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The paper presents a new finite element (FE) model for the stress analysis of soft solids with a growing
mass based on the work of Lubarda and Hoger (2002). Contrary to the traditional numerical methods
emphasizing on the influence of growth on constitutive equations, an equivalent body force is firstly
detected, which is resulted from the linearization of the nonlinear equation and acts as the driver for
material growth in the numerical aspect. In the algorithm, only minor correction on the traditional
tangent modulus is needed to take the growth effects into consideration and its objectivity could be
guaranteed comparing with the traditional method. To solve the resulted equation in time domain, both
explicit and implicit integration algorithms are developed, where the growth tensor is updated as an
internal variable of Gauss point. The explicit updating scheme shows higher efficiency, while the implicit
one seems to be more robust and accurate. The algorithm validation and its good performance are
demonstrated by several two-dimensional examples, including free growth, constrained growth and
stress dependent growth.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Soft materials with a growing mass have drawn wide attentions
in recent years, which are complex mechanical materials with
typical nonlinear, anisotropic, large strain and inhomogeneous
behaviors (Humphrey, 2003; Menzel and Kuhl, 2012).

In the past two decades, continuum theories handling growth
phenomena of soft solids within the framework of thermody-
namics are well established (Menzel and Kuhl, 2012). The key
kinematic assumption is the multiplicative decomposition of
deformation gradient tensor into a growth part and an elastic defor-
mation part, which was first adopted in growth mechanics by
Rodriguez et al. (1994) to analyze the growth-induced residual
stress of biomaterials. The decomposition was originally introduced
by Kröner (1959), and then Lee (1969) and Stojanović et al. (1964)
made applications to elasto-plastic and thermoelasticity problems
at finite strain, respectively. Owing to their work, growth models
based on the multiplicative decomposition are predominant in
the current literatures for material growth, such as the contribu-
tions by Maugin and Imatani (2003), Epstein and Maugin (2000),
Kuhl and Steinmann (2003), Lubarda and Hoger (2002), Loret and
Simões (2005), Ganghoffer (2013) and Ganghoffer et al. (2014).
Other recent developments could be referred to Ciarletta and
Maugin (2011) and Ciarletta et al. (2011). In their work, a second
gradient theory for material growth and remodeling is developed,
which shows that evolution of structural changes is governed by
Eshelby-like stress and hyperstress. In addition, another noticeable
progress was made by Yavari (2010), in which the growth mechan-
ics was formulated within the context of differential geometry.
Ganghoffer and Sokolowski (2014) proposed a micromechanical
approach in which the volumetric and surface growth is described
in the framework of shape optimization.

Based on the multiplicative decomposition, many theoretical
explorations towards engineering applications have been carried
out in recent years, such as growth of soft material under geomet-
rical constraint (Ben Amar and Ciarletta, 2010), growing arteries
(Goriely and Vandiver, 2010) and growth-induced instabilities
and folding in tubular organs (Ben Amar and Goriely, 2005;
Ciarletta and Ben Amar, 2012). These works shed light on some
basic physical mechanisms of phenomena in growing materials
and may provide new methodologies for the studies of growth
mechanics. For further background information of growth mechan-
ics, readers are referred to state-of-the-art reviews by Taber
(1995), Humphrey (2003), Ambrosi et al. (2011), Cowin (2011)
and Jones and Chapman (2012) and the references therein. How-
ever, as indicated in the above referred papers, analytical methods
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Fig. 1. Decomposition of deformation gradient tensor into a growth part and an
elastic part.
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may be helpless to describe the evolution of growth which is very
complicated but important to understand it better.

In the numerical aspect, there are also many elaborations based
on the multiplicative decomposition. An analogy between the con-
cept of thermal strain in finite deformation and the growth tensor
has been made by Feng and coworkers. Based on the idea, they
have studied the surface folding of esophageal mucosa (Li et al.,
2011a) and surface wrinkling of core–shell structure (Cao et al.,
2011; Li et al., 2011b) with the aid of commercial software, Abaqus.
Their works make the growth modeling go a big step from labs to
engineering applications. However, mass generation or sorption
and their influence on material constitutive equations are not fully
considered in their model. It seems to be unknown that whether
the critical growth factor is in accordance with the theoretical
one or not, in spite that good results of buckling mode could be
observed in their work. Based on Lubarda and Hoger’s work
(2002), Himpel et al. (2005) proposed a computational framework
to model isotropic multiplicative growth within an implicit nonlin-
ear finite element setting, in which the isotropic stretch ratio is
introduced as an internal variable at the integration points. A
new incremental tangent modulus is developed in the intermedi-
ate or current configuration to reflect the growth influence on
the material. Based on the proposed framework, they made several
noticeable attempts towards patient specific simulations, such as
stress-induced arterial wall growth (Kuhl et al., 2007), cardiac
growth, dilation and wall thickening (Göktepe et al., 2010a,b),
growing skins beyond the physiological limit (Buganza Tepole
et al., 2012) and so on. A summary of their model and related appli-
cations could be referred to (Menzel and Kuhl, 2012; Kuhl, 2013).
However, the tangent modulus seems to be unsymmetric in some
cases (Himpel et al., 2005), which may lead to lower computational
efficiency for large scale problems. Meanwhile, the objectivity of
tangent modulus is not expounded in detail. In addition, Menzel
(2007) developed a remodeling framework for orthotropic con-
tinua, in which the reorientation of fiber families in multiplicative
anisotropic growth was illuminated. More recently, a stress-
induced volumetric material growth model in thermoelastic con-
tinua was developed by Vignes and Papadopoulos (2010), where
the material growth is regulated by a three-surface activation cri-
terion and corresponding flow rules. There are many other works
conducted within the context of mixture theory. For example,
Garikepati et al. (2004) proposed a coupling model of mass
transport and mechanics, in which the mass change amongst the
individual species rather than for a mass exchange with environ-
ment was considered. For an improvement version considering
the interactions between transport and mechanics is referred to
Narayanan et al. (2009). Similarly, Davol et al. (2008) also made
many attempts towards a general thermomechanical theory for a
mixture of growing elastic constituents with aim to model carti-
lage growth. Within the framework of the theory of porous media,
Ehlers et al. (2009) provided a continuum-biomechanical approach
for biological tissue, which extends the classical theory of mixture
towards immiscible materials. Though so many attempts have
been made for the numerical modeling of growth phenomena, it
is still hard to answer which one is the better. Since comparisons
of the results with the experiments or analytical solutions are rare,
even for the simple case. Actually, many results could only be
explained qualitatively in the current stage.

This contribution aims to develop a new computational frame-
work for modeling growth phenomena of soft material following
Lubarda and Hoger’s work (2002). Unlike the algorithm developed
by Himpel et al. (2005) and their follow-up works, which incorpo-
rates growth effects into tangent modulus, we introduce the objec-
tive Oldroyd stress rate to linearize the nonlinear equation in the
current configuration, which is a common practice in nonlinear
finite element method (Crisfield, 1997; Wriggers, 2008). Following
this line of thought, a new equivalent body force is emerged in the
linearized rate equation, which is related to the growth tensor,
growth rate, stress, mass generation rate, etc. The force is assured
to act as the driver to make the material grow in the numerical
aspect. To the authors’ knowledge, such kind of numerical imple-
mentations for the soft matter with a growing mass have not yet
been implemented. The tangent modulus in our model is symmet-
ric, which could be deduced by a subtle change of modulus in the
classical FE model without growing mass. The growth tensor and
its rate are updated at the Gauss points as internal variables and
are used to calculate the growing body force. The final equation
is time-dependent and the corresponding integration algorithms
are developed. In case the growth rate is dependent on the
mechanical quantities or the growth factor itself, an implicit inte-
gration scheme is implemented to stabilize the solution.

The paper is organized as follows. In Section 2, the theoretical
background for growth mechanics is briefly reviewed and an
objective constitutive law is proposed for the linearization of the
equation. In Section 3, the finite element implementation and its
linearized version are presented in detail. The mechanical variables
are updated via a prediction–correction algorithm and the equiva-
lent driving force should be calculated in the prediction step. Both
explicit and implicit schemes are explained to integrate the growth
tensor. Section 4 presents several numerical examples, including
free growth, constrained growth and stress dependent growth, so
as to validate the algorithm. Some analytical analyses on the
examples and comparison between the implicit and explicit
algorithm are also conducted in the section. Finally, conclusions
are made in Section 5.

2. Theory

2.1. Kinematics

Consider a continuous elastic body B described by a set of
material points X in the reference configuration. The motion of
body B is given as a one-parameter family of configuration
ut : B ! E3 and the location of point X at time t becomes

x ¼ utðXÞ ð1Þ

The description of the body at point x is referred to as the cur-
rent configuration. Let F ¼ @x=@X ¼ Grad x be the deformation
gradient tensor, then its multiplicative decomposition, as shown
in Fig. 1, is introduced as
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F ¼ Fe � Fg ð2Þ

where Fe is the elastic deformation tensor describing pure deforma-
tion resulting from stress and Fg is the growth tensor, indicating the
generation (or removal) of mass (or volume) at the material point.
This decomposition is analogous to the well-known decomposition
of elasto-plastic deformation gradient into elastic and plastic parts
(Lee, 1969), and was first introduced to the growth of biomaterial
by Rodriguez et al. (1994).

Following the basic kinematic assumption, the velocity gradient
tensor with respect to the current configuration follows

l ¼ @v
@x
¼ _F � F�1 ¼ _Fe � F�1

e þ Fe � _Fg � F�1
g

� �
� F�1

e ð3Þ

where _Fe and _Fg are rate of elastic deformation tensor and growth
tensor with respect to the intermediate configuration and the initial
configuration, respectively. The initial configuration is coincident
with the reference configuration at the beginning of deformation.
As a matter of convenience, the symmetric and antisymmetric parts
of the terms on the right hand side are introduced as

de ¼ _Fe � F�1
e

� �
s
; xe ¼ _Fe � F�1

e

� �
a

ð4Þ

and

dg ¼ Fe � _Fg � F�1
g

� �
� F�1

e

h i
s
; xg ¼ Fe � _Fg � F�1

g

� �
� F�1

e

h i
a

ð5Þ

Therefore, the symmetric and antisymmetric parts of I could be
denoted as

d ¼ de þ dg; x ¼ xe þxg ð6Þ
2.2. Equilibrium equations

2.2.1. Continuity equation
As indicated by many authors, growth of soft tissues can be

interpreted as a growth of volume with a fixed density (Vignes
and Papadopoulos, 2010). Therefore, we assume that the material
remains incompressible during mass growth and elastic deforma-
tion, i.e.,

q ¼ qg ¼ q0 ð7Þ

Then, we have Je = detFe = 1 and J = detF = Jg = detFg. It should
be noted that the incompressibility assumption is not reasonable
for the growth of hard materials, such as bones and horns
(Menzel and Kuhl, 2012).

The differential-form continuity equation is (Lubarda and
Hoger, 2002)

d
dt
ðqJÞ ¼ rgJ ¼ r0

g ð8Þ

where d/dt denotes material time derivative and rg and r0
g are the

mass growing rate per unit current and initial volume, respectively.
For rg > 0, the mass is generated at the material point, and for rg < 0,
the mass absorption takes place. There are no volumetric variations
in the initial configuration, i.e., JðX;0Þ ¼ 1. So integrating Eq. (8)
gives

qJ ¼ q0 þ
Z t

0
r0

gds ð9Þ

which represents quantity of mass accumulation per initial volume.
Due to the incompressibility, Eqs. (8) and (9) could be simplified as

q0
_Jg ¼ q0

_J ¼ r0
g ð10Þ

and

J ¼ Jg ¼ 1þ 1
q0

Z t

0
r0

gds ð11Þ
Using the relation Jg ¼ det Fg and the definition q0
g ¼ q0Jg,

Eq. (10) could be expressed as

q0
gtr _Fg � F�1

g

� �
¼ r0

g ð12Þ

which indicates that the mass source r0
g is dependent on growth

tensor and its rate. We should note that if r0
g is given as a specified

field instead of Fg or _Fg, additional equations should be supplied to
determine _Fg. In the paper, we consider the former case and thus r0

g

does not enter into the final equation.

2.2.2. Balance of momentum
Neglecting the inertial effects and the diffusion force arising

from interaction between different constituents (Cowin and
Hegedus, 1976; Klisch et al., 2001), the equilibrium equation in a
growing body is the same as that in traditional cases (Lubarda
and Hoger, 2002), which read

r � rþ b ¼ 0 ð13Þ

and

r ¼ rT ð14Þ

Here, r is Cauchy stress and b is the volumetric force per cur-
rent volume.

2.3. Constitutive equations

2.3.1. Constitutive equations for mechanical field
Due to the assumption of incompressibility in Eq. (7), the strain

energy function per unit volume in the intermediate configuration
could be written as (Lubarda and Hoger, 2002; Ben Amar and
Goriely, 2005; Menzel, 2007; Ciarletta and Maugin, 2011)

Wg ¼ JgW0 ð15Þ

where W0 is the strain energy function per unit volume without
mass growth. If mass increases at a material point, then Jg > 1
and Wg > W0, which means that the strain energy after growth is
greater than that without growth for the same strain state. On the
contrary, in case Jg < 1, mass absorption leads to a reduction of
strain energy. The second Piola–Kirchhoff stress defined in the
initial configuration could be denoted by

S ¼ @Wg

@E
¼ @Wg

@Ee
:
@Ee

@E
¼ F�1

g �
@Wg

@Ee
� F�T

g ¼ F�1
g � Se � F�T

g ð16Þ

which could be considered as the stress tensor pulled back from
configuration Bg to B. Here, E ¼ 1

2 FT � F� I
� �

, Ee ¼ 1
2 FT

e � Fe � I
� �

¼
1
2 ðCe � IÞ, and Se is the stress tensor defined in the intermediate
configuration Bg . The Kirchhoff stress could be introduced by a
push-forward of S,

s ¼ F � S � FT ¼ Fe � Se � FT
e ð17Þ

To linearize the nonlinear equation, the change rate of s
should be deduced. Here, the method in Lubarda and Hoger
(2002) is inherited, but distinctions could also be detected
comparing with traditional numerical methods, such as the
implementation in Himpel et al. (2005). Differentiating s with
respect to time yields

_s ¼ _Fe � F�1
e

� �
� sþ s � _Fe � F�1

e

� �T
þ Fe � C : _Ee

� �
� FT

e þ
@s
@Jg

r0
g

q0
ð18Þ

where C is constitutive tensor defined on B with the form

C ¼ @Se

@Ee
¼ @2Wg

@Ee � @Ee
ð19Þ
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It should be noticed that _s does not satisfy objectivity, which is
an inevitable prerequisite for the formulation of constitutive equa-
tions. Therefore, the objective Lie derivative of s is introduced as

_sT ¼ _s� l � s� s � lT ð20Þ

Here, _sT is also called as the Oldroyd stress rate or the Truesdell
rate of Kirchhoff stress. Combining Eqs. (6), (18), and (20), we have

_sT ¼ c : d� c : dg � dg þxg
� �

� s� s � dg �xg
� �

þ @s
@Jg

r0
g

q0
ð21Þ

where c is a fourth-order constitutive tensor in the current config-
uration and could be deduced by a push-forward operation on C

cijkl ¼ Fe
ipFe

jqFe
krF

e
lsCpqrs ð22Þ

In general, the elastic deformation tensor, Fe, is not dependent
on Jg directly, therefore,

@s
@Jg
¼ @

@Jg
Fe � Se � FT

e

� �
¼ Fe � Se0 � FT

e ¼ s0 ð23Þ

where Se0 ¼ @W0
@Ee

. Eqs. (18)–(21) could be used to linearize the non-
linear FE equation and the tangent modulus c is symmetric which
follows almost the same calculating procedure as that in the cases
without mass growth (Wriggers, 2008). The growth effects are
reflected in the last four terms of Eq. (21), which lead to an equiv-
alent growth-driving body force in the final equation, see Section 3.

2.3.2. Constitutive equation for growth field
The rigorous approach to appropriately characterize the evolu-

tion of growth tensor uniformly is still lacking and remains a chal-
lenging task in current growth theories, since growth phenomena
are related to many sophisticated phenomena, such as gene
expression, concentration of each constituent and material micro-
structure. Generally, individual growth law should be specified
with respect to different tissues (Kuhl, 2013). Even so, many
attempts on the evolution equation of growth have been made,
such as a stress-driven equation by Göktepe et al. (2010a),
strain-driven area growth of skin by Buganza Tepole et al.
(2012), a multiphase model considering the effect of fluid and
fiber-reinforced solid by Grillo et al. (2012) and a general form
based on the dissipation inequality for open system by Menzel
and Kuhl (2012). Following their ideas, we adopt a general
evolution form

_Fg ¼ f Fg;M
� �

ð24Þ

where M denotes some kinds of mechanical quantities, such as
stress or strain in either intermediate or current configuration.
The specific growth laws are different for each kind of growth and
illustrated with numerical examples in Section 4.

3. Numerics

3.1. Weak form of equilibrium and its linearization

The weak form of equilibrium equation (13) with respect to the
current configuration uðBÞ has the following form

Gðu;uvÞ ¼
Z

uðBÞ
r :

@uv

@x
dv �

Z
uðBÞ

b � uvdv �
Z

uð@BrÞ
t � uvda ð25Þ

where uv is the virtual velocity, b is the body force per current vol-
umetric, dv, and t is the surface traction. The Cauchy stress, r, is
related to t by t = n � r, where n is the unit outward normal to the
surface of current configuration. Let the virtual velocity gradient be

lv ¼
@uv

@x
ð26Þ
Its symmetric part is denoted as dv ¼ 1
2 lv þ lT

v

� �
. Therefore,

internal virtual work could be reformulated as

Gintðu;uvÞ ¼
Z

uðBÞ
r : lvdv ¼

Z
B
s : lvdV ð27Þ

in which, s ¼ Jr and dv = JdV. Linearization of above equation leads
to

Gintðu;uvÞ � _u ¼
Z
B
ð _s : lv þ s : _lvÞdV ð28Þ

where _u is the change rate of displacement. Using Eqs. (20) and
(21), and _lv ¼ �lv � l, the internal virtual work has the form

Gint u;uvð Þ � _u ¼
Z
B

dv : c : dþ s : lT
v � l

� �
þ dv : _sg

� �
dV ð29Þ

where

_sg ¼ �c : dg � dg þxg
� �

� s� s � dg �xg
� �

þ
r0

g

q0
s0 ð30Þ

We could find that _sg is related to variables in the current con-
figuration, including tangent modulus, growth tensor, elastic
deformation tensor, growth rate, stress state and mass source. If
no growth is introduced to the material, i.e., _Fg ¼ 0, then _sg would
vanish due to Eqs. (5) and (12). Therefore, _sg should be an
integrated quantity, which is conjugated to the velocity gradient
and reflects the effects of mass growth on the linearized virtual
work. For some further details about linearization backgrounds,
readers are referred to the monograph by Crisfield (1997) or
Wriggers (2008).

3.2. Finite element discretization

To construct the discretized equation, the domain, B, is parti-
tioned into ne finite elements

B ¼
[ne

e¼1

Be ð31Þ

Here, ne is the number of elements. Interpolations of the
mechanical field on an element, Be, could be expressed as

uh
v ¼

Xnd

i¼1

Nipvi; _uh ¼
Xnd

i¼1

Ni _pi ð32Þ

where pi (pvi) is the (virtual) node displacement, Ni is the corre-
sponding base function and nd is the node number of the element.
The vector form of virtual velocity gradient and its symmetric part
could be expressed as

lh
v ¼

Xnd

i¼1

Gipvi; dh
v ¼

Xnd

i¼1

Bi _pvi ð33Þ

where Gi and Bi are the derivative matrix of the base function cor-
responding to node i. Using Eqs. (25), (29), and (33), the discretized
increment equation follows

ðKm þ KrÞ _p ¼ _fg þ _fext ð34Þ

where Km and Kr are material and geometrical stiffness matrix with
the following forms

Km ¼
Xne

e¼1

Z
Be

BTDBdV ; Kr ¼
Xne

e¼1

Z
Be

GTŝGdV ð35Þ

and _fg is the change rate of equivalent body force with the form

_fg ¼ �
Xne

e¼1

Z
Be

BT _sgdV ð36Þ
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In Eq. (35), ŝ ¼ diagðs; sÞ and s ¼ s11 s12

s21 s22

� �
for two-

dimensional cases and readers could find ŝ for other cases in

Crisfield (1997). The stiffness in Eq. (35) is almost the same as that
of the classical Updated Lagrangian (U.L.) scheme. For the details,
see the monograph by Crisfield (1997) or Wriggers (2008). It also
needs to be noted that the constitutive modulus and Kirchhoff
stress are revised by the growth term, since the modification of
strain energy function due to growth is considered, see Eq. (15).
The constitutive matrix D is composed by the component of c in
Eq. (22) and its numerical implementations for two-dimensional
plane stress cases could be referred to Gruttmann and Taylor
(1992) and Reese and Wriggers (1995).

From Eqs. (30) and (36), we could find that _fg is related to con-
stitutive modulus, stress state, growth tensor, elastic deformation
and mass generation rate in the current configuration. If no growth
appears in the material, i.e., _sg ¼ 0, then _fg would become zero.
That is to say, _fg does not arise in the linearized equation of
classical problems without mass growth. Actually, _fg could be con-
sidered as a state-dependent body force rate, which integrates the
effects of several factors, such as the configuration, stress, growth
speed and so on. Therefore, _fg should be the driver which forces
the material to grow in the numerical aspect. To the authors’
knowledge, this concept is first proposed in computational growth
mechanics.

Assuming that there is no residual stress in the initial configu-
ration, that is, s ¼ s0 ¼ 0 and in this condition, Kr ¼ 0, then, Eq.
(34) degenerates to

K0
m

_p0 ¼ _f0
g þ _f0

ext ð37Þ

where the subscript ‘0’ denotes the quantity with respect to the
initial configuration and the rate of growth body force follows

_f0
g ¼ �

Xne

e¼1

Z
Be

BT _s0
gdV ð38Þ

Here, _s0
g ¼ �c : d0

g. We could easily figure out that Eq. (37) is
similar to that of thermal stress analysis at small strain and d0

g

could be analogous to initial thermal strain for small deformation
in a way. Actually, Yavari (2010) has pointed out that ‘‘the growth
result in eigenstrain is very similar to those of classical linear
thermoelasticity’’ and a comparison study of constitutive theories
based on multiplicative decomposition by Lubarda (2004) has also
drawn similar conclusions.

3.3. Integration algorithm

The linearized equation (34) in the configuration utðBÞ is
assumed to be

Kt
m þ Kt

r
� �

_pt ¼ _ft
g þ _ft

ext ð39Þ

Solving the deformation rate, _pt , the displacement at time t þ Dt
is updated by

ptþDt ¼ pt þ _ptDt ð40Þ

Then, the mechanical fields at t þ Dt, such as stress and consti-
tutive modulus, could be calculated directly using ptþDt . It is not
hard to understand that the numerical solution should approxi-
mate to the true solution for a small enough Dt. However, for some
complicated growth modes, Eq. (40) may induce errors for the
unknowns, ptþDt , if Dt is not so small enough. Therefore, some cor-
rections on the prediction results ptþDt are needed to stabilize the
solution. Here is the equation at the correction step n

Kt
m;n þ Kt

r;n

� �
Dpt

n ¼ ftþDt
ext � ft

int;n ð41Þ
where subscript n denotes the correction step and the internal force
f int ¼

Pne
e¼1

R
Be

BTsdV . The displacement after n corrections could be
expressed as

ptþDt
n ¼ ptþDt

n�1 þ Dpt
n ð42Þ

At the first correction step, ptþDt
0 is equal to ptþDt in Eq. (40). The

correction iterations would be terminated in case

kDpt
nk
�
kptþDt

n k < ep ð43Þ

where ep is a prescribed convergence tolerance. Actually, the above
correction process is very similar to that of classical Newton–
Raphson iteration (Wriggers, 2008).

Integration of growth tensor is carried on in the level of Gauss
integration points. Here, we adopt the explicit forward Euler
method

FtþDt
g ¼ Ft

g þ _Ft
gDt ð44Þ

where the growth rate, _Ft
g, could be calculated directly by Eq. (24).

However, the explicit algorithm may induce numerical instability
even for a lightly large time increment Dt, so we develop a more
stable implicit algorithm to update the growth tensor

FtþDt
g ¼ Ft

g þ j _Ft
g þ ð1� jÞ _FtþDt

g

� �
Dt ð45Þ

where j is a parameter in the range 0 6 j 6 1 and determines the
precision of integration. In case _FtþDt

g is only dependent on FtþDt
g

rather than the mechanical quantities MtþDt (MtþDt could denote
either stress or strain), Eq. (45) is just a traditional nonlinear
equation which can be solved by the classical Newton–Raphson
algorithm. A similar implicit algorithm, based on a residual equa-
tion similar to Eq. (44), has been developed by Buganza Tepole
et al. (2012) and Göktepe et al. (2010a). However, the case will be
more complicated supposing that _FtþDt

g relies on both FtþDt
g and

MtþDt
g at t þ Dt, which are both unknown in advance. In this case,

an improved iterative scheme is employed

FtþDt
g;m ¼ Ft

g þ j _Ft
g þ ð1� jÞ _FtþDt

g;m�1

� �
Dt ð46Þ

where FtþDt
g;m is the growth tensor at the iteration step m and

_FtþDt
g;m�1 ¼ f FtþDt

g;m�1;M
tþDt
m�1

� �
ð47Þ

The iterative process is terminated under the conditions

FtþDt
g;m � FtþDt

g;m�1

			 			. FtþDt
g;m�1

			 			 < eF or m > mcrit ð48Þ

where eF and mcrit are the convergence tolerance and the critical
iteration step. For the first step, the explicit updating Eq. (44) is
adopted and the iteration enters into the second step uncondition-
ally. We should note that, in each iteration step, a full mechanical
analysis should be conducted, that is, Eqs. (39)–(42), to obtain the
mechanical quantity MtþDt

m�1. For growth modes with a constant rate,

i.e., _Ft
g ¼ _FtþDt

g ¼ const, or a special coefficient j ¼ 1, Eq. (43) degen-

erates to the forward Euler integration equation, FtþDt
g ¼ Ft

g þ _Ft
gDt.

3.4. Flowchart

To elaborate the algorithm more clearly, its flowchart is shown
in Fig. 2. There are two main parts in the whole flow: mechanical
analysis in the global level and growth tensor updating in the
Gauss integration points level. In the mechanical analysis part,
the prediction step and correction iterative steps are included.
The equivalent body force, driving the material to grow, is calcu-
lated in the prediction step, which shows distinctions with the tra-
ditional methods. Both explicit and implicit schemes are employed
to integrate the growth tensor.



Fig. 2. Flowchart of the algorithm.

Fig. 3. Free growth model.
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4. Numerical examples

In this section, some typical growth phenomena in nature and
engineering are investigated qualitatively or quantitatively, which
involve free growth, constrained growth and stress dependent
growth. The first two types of growth modes are relatively simple,
and thus we adopt the explicit algorithm to update growth tensor.
The evolution of growth tensor in the last example is more compli-
cated and both implicit and explicit algorithms are implemented
and compared with each other. The final time is set to one if the
growth mode is time-independent. In the current studies, all
examples are simplified as two-dimensional plane stress cases
and the incompressible condition Je ¼ 1 could be satisfied precisely
by eliminating the deformation out of plane in the strain energy
function (Crisfield, 1997).

4.1. Free growth

Free growth refers to the growth with no constraints. Free
growth phenomena are widely observed in nature, such as the sur-
face buckling of pumpkins (Yin et al., 2009) and leaves (Liang and
Mahadevan, 2009), where the growth-induced deformation leads
to self-equilibrium residual stress, which promotes the morpho-
logical change. The mechanisms of some engineering applications,



Fig. 4. (a)–(d) show the configuration before and after growth for growth modes M1–M4, respectively. The direction and size of displacements are denoted by red arrows.
The values of the points marked by solid dots are given as the reference value. The blue rectangular is the initial configuration. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 5. The driving body force of growth at the first step, (a)–(d) correspond to the growth modes M1–M4, respectively. The direction and size of forces are denoted by red
arrows. The values of the points marked by solid dots are given as the reference value. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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Fig. 6. Evolution of displacement at point P1 and Von Mises stress at point P2 with respect to growth factor, points P1 and P2 are marked in Fig. 3. (a)–(d) Correspond to
growth modes M1–M4, respectively. The subgraph in (c) and (d) are the final distribution of Von Mises stress.
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such as swelling a gel (Kim et al., 2012) and dehydration of beans
(Li et al., 2011b), are also similar to free growth. For a theoretical
investigation about this topic, see Yavari (2013) and the related
references therein. Here, we adopt a simple concept in
Zimmerman et al. (2009), which aims to calculate an atomic-scale
deformation gradient with atomistic simulation. Supposing that
the growth displacement is continuous and the elastic deforma-
tions are assumed to vanish, then no residual stress will be induced
and the intermediate configuration becomes the current one. In
such case,

Fg ¼
@x
@X

ð49Þ

and it could be proved that

Fg �r ¼ 0 or
@Fg

ik

@xm
ekmj ¼ 0 ð50Þ

where ekmj is the permutation tensor defined as

ekmj ¼

1 when k;m; j are 1;2;3 or an even permutation of 1;2;3;

�1 when k;m; j are an odd permutation of 1;2;3; e:g:; 2;1;3;

0 when any two indices are equal

8>><
>>:

ð51Þ

Ignoring the rotation part of Fg, then Fg ¼ diagð#x; #y; #zÞ and
Eq. (50) becomes
0 � @#x
@z

@#x
@y

@#y

@z 0 � @#y

@x

� @#z
@x

@#z
@y 0

2
664

3
775 ¼ 0 ð52Þ

The above equation yields,

#x ¼ #xðxÞ; #y ¼ #yðyÞ; #z ¼ #zðzÞ ð53Þ

which indicates that if the growth stretch in a direction depends on
the coordinates in the same direction, no residual stress will be
induced by free growth. It also should be noted that #x, #y and #z

should satisfy C0 continuity across the domain and discontinuity
points will also induce residual stress, see the details in the
follow-up examples.

4.1.1. Free growth with a constant rate
Based on the above theoretical background, the free growth of a

two-dimensional square block with the edge length l0 = 10 is intro-
duced, in which only the rigid displacement is constrained as
shown in Fig. 3. The domain is discretized by 10� 10 Q4 elements.
Incompressible Neo-Hookean material is adopted with a strain
energy function

Wg ¼ JgC0 a2
x þ a2

y þ a2
z � 3

� �
ð54Þ

where Jg ¼ det Fg (see Eq. (15) for its meaning) and C0 ¼ 2000 is the
shear modulus at the ground state, ax, ay and az are three main



Fig. 7. (a) Evolution of growth factor #x with respect to t at different positions, (b)
Von Mises stress at point P3 in Fig. 3 and their distributions on the deformed
configuration at several steps.
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stretches elastic deformation gradient Fe, which satisfy axayaz ¼ 1
due to the incompressibility.

For this example, we choose four growth modes as follows to
verify the algorithm: M1: constant growth, #x ¼ #y ¼ 2; M2: posi-

tion dependent growth with quadratic distribution, #x ¼ 1þ x2

25,

#y ¼ 1þ y2

25; M3: position dependent growth with biquadratic dis-

tribution, #x ¼ #y ¼ 1þ x2y2

625 ; M4: self-constrained growth,

#x ¼ #y ¼
1:5; when � 3 6 x 6 3; �3 6 y 6 3
1; otherwise



. The first three

modes are continuous and the final one is not.
The results for growth modes M1–M4 are shown in Figs. 4–6.

The final deformations for four growth modes are depicted in
Fig. 8. Configurations of the circular ring
Fig. 4, in which the blue line denotes the initial configuration of
the block. The corresponding equivalent driving body force (rate)
for the first step, which is shown in Eq. (38) and decided by the dis-
tribution of d0

g ¼ _F0
g (since F0

g ¼ F0
e ¼ I in the initial configuration),

is shown in Fig. 5. In Fig. 6, evolution of displacement and Von
Mises stress at the points P1 and P2, marked in Fig. 3, with respect
to growth factor are given.

For constant growth M1, the growth expansion at each point is
the same and the domain expands uniformly as is expected, see
Fig. 4(a). The driving body force, shown Fig. 5(a), is distributed
uniformly along the boundary of the square and vanishes within
the domain, which is very similar to a negative hydrostatic
pressure. As pointed out in Section 3.2, d0

g could be analogous to
initial thermal strain for small deformation in a way, so readers
could understand the distribution of equivalent body force by
analogy to that of thermal stress analysis. For quadratic growth,
M2, a non-uniform deformation, which is large in the areas close
to the boundary and small in the center, is induced as shown in
Fig. 4(b). The corresponding driving force (in Fig. 5(b)) is distrib-
uted outward on the boundary and inward inside the domain.
Therefore, the deformation grows larger near the domain bound-
ary. From Fig. 6(a) and (b), we can find that Von Mises stress for
both modes M1 and M2 remains zero with respect to different
growth quantities. The reason lies in that the growth factor in a
direction is dependent on the coordinates in the same direction
for M1 and M2, which shows accordance with the analytical results
in Eq. (53). It is interesting that the non-uniform deformation for
M2 does not lead to residual stress. It should be mentioned that
no correction steps or equilibrium iterations are needed in these
two cases; that is to say, the equivalent body force drives the body
to equilibrium configuration directly, which convinces us of the
function of the driving force.

For growth mode M3, more complicated deformation and body
force appear as shown in Figs. 4(c) and 5(c). We could note that
deformations at x ¼ 0 and y ¼ 0 are zero and at the four corners
become large, which is in accordance with the growth mode. The
deformation of self-constrained growth, M4, and the correspond-
ing driving force are shown in Figs. 4(d) and 5(d). As we can see,
self-constraint induced by exterior materials imposes a restriction
on the inner material with constant growth and leads to a complex
non-uniform deformation. The displacement and Von Mises stress
curves for M3 and M4 are shown in Fig. 6(c) and (d), which all
appear as nonlinear relations. The largest stress for M3 comes up
at the middle point of each edge, where strong compression occurs
due to the growth of surrounding material. For the self-constrained
growth, strong compression also occurs due to the constraint of
exterior materials and thus large stress appears close to the
interfaces of growing and non-growing areas.

4.1.2. Free growth with a time dependent growth rate
The work of Ehlers et al. (2009) gives the evolution of a free

swelling gel which shows large similarities with an existing exper-
iment. Their simulation is implemented on the FE package PANDAS
before and after symmetric growth.



Fig. 9. Displacement and stress results of transversally isotropic growth, M1, with (a) inner and (b) external constraints.

Fig. 10. Displacement and stress results of anisotropic growth, M2, with (a) inner and (b) external constraints.

Fig. 11. Displacement and stress results of isotropic position dependent growth, M3, with (a) inner and (b) external constraints.
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Fig. 12. Growth model of the bone block.

Table 1
The parameters for the stress-dependent-growth block in Fig. 12.

l0 b0 C0 N ky r�x q0 Dt

10 1 50 �100 0.5 �4.5 1 0.03

Fig. 13. Evolution of results with respect to time for the growth bone block model
in Fig. 12, (a) shows elastic deformation ax and Cauchy stress rx, and (b) shows
growth factor #y and mass source rate r0

g.

2974 Y. Liu et al. / International Journal of Solids and Structures 51 (2014) 2964–2978
within the framework of the theory of porous media. The swelling
media is treated as biphasic, four-component aggregate, where
fluid transport, ion diffusion and electrical potential of electrostatic
are considered, and the swelling deformation is induced by
chemical diffusion. Here, we adopt a similar example with theirs
in our developed numerical scheme with aim to reproduce their
results. It should be noted that our model is based on the contin-
uum growth theory of homogenous media and the morphological
transformation is realized by the evolution of the growth tensor.
For simplicity, the model is inherited from last example without
changing the geometric and material parameters and the rigid
displacement is constrained by a simply-supported boundary
condition at (�5,�5) and (5,�5), see Fig. 3. The evolution of
growth factor in the range 0 6 t 6 1 is assumed to be

#x ¼
1

�60t � 1:9374
þ 0:5161

� �
y3

10
�t2 þ t
� �

þ 1
� �

þ 1; #y ¼ 1

ð55Þ

where #x depends on both position and time, which is close to 1 at
t ¼ 0 and equals to 1.5 at t ¼ 1.

Changes of #x with y equal to �5, �3, 0, 3, 5 are depicted in
Fig. 7(a), which indicates that the upper material (y > 0) always
expands and the lower material (y < 0) mainly appears shrinkage.
Both the expansion and the shrinkage reach the maximum at about
t ¼ 0:5. Under such growing mode, we could obtain Von Mises
Stress at Gauss Point P3 marked in Fig. 3 with respect to time, as
shown in Fig. 7(b), which increases at the initial time steps and
then decreases to zeros at the last step. Von Mises stress distribu-
tions on several deformed configurations at the steps A–D are also
shown in Fig. 7(b). At step B, both deformation and stress reach the
maximum, since growth between the areas of y > 0 and y < 0
shows the largest discrepancies. Comparing the results with the
first example in Ehlers et al. (2009), a great similarly could be
found in both deformation and stress. We should note that quanti-
tative comparison with that in Ehlers et al. (2009) is a little hard
since the evolution law of growth factor should be constructed
based on experiments.

4.2. Constrained growth of a circular ring

Constraints could also induce stress in a growing matter, even if
Eq. (53) is satisfied. Here, we consider the symmetric growth of a cir-
cular ring with a variable thickness as shown in Fig. 8. The position
of material points at R in the reference configuration becomes r in
the current configuration after growth. The material behavior is
assumed to be Neo-Hookean, as shown in Eq. (54). The growth mode
could be denoted as Fg ¼ diagð#r ; #h;1Þ in cylindrical coordinates,
where #r and #h are growth factors in the radial and circumferential
directions. Due to symmetry, #r and #h are only related to R.

The plane strain case with a constant thickness has been inves-
tigated comprehensively by Dervaux and Ben Amar (2011) and Li
et al. (2011a), with applications to buckling condensation of a ring
and surface folding of esophageal mucosa, respectively. It seems
that material growth in plane stress case with variable thickness
remains unsolved. Therefore, we first conduct some analytical
analyses about the growth ring, see the details in the Appendix.
Though the final results are semi-analytical, but it could be used
to validate our algorithm.

For this example, we consider three kinds of growth modes:
M1: transversely isotropic growth, #r ¼ #h ¼ 1:35; M2: anisotropic
growth, #r ¼ 1:35, #h ¼ 1:25; M3: position dependent growth,
#r ¼ #h ¼ ðR� 1:5Þ2 þ 1:1, and two kinds of boundary conditions:
B1: inner constraint, urðaÞ ¼ 0, rrðbÞ ¼ 0; B2: external constraint,
urðbÞ ¼ 0, rrðaÞ ¼ 0. Therefore, there are six cases by combining
three growth modes and two boundary conditions.
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In the initial configuration, the inner radius A and outer radius B
are set to 1 and 2, respectively. The modulus of Neo-Hookean
material C0 is 2000 and the domain is discretized by 14� 80 Q8
elements in the radial and circumferential directions. The analyti-
cal and numerical results, depicted in Figs. 9–11, agree well for all
cases, which indicate the effectiveness of the model.

The radial stress is positive in the inner constrained case and
decreases to zero at the outer radius (see Figs. 9(a), 10(a) and
11(a)); while the outer radius is constrained, the radius stress
becomes negative and vanishes at the inner radius (see Figs. 9(b),
10(b) and 11(b)). For all cases, circumferential pressure is observed
due to the constraints, which is larger at the inner radius for all
growth modes. An extreme point for circumferential pressure
appears for M3, which shows distinct difference with the mono-
tonic trends of M1 and M2, since the growth factor at the middle
point of radius is the smallest.

4.3. Stress dependent growth

4.3.1. Stress dependent growth of a square block
It has been realized that growth alters the stress distribution

and stress modulates growth in return. Here, we take an example
transformed from Goriely et al. (2008), where growth is a function
of stress tensor. As shown in Fig. 12, a bone block is applied with a
uniform pressure p ¼ N=A, where N is a constant resultant force,
A ¼ bl is the area of loading surface in the current configuration, l
and b are the length and thickness of the block. As the stress in
the x direction, rx, exceeds an critical value r�x , the domain begins
to grow in the y direction. Then, it reduces rx and the growth rate
also decreases. This reduces rx in turn until rx reaches the critical
value. The growth mode is homogenous and no additional con-
straints are applied, so no residual stress will arise. The material
of the block is assumed to be incompressible Neo-Hookean
material with stain energy function as Eq. (54), and the elastic
deformation tensor could be denoted as

Fe ¼ diag ax;
1ffiffiffiffiffi
ax
p ;

1ffiffiffiffiffi
ax
p

� �
ð56Þ
Fig. 14. (a) Shows the boundary conditions for mechanical loading and growth, (b) s
The only non-vanishing Cauchy stress in the x direction is

rx ¼ 2C0 a2
x �

1
ax

� �
ð57Þ

If rx after the initial equilibrium is greater than r�x, the body
begins to grow in the y direction as the following rate

_#yðtÞ ¼
kyðjrxðtÞj � jr�xjÞ; if jrxðtÞj > jr�xj;
0; else



ð58Þ

where ky is the coefficient adjusting the growth rate. The block
growth only happens in the y direction, so the deformation gradient
tensor could be denoted by

F ¼ diag ax;
#yffiffiffiffiffi
ax
p ;

1ffiffiffiffiffi
ax
p

� �
ð59Þ

The area of loading surface after deformation is A ¼ l0b0#y=ax.
Using equilibrium equation rxA ¼ N, we could get the following
equation about ax,

a3
x �

N
2C0l0b0#y

a2
x � 1 ¼ 0 ð60Þ

Eqs. (58) and (60) are strongly coupled and could be solved by
the forward Euler method

#yðt þ DtÞ ¼ #yðtÞ þ _#yðtÞDt ð61Þ

The initial value of the above integration #yð0Þ is 1. Finally,
substituting #yðt þ DtÞ into Eq. (60), ax could be solved
numerically.

The typical geometric and material parameters are listed in
Table 1. The time increment, Dt, is set to 0.03 and there are totally
100 incremental steps with a total time t ¼ 3. The domain is
discretized by 10� 10 Q4 elements. The semi-analytical and
numerical results are depicted in Fig. 13 in absolute value, which
shows the evolutions of ax and rx in (a) and #y and r0

g in (b). As
we can see, all the numerical results agree well with the semi-
analytical one, which indicates the accuracy of the developed
numerical method.
hows mass change at t = 1, (c) and (d) are the Von Mises stress at t = 0 and t = 1.



Fig. 15. (a) And (b) are the evolution of Von Mises stress at the points P1 and P2
marked in Fig. 14(a). The results with respect to the time increments Dt = 0.01, 0.04,
0.07 for both explicit and implicit schemes are shown.
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From a physical standpoint, all quantities changes dramatically
at the initial steps and tend to be stable at the final steps. At the
initial equilibrium, r0

g is equal to �9.68, which is greater than the
critical value �4.5, then the domain begins to grow in the y direc-
tion. The growth leads to the decline of rx, which results in the
reduction of _#yðtÞ and r0

g in return, and finally the overall system
tends towards stability. The pressure stress and corresponding
deformation decrease with time, which indicates the self-adaptive
ability of biological material in response to the external stimuli.

4.3.2. Stress dependent growth of a beam
Living matter can autonomously respond to environment and

can develop and adapt itself in respond to external stimuli. Here,
we further discuss this topic in the developed algorithm within
explicit and implicit integration schemes. The simply supported
rectangular beam, with an initial size a0 � b0, is applied with a
uniform vertical force p on each node of the top surface at the ini-
tial time. Then, the vertical displacement on the top surface are
constrained after equilibrium, as shown in Fig. 14(a), and the body
begins to grow as the following evolution equation (Lubarda and
Hoger, 2002; Göktepe et al., 2010a; Buganza Tepole et al., 2012)

_#x ¼ _#y ¼ _#g ¼ kgð#gÞ/gðrÞ ð62Þ

where the limiting growth function kgð#gÞ and growth criterion
/gðrÞ satisfy, respectively,

kgð#gÞ ¼
1
s

#max � #g

#max � 1

� �c

ð63Þ

and

/gðrÞ ¼
jtrðrÞj � rcritð ÞsignðtrðrÞÞ; if jtrðrÞj > rcrit

0; else



ð64Þ

Here, 1=s and c modulate the growth speed and the nonlinear-
ity of growth process (Göktepe et al., 2010a), rcrit is a positive crit-
ical stress limit which activates the growth process, tr(�) and
sign(�) are the trace of a tensor and the sign of a number. We could
find that if trðrÞ > rcrit, then /gðrÞ > 0, which indicates mass
increase; if trðrÞ < �rcrit, then /gðrÞ < 0 and mass absorption hap-
pens. It should be noted that Göktepe et al. (2010a) have suggested
that /g should be expressed in terms of elastic part of deformation
gradient Fe or the so-called Mandel stress Me ¼ Ce � Se. Here, the
adopted Cauchy stress r should not change the fundamental
properties of the problem and provides convenience for results
discussion.

The body is composed by Neo-Hookean material with strain
energy function shown in Eq. (54). The domain is meshed with
6� 20 Q4 elements. The related geometric and material parame-
ters are listed in Table 2. For this example, we choose three time
increments, Dt ¼ 0:01;0:04;0:07, for both explicit and implicit
integration schemes. In the implicit algorithm, the coefficient j
in Eq. (45) is set to be 0.75. The evolution of Von Mises stress at
points P1 and P2, marked in Fig. 14(a), are depicted in Figs. 15(a)
and (b), respectively. As we can see, the curves with respect
Dt ¼ 0:01 for both schemes are almost the same, so the results in
this case could be considered as the reference solution. As
Dt ¼ 0:04, the result of explicit algorithm shows larger deviation
with the reference solution than that of the implicit algorithm.
Especially, large oscillations could be observed in Fig. 15(b) for
Table 2
The parameters for the stress-dependent-growth beam shown in Fig. 14(a).

a0 b0 C0 p 1/s c rcrit q0

10 3 2000 �150 0.001 2 1000 1
the curve of explicit algorithm. Even so, Von Mises stress seems
to converge to the correct one for both integration schemes in this
case. However, time increment 0.07 will make the result of explicit
algorithm divergent (not shown in the figure), while that for
implicit scheme remains the tendency to the exact solution at
the last several steps yet. So it can be concluded that the implicit
scheme shows more robustness and higher precision than the
explicit integration scheme. We should also mention that more
computation is demanded for implicit scheme.

Comparing Fig. 14(c) with Fig. 14(d), Von Mises stress decreases
remarkably from the beginning to the end of growth. The areas
with Von Mises stress greater than 2500, such as the bottom and
top surfaces, almost disappear. So growth gives rise to the decrease
of Von Mises stress, which indicates the effects of the growth law,
i.e., Eq. (62), and the stress modulation on growth. From Fig. 14(b),
which gives the distribution of mass generation per unit volume,
given in Eq. (9), we could find that mass is generated mainly
nearby the bottom surface and disappears on the top surface.
The phenomenon is not hard to be understood, since the top and
bottom materials are in the states of compression and tension,
which lead to trðrÞ < 0 and trðrÞ > 0, respectively.
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5. Conclusions

A new nonlinear FE algorithm for modeling deformation and
stress of soft materials with a growing mass is developed. We
develop a new linearization scheme for the nonlinear equation
based on the objective Oldroyd stress rate. Within this scheme,
an equivalent body force, derived from growth tensor, its rate,
etc. is detected, which seems to be the driving force to make the
material grow in the numerical aspect. Both explicit and implicit
integration schemes are developed to solve the time-related equa-
tion. Several kinds of numerical examples, such as free growth,
constrained growth and stress dependent growth, are introduced,
which show the robustness and accuracy of the algorithm. The
constrained growth in Section 4.2 indicates that the FE algorithm
is capable to capture the complicated distribution of residual stress
precisely. The last stress-dependent-growth example demon-
strates the higher robustness and accuracy of the implicit integra-
tion scheme, which shows the applicability of the algorithm in
realistic problems with complicated growth law and boundary
conditions. The FE equations are constructed in the current config-
uration based on the updated Lagrangian formulation, which pro-
vides more convenience to consider the fluid–solid interactions
and the relevant boundary conditions (Narayanan et al., 2009).

The algorithm is also promising to be provided as a tool for
modeling deformation induced by illumination, dehydration, PH
and so on. For example, specified nonuniform growth patterns
could induce different buckled surfaces of a thermal responsive
gel plate, which shows great potential for design of complex actu-
ating structures (Kim et al., 2012). Another example is the non-
Euclidean plate with a non-zero Gaussian curvature, which could
be generated by natural growth or different swelling (Efrati et al.,
2009). The corresponding numerical method for modeling such
phenomena seems to be rare for predicting complex patterns. Such
phenomena show similar characters with the mass growth and
should follow the same numerical scheme. This topic is waited
for future investigations. In our algorithm, the introduced exam-
ples are not specific biological tissues or organs; to monitor the
behavior of true biological materials, with more complicated
constitutive law, geometries and loading conditions, will be the
future work.
Acknowledgements

The supports of the National Natural Science Foundation
(11232003, 91315302, 11072051), the Ph.D. Programs Foundation
of Ministry of Education (20130041110050), the 111 Project
(B08014) and the National Key Basic Research Special Foundation
of China (2010CB832704) are gratefully acknowledged.
Appendix A. Symmetric growth of a ring with a variable
thickness

For the symmetric growth of a ring, deformation gradient could
be defined as

F ¼ diag ðr0; r=R; ktÞ ðA:1Þ

where r0 ¼ @r=@R and kt denotes the deformation gradient in the
thickness direction. We first consider a constant growth tensor,
Fg ¼ diagð#r; #h;1Þ, where #r and #h are constant growth factor in
the radial and circumferential directions. Therefore, the elastic
deformation can be denoted as

Fe ¼ F � F�1
g ¼ diag

1
#r

r0;
1
#h

r
R
; kt

� �
¼ diag ðar ;ah;azÞ ðA:2Þ
The strain energy for incompressible Neo-Hookean material is

W ¼ JgC0 a2
r þ a2

h þ a2
z � 3

� �
ðA:3Þ

where J ¼ det F ¼ det Fg ¼ #r#h and arahaz ¼ 1 due to the incom-
pressibility. So the Cauchy stress follows

rr ¼ 2C0 a2
r � a�2

r a�2
h

� �
; rh ¼ 2C0 a2

h � a�2
r a�2

h

� �
ðA:4Þ

The equilibrium equation in the current configuration has the
form

drr

dr
þ 1

r
ðrr � rhÞ ¼ 0 ðA:5Þ

Substituting Eq. (A.4) into Eq. (A.5), the following nonlinear
equation about r could be obtained

2#2
h r þ 2#4

r #
4
h R2r�2r0�4r þ R2r�3r0�2 � Rr�2r0�3
� �

þ #2
hr�1r02

� #2
r r=R2 ¼ 0 ðA:6Þ

It can be easily seen that Eq. (A.6) is a second-order differential
equation with high nonlinearity. In case #r and #h are position
dependent, the corresponding equation will be more complicated.
It seems to be impossible to solve it analytically and here, we ask
for the help of numerical method. For the constrained symmetric
growth, the symmetric Diriclet and Neumann boundary conditions
are

urjr¼r0
¼ ur ðA:7Þ

and

rr jr¼r0
¼ rr ðA:8Þ

where ur and rr are the known displacements and stress at r ¼ r0.
After obtaining r and r0, the stress could be calculated by Eq. (A.4).
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