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Stability; strated by applying on three test problems. Theoretical attributes such as existence, uniqueness

SSP-RK43 method and regularity of Fisher-Kolmogorov equations are also conferred. The outcomes are depicted

graphically to confirm accuracy of the findings and performance of this method and a comparative
study is done with results available in the literature. The computed results are found to be in good
agreement with the analytical solutions.
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1. Introduction where v € [p,¢] x [0, 1] is a real valued function, g(v) = v} —v
and y > 0 with the boundary conditions
In this paper, we have adopted a quintic B-spline differential v(p, 1) = o, v(g,t) = (2)
quadrature approach to solve a extended Fisher-Kolmogorov
equations of order four, that can be written as v (P, 1) =0, V(g 1) =0 (3)
Vi P — Y +&(0) =0, x € [p,q], 1 €10,7] (1) and initial condition
V(X7 0) =V X e [p? Q} (4)
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spatiotemporal chaos [1] in bi-stable systems, phase transition
near a Lifshitz point [5,6]. It has been derived as an amplitude
equation at the onset of instabilities near certain degenerate
points [7]. Recently, attention has been given to steady state
equation in Eq. (1). The stationary problem displays periodic,
homoclinic or heteroclinic solutions, depending on y. Peletier
and Troy [8.9] studied the solution of extended Fisher-
Kolmogorov equation in steady state by adopting shooting
method. Peletier et al. [8,9], Bengurai et al. [10] and Dhanm-
jaya et al. [11] discussed the existence of solution, its unique-
ness and regularity for Eq. (1). Aghamohamadi et al. [12]
worked on nonlinear Fisher’s equation using tension spline
method. These papers have differentiated and analyzed two
different cases depending on value of 7y, for y < 1/8 and
y > 1/8, where the behavior of solutions is variable. It has
been shown that for y > 1/8 monotonicity is lost but, there
exists unique solution for y < 1/8. In this work, a different
numerical approach based on differential quadrature method

The organization of this paper is as follows. Section 2 gives
a description of the quintic B-spline differential quadrature
method. In Section 3, the method is implemented on the
extended Fisher-Kolmogorov equation with suitable handling
of conditions on boundary. In Section 4, stability analysis of
the method is carried out. Section 5 presents some test exam-
ples of the extended Fisher-Kolmogorov equation. A conclu-
sive section is provided at the end in Section 6.

2. Quintic B-spline differential quadrature method

The domain under consideration i.e., p < x < ¢ is discretized
into a grid of equal length /& = x;,; — x;, by the knots x; where
i=0,1,2,... ,Nsuchthatp = x; < xp,...,xy_1 < Xy = ¢. Let
0,,(x), be the quintic B-splines with knot points x;. The B-
splines Q_,Q,,-..,0y,, act as a basis for functions defined
over the domain [p, ¢]. The quintic B-splines are defined as [29]

(x — Xm_3) X € [Xm_3, Xm_2)
(x = Xp3)’ — 6(x — Xp_2)’ X € [Xp_2, Xm_1)
| (x — x,,,,3)5 —6(x — xm,z)s +15(x = xp1)” X E [Xpot1,Xm)
0,(x) = ARG )" = 6(xmia = %)’ + 15(xpe1 —x)° X € [, Xt m=-10,1,.... N+ 1,N+2 (5)
(X3 — X)S = 6(xm2 x)s X € [Xore1, Xins2)
(X3 — X)S X e [xm+27 Xim+3)
0 otherwise,

and B-spline functions is proposed for the solution of extended
Fisher-Kolmogorov Eq. (1).

Bellman et al. [14] initially introduced differential quadra-
ture method for solving PDEs. Spline based differential
quadrature method is used in [15,16]. Cheng et al. [17] have
used Hermite polynomial to compute the weighting coeffi-
cients of differential quadrature method. Striz et al. [18] and
Bonzani [19] used harmonic functions and Sinc functions
respectively as basis functions. Korkmaz [20], Korkmaz and
Dag [21-23], Saka et al. [24], Mittal and Dahiya [33,34] and
Arora [35] used various differential quadrature methods which
are found to produce accurate solutions with ease. The idea of
iterative differential quadrature method has been introduced
by Tomasiello [25,26]. In her work, iterative differential
quadrature method and the stability of DQ solutions have
been discussed. An article totally dedicated to the study of
DQ based methods has been published [27]. A new method
based on least square DQ method has also been introduced
to deal with the buckling of structures with elastic support [28].

In this work, we reduce the given problem into a system of
ordinary differential equations by expanding the derivatives of
the unknown function as the function of fifth order B-spline
with unknown coefficients. The weighting coefficients of the
differential quadrature method are found by using a five-
banded Thomas algorithm for penta-diagonal systems. The
differential quadrature method has great advantages over the
traditional methods, specially it does prevent perturbation in
order to find better solutions to given nonlinear equations.
Its advantages over different bases are rendered to its simple
implementation, wide applicability and conceptual simplicity.

In a fair share, six knots at a time are enclosed by each quintic
B-spline so that a knot in its turn is concealed by six quintic B-
splines. Table 1 comprises the nonzero values of functions
given by Q,,(x) and its derivatives at given knot points.

Differential quadrature method approximates derivative of
a given function by writing it as the linear combination of its
values at specific discrete nodal points over the solution
domain of a problem. Given a function v(x), that is smooth
enough over the solution domain then its derivative with
respect to x at any node can be approximated as

N

vo(xp, 1) = Zaf./])v(xj), i=1,2...,N (6)
J=1

where a§jl> are the unknown weighting coefficients of the first

order partial derivatives with respect to x.
The derivatives of order two or higher can be calculated by
the Shu’s recurrence formula [30]

” W oy a5
al =rlaya;) ——L—1|, fori#j
ij j X — X S J )
i7j:l727'-~7N§ ’":2,3,..‘7]\’—1
N
a) ==Y ")), fori=j (8)
J=1j#i

(r-

ij

derivatives of order (r — 1) and (r) in the direction of x-axis.
From Eq. (6), it is clear that the fundamental problem for

approximating the derivatives of the unknown function with

Here, ¢! and ag;') denote the weighting coefficients of partial
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differential quadrature method is to determine the weighting
coefficients a; by means of a set of base functions that span
the domain under consideration. The weighting coefficients
can be computed by employing different basis. Here we are
using quintic B-spline basis given in Eq. (5) for our calcula-
tions. Bashan et al. [31] used quintic B-splines for solving
KdVB equation, whereas Korkmaz et al. [32] used both quar-
tic and quintic B-splines for numerical approximation of
advection—diffusion equations.

Employing quintic B-splines as test functions in fundamen-
tal differential quadrature method Eq. (6) gives

9 , m+2
Q’"” =3 d0,(x), m=-1,0,...,N+2,
J=m—=2
i=1,2,....N 9)

An arbitrary choice of 7 leads to an algebraic equation system

(O3 Q40 O Q. 0 .
Qo2 Qo1 Qoo Qo1 O,
QN+1,N+2 QN+],N QN+1,N+1
L QN+2,N QN+2,N+1
where Q,; denotes Q-(x,-) Ay = lai; a; 2 e @iNy3 Aini4)

) 9Qg(xi) 9Qn11 (i) 9Qnyo(x ,)

p — |92
and d)l (')‘c ox Ox Ox

coefficients a; corresponding to i-th grid point can be deter-
mined by solving algebraic system of Eqs. (12). This system

. The weighting

- ) 1 -
4, = a[‘73a,.‘72.i.a,.‘Nﬁa[‘NH} and ¢, =

[aQ,I (1) PO (x1) BQo(x1) PQo(xi) Qw1 (i) 97 Q1 (%) IQwp (xi) Qs (x,-)] T

Ox Ox? Ox oxz "t Ox ox2 Ox ox2

where

using the values of quintic B- splines and its derivatives at the

nodal points and eliminating a; )3,afl)2,afll\),+3, and al V+4, we

obtain an algebraic system having a 5-banded coefficient

matrix of the form L, A, = ¢, where

r37 82 21 7
8 33 18 1

1 26 66 26 1

L= (13)
1 26 66 26 1
1 26 66 26 1
1 18 33 8
L 21 82 37
A1 = ¢, (10)
Oniivee Onsings
Ovioner Oniones  Oniongsl
b3 =[@_19p, - -, Py11@x12] Where

0-1(5) = 55 [~30")(x) + hO%) (x) + 400} (x) + 80 (x)].

has (N + 8) unknowns in (N + 4) equations. We require four 1 M o)
additional equations for a unique solution. Adding equations Po(xi) = 10 iSQO (i) = hQy (x,-)],
8x2 Zaljl)Q ¢j(xl) (l)(xl) for 4].:2737"'7N7 lva
]*—3
fia X;)
7o) Zal, 0y(x) O (%) = 75 [ SO (o) + 0. ()]
()
7 O Onia(xi) - @) 1
ot = 2 4 Qwn() Oxialv) = 53 [~400) (v) + 8O, () + 50V (x)
Jj=N-
a Q Ni4 +hQN+2(xl)] )
gii Zaz] Onia(X))
The system L,A, = ¢; is solved by penta-diagonal Thomas

to the system (12) becomes L4, = ¢,, where algorithm. Solving for a,l)l, 510)’ ..,aEII&H,aleﬂ and putting

(015 04 O Qo Qo ]

Qil,—_} Qlfl,fz Qil‘—] QL1,0 QL1,|
Qo2 Qo1 Qoo Qo Qo2
O Oy Qo O Qh
QN+LN+2 QN+1,N QN+li,N+l QN+1,N+2 QN+LN+3
Q’N+I<N+2 Q’N+LN Q’N+I<N+I Q’N+LN+2 Q’N+1<N+3
QN+2,N QN+2.N+I QN+2,N+2 QN+2‘N+3 QN+2,N+4
L Ovirn Qvianvet Qvoaver Qvioves Diviones |
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Table 1 Q,,(x) and derivatives on nodes.

X Xm—3 Xm—2 Xm—1 Xm Xm+1 Xm+2 Xm+3
0,,(x) 0 1 26 66 26 1 0
0, (x) 0 5/h 50/h 0 —50/h 5/h 0
Q,,(x) 0 20/ 40/ —120/1? 40/ 20/ 0
05 (x) 0 60/1 —120/ 0 120/ —60/h° 0
0 (x) 0 120/h* —480/n* 720/1* —480/h* 120/h* 0
0, (x) 0 120/1° —600/h° 1200/h° 600/h° —120/h° 0

these values in Eq. (6), we get the approximation for partial
derivatives of first order at i-th grid point, for i=1,..., N.

Using Shu’s recurrence formula to calculate d?, a?

i oo
,(;) and using them to approximate partial derivatives of

higher order.

and

a

3. Discretization and solution of extended Fisher-Kolmogorov
equation

The extended Fisher-Kolmogorov equation is given by

V= P + v — (V= V), x € [p,q], t€0,1], (14)
with the boundary conditions

v(p, 1) = v, v(g, 1) =w (15)
V(P 1) =0, via(g, 1) =0 (16)
and initial condition

v(x,0)=v,  x€lpyq| (17)

Then the derivative approximations provided in Eq. (6) have
been used in Eq. (14). The application of boundary condition
results in

dv(x; N N
v{fﬁ ) — ,yzaf;‘)v(x,, 1)+ Zal(]_z)v(x/, 1) = v(xi, 1))+ v(xi 1),
=1 j=1
i=1,2,...,N (18)
with boundary conditions
v(x1,t) = v, v(xy, 1) =n
Var(x1,7) =0, Vax(Xn, 1) =0 (19)

and initial condition
v(x,0) = v, x € [p,q| (20)

Then this system of ODEs in Eq. (18) is integrated in time
employing an appropriate method. Here, we have used strong
stability preserving fourth order Runge—Kutta method of stage
three (SSP-RK43) for its advantages such as correctness, mem-
ory requirements and stability.

4. Stability analysis

Von Neumann stability analysis can be easily done when one is
working with the classical finite difference. As with the case
here, Von Neumann stability criterion cannot be used with
differential quadrature method discretized systems. For this
purpose, matrix stability or energy stability methods have been

extensively discussed in the literature [25,36,37]. Let us con-
sider a problem that is time-dependent along with a set of suit-
able initial and boundary conditions, given as

— =1V 21
= 1Y) 1)
Here, /is the operator in space. Discretizing Eq. (21), we attain
a system of ODEs:

% =[DJv+b (22)

where v represents unknown functional at knots except at
boundaries, D, denotes the coefficient matrix and b is the
non-homogeneous part. Stability conditions of the computa-
tional method for solving Eq. (21) are dependent on the stabil-
ity of ODEs in Eq. (22). The matrix D, plays an inevitable part
as its eigenvalues directly determine the exact solutions. There-
fore, the whole scenario can be well described using the eigen-
values of the coefficient matrix. When the real part of all the
eigenvalues of D, R(Z;) < 0, it shows the stable exact solutions

as t—oo. The matrix D, can be determined as
Atm(2j)
22
Unstable
y
Stable 14

L | L

Figure 1

Stability region.
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[Dy] = —ya)) + aff
infinity requlres

)+ 1. The stable solution for tending to

1. For real eigenvalues, —2.78 < At- 7; < 0.

2. For  eigenvalues having  complex
V2 < At < 2V/2.

3. For complex eigenvalues, Af- 4; should lie in the sector
shown in Fig. 1.

part  only,

For complex eigenvalues, real parts can be small enough
positive numbers that lie within a prescribed tolerance limit.
[38]. For linearization, we have assumed o; = v(x;), o; constant;
therefore, the eigenvalues need to be calculated for every prob-
lems. As it will induce changes in the entries of the coefficient
matrix D. Eigenvalues have been calculated for different grid
sizes and have been found in region in Fig. 1.

The convergence rate of the method adopted above is to be
calculated. For this purpose, the formula given below has been
used to compute the order of convergence

Order =
lOg(Nl /Nz)

where E(N,) is the error and N, is the count of partitions. The
order of convergence has been calculated with both error
norms L,, L.

08

06

04}

0.2t

u(x.t)

-
BN
o

i=N
|u(xi, 1)

Lo(u) = — Ul 1))’

—1

L — max|ue\u(t _ uz;m1|

To handle non-availability of exact solutions, the computed

solution is compared with solutions obtained with N = 160
at different intervals taking it as definite solution.

5. Numerical illustrations

To verify the correctness of the presented scheme, three numer-
ical problems are presented.

Problem 1. [11,13] Consider extended Fisher-Kolmogorov Eq.
(1) in the domain [—4, 4] with initial conditions given as

v(x,0) = —sinnx, x € [p,q] (23)
condition on the boundaries are given as

V(747 t) = 07 V(4, t) = 07

Vi (—4,1) =0, v (4,1) =0, (24)

08

06

041

021

u(x.t)

—— =000

—— =005

——1=0.10

——1=0.15

; ; ; 1=0.20

0 1 2 3 4
X

u(x.t)

E\ /;

— =000 |

———1=0.05

——1=010 |

—1=0.15 |
:-0.20

(c) Y=0.1, plots of x with time

Figure 2 Plots for u for varying values of y.



2898

R.C. Mittal, S. Dahiya

Fig. 2 depicts numerical solutions at various time levels
with Ar =1/1000, for y = 0,7 =0.0001 and y = 0.1 respec-
tively. Uniform grid has been taken with N = 80. For y =0
and y = 0.0001, the nature of solution is almost likewise. For
y = 0.1, solutions decay to 0 very quickly which ensures the
stabilizing nature of the extended Fisher-Kolmogorov equa-
tion. The numerical solutions imitate the qualitative behavior
of extended Fisher-Kolmogorov equation very well enough.
Table 2 shows the L, and L., norms and the convergence rate
at t = 0.2. y is taken to be 0.1, with N = 20,40, and 80. The
Table 3 clarifies the third order convergence of the scheme.

Problem 2. [11,13] Consider extended Fisher-Kolmogorov
equation in Eq. (1) in the domain [a, b] = [—4, 4] with bound-
ary conditions

v(—4,1) =1, v(4,1) =1,

Vxx(_47 [) = 07 Vxx(47 Z) = 07 (25)

with initial conditions

v(x,0) = 107 exp(—x?), X € [p,q] (26)

Here, the numerical approximations have been calculated with
y =0.0001. Fig. 3 depicts numerical solutions at various time
levels with Az =1/1000. It is noticed that as time increases,
the solution decays and attains a stable state approaching
the value 1.

Problem 3. [11,13] The extended Fisher-Kolmogorov Eq. (1)
with y =0.0001,Ar = 0.001, grid size N =100 and initial
conditions

v(x,0) = =10 exp(—x?), —4<x<4, (27)

with the conditions on boundary as

v(—4,6)=—1, v(41t)=—-1. (28)
Fig. 4 depicts the numerical approximation at varying

times. As 7 increases, the solution decays and attains a stable

state approaching the value —1.

Table 2 The order of convergence for u(x, ¢) in Problem 1 at
t=0.2.

N L, (0] Ly O
20 2.1347E—002 = 1.1547E—003 =
40 2.2159E—003 291 1.2239E—003 3.01
80 3.12301E—004 2.82 1.5313E—004 2.93

Table 3 The order of convergence for u(x, ¢) in Problem 1 at
t=0.2 as in [13].

N Ly O Iy O
20 1.1158E—002 = 5.5097E—003 =
40 2.81459E—-003 2.04 1.3387E—003 2.04
80 5.6571E—004 2.31 2.8340E—004 2.23

L J——

T T T ——po
K TRbe g g e ,‘4[
09F ", "y P
e &4
% Y
o8f! b /1
(Y X o
i S F
oy o0
06F % / S
= R \*\ — % -1=025 Fa ?-f .
ZOst |\ ) |~*+-Fl@ R
= i \ N B it i B VAN
04r X -9 t=2.50 F 1
- |~ -t=380
03} | \ | / .
: * * — + -=45 P, #
- T F %
0.2} \ \‘ / .
\ * P y
01} * X’\* & y: |
i #
0 T SV o = ST R
-4 -3 -2 -1 0 1 2 3 4
X
Figure 3 y = 0.0001, plots of x with time for Problem 2.
0 — =3 == .y
* . £ . *
01F . b y 4
02t ¥ A, % % _
y " * *_ ¥
03k ‘ * * i
03 ¥ ; # [+ w025 *, : %
/ - 4 * - =1, *
o RS b ‘
+ / L \ *
= o5l 7 4 * t=2.50 * ' 1
z P ; ¥ —+-1=350 it
4 —+—1t>=45 P |
06F Py \ )
a7t b, A * \ -
! # %
08t * X +
{ * x
) 4 *
09 F. # 5 * 1
A, e L Rl ot Y *_
A ’;ﬁ.t—ﬁrﬁ‘fﬁﬁ LLLLLLLLLLLLL ﬁth‘fwﬁ:
-4 -3 2 -1 0 1 2 3 4
X
Figure 4 y = 0.0001, plots of x with time for Problem 3.

6. Summary

In the present manuscript, a numerical treatment for the semi-
linear extended Fisher-Kolmogorov equation is presented
using a DQ method taking basis of fifth degree B-spline func-
tions. The applicability of quintic B-spline method employed
in the present work is straight forward and very simple. The
algorithm can handle a diverse class of linear equations and
can also handle nonlinearity of the problem. The solutions
attained are depicted graphically at discrete levels of time that
present alike features as provided in the literature. Rate of con-
vergence is calculated and compared. L, and L., error norms
are also calculated for comparison purposes. It is seen that
the numerical approximations are in excellent compliance with
the solutions available in the literature. The stability analysis
using matrix method has also been done. The method is shown
to be as unconditionally stable for any step-length.
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