6,which can be based on the RQ, SQ, SMW,
AP iterations in Section 4, Algorithms 5.1–5.3, 10.1, 10.2, or iterative algorithms in [3]. Here are some sample directions to
promising modifications.

(a) Convergence of our iterative algorithms applied to a DPR1 matrix associated with a given polynomial as well as
convergence rate depend on the choice of the parameters si and di or si, ui, and vi, i = 1, 2, . . . , n, that define the matrix.
How can we optimize the choice of these parameters?

(b) For separation of real eigenvalues one can modify the expressions in Fact 8.2, shift and scale the input matrix M to
have its trace vanished, or move all its eigenvalues into a small circle near one or−1 (keeping the real eigenvalues real) and
then apply our techniques in Section 8 to the resulting matrix. By using this recursive process one can incorporate more
squarings overall under a fixed bound on the matrix norms.

(c) The initialization policies are highly important for various aspects of convergence, including its rate and avoiding
convergence to the same eigenvalues from distinct initial points. Currently these policies are essentially heuristic.
Experiments with various classes of input polynomials, concurrent choices of the matrices associated with the same
polynomial, and various homotopy continuation processes may suggest further improvements.

(d) Improvement of global convergence to complex roots could possibly come from alternating the steps of our DPR1
eigen-solving with eigen-free root-finding (e.g., based on Newton’s, Müller’s, Börsch–Supan’s, or Weierstrass’ iterations, or
other iterative algorithms in [3]) (cf. [10,9]).

(e) Another recipe for yielding convergence in the case of hard inputs is to employ the approximation of eigenspaces
of small dimensions (rather than just eigenvectors), based on the Rayleigh–Ritz (Galerkin) procedure (see Remark 4.1 and
Appendix A.4). The latter procedure also enables eigen-solving deflation, which is more efficient than the known methods
for splitting polynomials into factors, but destroys the matrix structure, so that one should only apply it on a limited scale.
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(f) A number of the customary eigen-solving techniques such as the subspace and Jacobi–Davidson iterations as well
as Rayleigh–Ritz (Galerkin) procedure and Arnoldi and non-Hermitian Lanczos algorithms with restarting (cf. [44,19])
incorporate the shift-and-invert techniques and could benefit from incorporating our modifications of these techniques.

(g) Successful DPR1 eigen-solving could prompt effort for the reduction to it of eigen-solving for nonderogatorymatrices.
(h) One can try to combine additive preprocessing and Newton’s linearization for the solution of a polynomial systems

of equations (see Appendix D).

Appendix A. Deflation/extraction techniques and Rayleigh–Ritz (Galerkin) procedure

A.1. Deflation/extraction techniques

For a pair of nonsingular matricesW = (B, C) and W−1 =


BHleft
CH
left


such that

BH
leftC = 0, CH

leftB = 0, BH
leftB = I, CH

leftC = I, (A.1)

suppose

CH
leftMB = 0, L = BH

leftMB, H = CH
leftMC, (A.2)

so that the matrix

W−1MW =

L G
O H


, (A.3)

is block triangular [19, Section 4.1]. (Note that CH
leftMB = 0 if MB = 0 or CH

leftM = 0.) Then, clearly, an eigenpair (L̄, B̄) (resp.
(H̄, C̄)) of the matrix L (resp. H) defines an eigenpair (L̄, BB̄) (resp. (H̄, CC̄)) of the matrix M . The following converse result
is also easy to verify [19, Theorem 4.4.1].

Theorem A.1. Assume that X is an eigenspace of a matrix M and let B, Bleft, and L be three matrices such that BH
leftB = I, L =

BH
leftMB, and X ∈ R(B). Then (a) (L̄, BB̄) is an eigenpair of the matrix M if (L̄, B̄) is an eigenpair (L̄, B̄) of the matrix L and (b)

there exists an eigenpair (L̄, B̄) of the matrix L such that X = R(BB̄).

The above reduction of eigen-solving for a matrix M to eigen-solving for two matrices L and H of smaller sizes is
called deflation or decoupling (see some alternative deflation techniques in [20, pages 584–602] and [75, Section IV.2]).
Eq. (A.1)–(A.3) and Theorem A.1 also support extraction of an eigenspace X ofM .

A.2. Orthogonal and structured deflation/extraction

We can rely on Eqs. (A.1) and (A.2) for any left inverse Bleft of a matrix B, but if B is a unitary matrix, then we can choose
Bleft = B and compute the RQ matrix

L = BHMB. (A.4)

Likewise if C is a unitary matrix, then we can choose Cleft = C and compute the RQ matrix

H = CHMC . (A.5)

With nonunitary matrices B and C one would face numerical problems in the deflation and extraction in Appendix A.1
but can yield the matricesW with desired structures.

A.3. Recursive deflation

Assume a structuredmatrixM and supposewe extenddeflation based onmatrix Eq. (A.3) by employing somenonsingular
matrices WL and WH , such that the matrices W−1L LWL and W−1H HWH are 2 × 2 block triangular. Then the matrix V =
diag(W−1L ,W−1H )W−1MWdiag(WL,WH) is 4×4 block triangular. By choosing thematricesW ,WL, andWH with appropriate
structures, we can yield structure also for the 4× 4 block matrix V and its blocks, although generally in a little deteriorated
form. The same comments can be extended recursively. Quantitatively the input structure can bemaintained and utilized in
a small number of recursive deflation steps but is likely to be completely lost already in O(log n) steps. Generally the latter
problem cannot be fixed because the transformationmatrices S andQ in the eigendecompositionMS = SΛ and in the Schur
triangulationM = Q HTQ (for a unitarymatrix Q and a triangular matrix T ) are generally unstructured. The same comments
apply to other popular and effective recipes of eigenspace extraction (cf. [76]).
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We can stay with structured computation of all eigenpairs by working with the original matrix M where we use no or a
limited number of deflations, e.g., where we decouple all the real roots of a polynomial by means of the recipes in Section 8
or apply the RQ or SQ iterations concurrently at a large number of the initial points.

In the two special cases in Sections 6 and 7 the left and right eigenvectors do form structured matrices (namely
Vandermonde and Cauchy matrices and their inverses, respectively), but employing these structures for the acceleration
of eigen-solving remains a research challenge. In these two cases, however, we only seek eigenvalues (roots). So we can
deflate the associated companion and DPR1 matrices in linear time and continue again with matrices of the same class of a
smaller size.

A.4. Rayleigh–Ritz (Galerkin) procedure

Suppose we have amatrix Bwhose range contains an approximation to an eigenspace of a matrixM , the left inverse BH
left,

the matrix L = BH
leftMB, and its eigenpair (L̄, B̄). Then Theorem A.1 implies that an eigenpair of thematrixM is approximated

by the pair (L̄, BB̄), whose computation is called Rayleigh–Ritz (Galerkin) procedure. The auxiliarymatrices L and BB̄ are called
Ritz blocks and Ritz bases, respectively, and the pairs (L, BB̄) are Ritz pairs. The scalar Ritz blocks are called Ritz values; they
are associated with Ritz vectors Bb̄ [19, Section 4.4.1], [44].

The approximation errors of the procedure can be bounded in terms of the norm ‖CH
leftMB‖ for the matrix Cleft in

Appendix A.1 (cf. [19, Section 4.4.2]), and the procedure is numerically stable if this norm is small.
The Ritz values µj for j in a fixed subset J ⊆ {1, . . . , n} are the eigenvalues of the matrix L (which approximate the

eigenvalues of the matrixM). We can compute them by computing the Schur decomposition of the matrix L, which is more
stable numerically than its eigendecomposition. Given these values we can obtain the so called refined Ritz vectors yj, being
the solutions of the minimization problem

minimize ‖Myj − µjyj‖
subject to yj ∈ R(B), ‖yj‖ = 1 for j ∈ J

[19, Section 4.4.3]. For µj lying near the eigenvalues, the vector yj lies near a null vector of the matrix M − µjI , and so
incorporation of our algorithms in Sections 4 and 5 can be effective.

A popular alternative is the harmonic Ritz vectors y [77, Section 3.2], [19, Section 4.4.4], [44] obtained by solving
the generalized eigenproblem VHMHMVy = λVHMHVy for a given approximate matrix basis V for an eigenspace. By
orthogonalizing the matrix MV we arrive at the standard eigenproblem 1

λ
y = VHMHVy. The vectors y converge to the

null space of the matrix VHMHMV −λVHMHV as the values λ converge to an eigenvalue ofM , and again we can employ our
algorithms in Sections 4 and 5. Having harmonic Ritz vector y approximated, we can approximate the associated eigenvalue

by the RQ yHVHMVy
yHVHVy or the SQ

eHj MVy

eHj Vy
where eHj Vy ≠ 0.

Appendix B. Subspace iteration, extensions and expansions

B.1. Subspace iteration

The Subspace iteration Bi+1 = MBi, i = 0, 1, . . . , is defined for an n × ν matrix B0 and for ν < n (typically for ν ≪ n).
It turns into the Power iteration yi+1 = Myi/‖Myi‖, i = 0, 1, . . . , for ν = 1 and B0 = y0. In virtue of the next theorem,
R(Bi) → S{1,...,ν} as i → ∞ for generic n × ν matrix B0, that is the Subspace iteration simultaneously converges to all
dominant ones among the eigenspaces S{1,...,j} for j = 1, . . . , ν.

Theorem B.1 ([19, Theorem 6.1.1]). Suppose M =
∑3

i=1 XiLiYH
i is a spectral representation where (X1, X2, X3)(Y1, Y2, Y3)

H
=

In, Li are li × li matrices, Λ(Li) = diag(λj)
hi
j=hi−1+1

, i = 1, 2, 3, h0 = 0, h1 = l1, h2 = l1 + l2, h3 = n, λj = λj(M),
inequalities (2.1) hold, |λl1 | > |λl1+1|, and |λl1+l2 | > |λl1+l2+1|. Suppose B0 = X1C1 + X2C2 + X3C3, Ci = YH

i B0 for i = 1, 2, 3,
the matrix (CH

1 , CH
2 ) is nonsingular, and θk is the largest canonical angle between the linear spaces R(MkB0) and R(X1). Then

θk = O((ϵ + |λl1+l2+1/λl1 |)
k) for any positive ϵ.

One can relax the assumption that |λl1+l2 | > |λl1+l2+1| by shifting to the matrices diag(M, 0) if the matrix M is
nonsingular or diag(M − γ I, 0) for a small |γ | otherwise.

Theorem B.1 implies fast convergence of the iteration to the dominant eigenspaces S{1,...,j} for a small integer j, so that
the matrix bases Bi tend to become close to some smaller rank matrices generating this dominant subspace as i grows
large. We can avoid the resulting numerical problems by means of periodic orthogonalization of the bases Bi (clearly
this does not affect convergence to the eigenspaces) and deflation (extraction) of the dominant eigenspaces, which can
rely on the Rayleigh–Ritz (Galerkin) procedure in [75,19,44]. Extraction is followed by locking those parts of the bases Bi
whose ranges become nearly invariant in multiplication by M . We summarize this algorithm below and refer the reader
to [75, Algorithm 5.4] and [44, Section 7.4, Algorithm 7.2] on its analysis, further details and variations.
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Algorithm B.1. Subspace iteration with eigenspace extraction and locking.

Input: three positive integers COUNTER, n, and ν, ν ≤ n, an n× nmatrix M , and a positive tolerance τ .
Output: a nonnegative integer k ≤ ν and k approximate eigenpairs (λj, xj) of the matrixM, j = 1, . . . , k such that

‖Mxj − λjxj‖ ≤ τ |λj|‖xj‖. (B.1)

Initialization: Fix a positive integer iter (usually in the range from 3 to 5) and an n × ν matrix Y = (yj)νj=1. Set
ī←− 0, k← 0 and denote a pair of n× k empty matrices by X and Λ.

Computations: Recursively, for i = 1, 2, . . . perform the following steps.
1. Compute n× (ν − k) matrixM iterY .
2. Compute the n× (ν − k) matrix Q (X,MY ) = (X, B), keeping the block X of the first k columns intact.
3. Compute the Rayleigh quotient L = BHMB.
4. Apply the Rayleigh–Ritz (Galerkin) procedure in Appendix A.4 (with orthogonal projections) to the

matrices B and M , that is, compute the Schur decomposition L = ZHTZ where Z = (zj)ν−kj=1 , ZHZ = Iν−k,
and T is an upper triangular matrix with the diagonal given by the matrix diag(λj)

ν−k
j=1 .

5. Compute the matrix Y = BZ = (yj)ν−kj=1 .
6. Test the relative residuals for convergence for j = 1, . . . , ν − k: if inequality (B.1) holds for the vector yj

replacing xj, then delete this column vector from the matrix Y , append it to the matrix X , and extend the
diagonal matrix Λ of eigenvalues by appending the new diagonal entry λj. Keep denoting the resulting
updated matrices by X, Y , and Λ. Let the updated matrix X have the size n× k′. Then set k← k′.

7. If k = ν or if ī > COUNTER, stop and output the integer k and the eigenpairs (λj, xj), j = 1, . . . , k.
Otherwise set ī← ī+ i, update the positive integer iter, and go to Stage 1.

Remark B.1. By employing the eigendecomposition of the matrix L (instead of its Schur decomposition), one can simplify
Stage 4 (cf. [75, page 157], [44, Section 7.4, Algorithm 4.5]) at the expense of some deterioration of numerical stability of the
computations.

Remark B.2. The algorithm uses the standard stopping criterion (B.1), which can be generalized to the bound

‖MX − XΛ‖ ≤ τ‖BΛ‖ (B.2)

for a candidate approximate eigenpair (Λ, X). Such bounds on the residual norm are readily verified, although they only
guarantee that (Λ, X) is an eigenpair of a nearby matrix but may have no eigenpairs of the matrixM nearby.

Remark B.3. Assume a companion or generalized companion matrix M in Algorithm B.1. Then in principle we can modify
its Stage 5 of computing the matrix Y (that defines the eigenspace). We can correct the equation Y = BZ by taking into
account Fact 6.1 and Theorem 7.2, respectively. By relying entirely on Fact 6.1 and Theorem 7.2 we would yield a matrix Y
with a structure of Vandermonde or Cauchy type, respectively, but could hardly ensure even good local convergence. Is it
possible to ensure convergence for a structured matrix Y and if so, can we extend the structure to the matrices H and L in
(A.1)–(A.3)?

B.2. The inverse iteration and Rayleigh–Ritz (Galerkin) procedure

The subspace iteration approximates the dominant eigenspaces S{1,...,j} for j ≤ ν. The Inverse iteration redirects the
process to approximating the eigenspaces SK for a set of the eigenvalues lying near a fixed set Λ(0)

= {λ
(0)
1 , . . . , λ(0)

ν } on the
complex plane.We just need to apply the Subspace iteration to thematrix r(M) for r(x) = 1/

∏ν
j=1(x−λ

(0)
j ). For a singleton

K = {λ(0)
h } for a fixed integer h, 1 ≤ h ≤ n, this is the RQ iteration in Section 4. Our previous study can be extended assuming

the eigenvalues λj(r(M)) = r(λj(M)) enumerated in the nonincreasing order of their absolute values.
The iteration and its analysis can be extended to any rational function r(x) for which the matrix r(M) is defined.

Most popular is the extension where this function ri(x) = 1/
∏ν

j=1(x − λ
(i)
j ) is modified in the ith iteration step, which

updates the approximationsλ
(i)
j to the eigenvalues. These updates are by-products of the Rayleigh–Ritz (Galerkin) procedure

applied for the subspace extraction, and we call the resulting algorithm the Inverse Rayleigh–Ritz (Galerkin) iteration [75],
[44,19, Section 7.4].
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B.3. Expanding subspace iterations

The Subspace and Inverse iterations can be modified so that the dimension of the subspace can vary dynamically. e.g.,
one begins with a subspace defined by a single vector, but the iteration expands the subspace by including new vectors
to its basis (with periodic orthogonalization) until convergence to a single eigenvector or to an eigenspace of a dimension
bounded by a fixed ν or until further subspace extension becomes too costly. In the latter case one can restart the process
(explicitly or implicitly). Based on the current subspace information, one can utilize the progress achieved by the cutoff time.

This flowchart is implemented in the Jacobi–Davidson algorithm [76], [19, Section 6.2], [44, Section 7.12] and in the
Krylov Sequence (Krylov Subspace) processes such as Arnoldi and non-Hermitian Lanczos iterations, highly effective for
large sparse input matrices [15, Chapter 9], [19, Chapter 5], [44, Sections 7.5–7.11], [78, Chapter 9].

The kth stage of the iteration involves multiplication of the matrix M (resp. the matrices M and MH ) by some vector w
in Arnoldi (resp. vectors u and w in non-Hermitian Lanczos) algorithm and additional O(kn) (resp. O(n)) ops and units of
memory for storage. (The latter ops and need for storage space can be a hurdle if Arnoldi algorithm is applied to a structured
matrixM .) Instead of the vectorsMw (resp. vectorsMu andMHw) one computes the vectors (µI−M)−1w (resp. the vectors
(µI − M)−1u and (µI − MH)−1 w) in the shift-and-invert version of the algorithm. The non-Hermitian Lanczos algorithm
outputs both left and right eigenspaces and uses less ops and memory space than Arnoldi’s but has greater risk of bad
breakdown and numerical instability.

The Jacobi–Davidson algorithmapplies the followingmodification of steps (4.1) of the RQand SQ iterations, (I−yiyHi )(M−
λ(i)I)(I − yiyHi )(yi+1 − yi) = λ(i)yi − Myi, i = 0, 1, . . . Here the shift value λ(i) is defined by the Rayleigh–Ritz (Galerkin)
procedure applied to the matrix M and the current correction space generated by the initial approximation y0 and all
correction vectors yj+1 − yj, j = 0, 1, . . . , i− 1.

The shift values employed in all these algorithms can be computed approximately, and the linear systems defining
approximate null vectors of the shifted matrix can be solved by means of the algorithms in Sections 4 and 5.

The Jacobi–Davidson algorithm supersedes the subspace iteration in practice for approximating a small number of
eigenvalues (at the extreme of the spectrum or near the shift) together with their associated eigenspaces, but its global
convergence (with and without restarting) is not well understood theoretically unless it approximates the eigenvalues that
are well separated from the other eigenvalues.

B.4. GR and QR iterations

The GR iteration begins with settingM = M0. Its ith step

M(i)
= G(i)R(i), M(i+1)

= R(i)G(i)
= (G(i))−1M(i)G(i), i = 0, 1, . . . (B.3)

computes and interchanges the GR factors of the current iterate Mi for an upper triangular matrix R and a nonsingular
matrix G of a fixed form, e.g., the GR factors are the QR or PLU factors. Each iteration step can be viewed as the space
iteration step, applied to the whole spaceR(In) of dimension n and followed bymoving the updated space back to the space
R(I) [78, page 158]. Assume generic input matrix M with the eigenvalues λ1, . . . , λn such that |λ1| < |λ2| < · · · < |λn|.
Then the iteration produces matricesMi converging to a triangular matrix, and the cumulative transform matricesG(i)

= G(1)G(2)
· · ·G(i) (B.4)

are well conditioned. More precisely, we have the following result [78, Theorem 5.2.3].

Theorem B.2. Assume an n × n matrix M =

M00 M01
M10 M11


with k × k leading block M00 and the eigenvalues λj ordered to

satisfy (2.1). Also assume the inequality

θk = |λk+1/λk| < 1. (B.5)

Let the two eigenspaces of M associated with λj, for j = 1, . . . , k and for j = k+ 1, . . . , n have the only common vector 0. Then
‖M(i)

10‖ ≤ c(θ + ϵ)icond(G(i)) for the matrixG(i) in (B.4), any positive ϵ, and some constant c.

We can request that the matrices G(i)
= Q (i) be unitary for all i, thus ensuring that cond(G(i)) = 1 for all i. This defines

the QR celebrated algorithm [15, Section 7.5], [19, Chapter 2], [44, Section 7.3]. It is customary to apply it to matrices
M = M(0) reduced to Hessenberg form (in O(n3) ops). Then every iteration step takes O(n2) ops, which also cover the cost
of bulge chasing that recovers the Hessenberg form for every computedmatrixM(i). Multishifts by the scalars computed via
Rayleigh–Ritz (Galerkin) procedure dramatically accelerate convergence. They modify Eq. (B.3) as follows,

ri(M(i)) = G(i)R(i), M(i+1)
= R(i)G(i)

= (G(i))−1M(i)G(i), i = 0, 1, . . . , (B.6)

where ri(x) =
∏ν

j=1(x − λ
(i)
j ) and the vector Λ(i)

= (λ
(i)
j )νj=1 of scalar shifts λ

(i)
j is updated at the ith step based on

Rayleigh–Ritz (Galerkin) procedure. The actual implementation includes the policies of deflation and explicit or implicit
shifting.
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Appendix C. Matrix iterations for root-finding

One can try to accelerate global convergence of iterativematrix algorithms for root-finding by applying various advanced
eigen-solvers, such as the Subspace iteration and the Inverse Rayleigh–Ritz (Galerkin) iteration in the previous section or the
non-Hermitian Lanczos, Arnoldi and Jacobi–Davidson algorithms, but this can only be advisable in the case of hard inputs
for which the iterative algorithms in Sections 6 and 7 stumble or diverge. Otherwise the ops count tends to favor the SQ
iteration. In particular, convergence of the Subspace and the Inverse Rayleigh–Ritz (Galerkin) iterations is accelerated with
the increase of the dimension ν of the basic subspace, but so does the arithmetic cost per step as well. For example, we need
the order of 2ν2n ops for orthogonalization of the basis and about asmany ops for computing RQs, which is a substantial cost
increase even for ν = 2 and even if we simplify the iteration byweakening its numerical stability [75, page 157], [44, Section
7.4, Algorithm 4.5]. Deflation in Appendix A becomes substantially more costly as the matrices B, C,H , and L in (A.1)–(A.3)
grow in size and lose structure. The structure is destroyed in orthogonalization and in the matrix transition B, C → H, L.
One can yield structured nonunitary matrices B and C based on Fact 6.1 and Theorem 7.2, but this leads to convergence
problems (see Remark B.3).

Other directions to potential convergence acceleration include combining eigen-solving approach with Newton’s,
Müller’s, Aberth’s, Durand–Kerner’s, and other polynomial root-finders (cf. [9]) and various heuristics for computing good
initial approximations µ.

Appendix D. Solving a polynomial system of equations

Consider a system of two quadratic polynomials equations with two variables x and y,

p(x, y) = p0,0 + p0,1x+ p1,0y+ p0,2x2 + p1,1xy+ p2,0y2 = 0, (D.1)

q(x, y) = q0,0 + q0,1x+ q1,0y+ q0,2x2 + q1,1xy+ q2,0y2 = 0. (D.2)

Define the resultant equation R(x, y)z(x, y) = 0 for the vector z(x, y) = (1, x, y, x2, xy, y2)T and the following 6×7 resultant
matrix of a rank at least five,

R(x, y) =



−x 1
−y 1

−x 1
−x 1
−y 1

p0,0 p0,1 p1,0 p0,2 p1,1 p2,0
q0,0 q0,1 q1,0 q0,2 q1,1 q2,0

 .

This matrix has a null vector z(x, y) if and only if the pair (x, y) satisfies the system of Eqs. (D.1) and (D.2). The same
property holds for a number of variations of the matrix. e.g., we can replace its fourth row vector (0, 0,−x, 0, 1, 0) with
(0,−y, 0, 0, 1, 0). We can remove any of the first five rows still preserving the resultant property of the matrix, although
generally not the lower bound of five on its rank. This bound is preserved, however, where p0,2q0,2 ≠ 0 and we remove the
third row, where p1,1q1,1 ≠ 0 and we remove the fourth row, as well as where p2,0q2,0 ≠ 0 and we remove the fifth row.

Now let a pair (x0, y0) approximate a solution pair (x̃, ỹ) to the polynomial system above, such that R(x̃, ỹ)z(x̃, ỹ) = 0,
and combine additive preprocessingwith Newton’s linearization to generate a sequence of new approximations (xi, yi), i =
1, 2, . . . .

Recursively define pairs of properly scaled random vectors ui and vi and write

Ri = R(xi, yi), Ci = Ri + uivHi , zi = z(xi, yi),
δzi = (0, δxi, δyi, 2(δxi)xi, (δxi)yi + (δyi)xi, 2(δyi)yi)T ,

δCi = Ci+1 − Ci = Ri+1 − Ri =



−δxi
−δyi

−δxi
−δxi
−δyi

0 0 0 0 0 0
0 0 0 0 0 0


for the scalars δxi = xi+1 − xi and δyi = yi+1 − yi defined from the following linear system of equations, Cizi + (δCi)zi +
Ci(δzi) = (vHi+1zi)ui+1 + (vHi+1(δzi))ui+1, i = 0, 1, . . . . Due to randomization we can expect that vHz(x̃, ỹ) ≠ 0, vHi zi ≠ 0
for all i, and that the matrices C(x̃, ỹ) = R(x̃, ỹ)+ uivHi and Ci for all i have full rank (cf. [79–81]).

We obtain this linear system in δxi and δyi by ignoring the terms of higher orders in δi = max{|δxi|, |δyi|} in
the polynomial system of equations Ci+1zi+1 = (vHi+1zi+1)ui+1, which extends the polynomial system C(x̃, ỹ)z(x̃, ỹ) =
(vHi+1z(x̃, ỹ))ui+1 implied by Theorem3.1 (forC(x̃, ỹ) = R(x̃, ỹ)+ui+1vHi+1), andwe readily observe that δzi = zi+1−zi+O(δ2

i ).
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By setting ui = 0 for all i, we arrive at a Newton-like extension of the Inverse Iteration for eigen-solving, but the option
of varying the vectors ui and vi for all i gives us some additional power for devising effective algorithms. Thematrix R(x, y) is
structured (it can be multiplied by a vector in nearly linear time [82,83]). In typical applications to algebraic and geometric
computations this matrix is also sparse. We can choose the vectors ui and vi to have such properties for the matrix C(x, y)
as well. If so, we can effectively solve the linear systems with this matrix by applying the Conjugate Gradient algorithms
provided the matrix is well conditioned under our preprocessing.

In all cases Newton’s linearization implies local quadratic convergence, although for the iteration in its present form
convergence can be readily destroyed by rounding errors.

One can extrapolate this demonstration to polynomial systems with any number of variables, equations and terms and
to resultant matrices with any positive nullity, associated with multiple roots of systems of polynomials. Furthermore we
can modify our approach by using augmentation instead of additive preprocessing.
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